JP3357222B2 - Glass substrate with minute recess and flat microlens array using this glass substrate - Google Patents

Glass substrate with minute recess and flat microlens array using this glass substrate

Info

Publication number
JP3357222B2
JP3357222B2 JP19393395A JP19393395A JP3357222B2 JP 3357222 B2 JP3357222 B2 JP 3357222B2 JP 19393395 A JP19393395 A JP 19393395A JP 19393395 A JP19393395 A JP 19393395A JP 3357222 B2 JP3357222 B2 JP 3357222B2
Authority
JP
Japan
Prior art keywords
glass substrate
minute
etching
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19393395A
Other languages
Japanese (ja)
Other versions
JPH0943404A (en
Inventor
厚範 松田
健二 森尾
隆 岸本
賢二郎 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP19393395A priority Critical patent/JP3357222B2/en
Publication of JPH0943404A publication Critical patent/JPH0943404A/en
Application granted granted Critical
Publication of JP3357222B2 publication Critical patent/JP3357222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面ガラス基板凹
部に透明樹脂等を充填してなる平板型マイクロレンズを
製造するのに適した微小凹部付きガラス基板およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass substrate having minute concave portions suitable for manufacturing a flat microlens in which a concave portion of a flat glass substrate is filled with a transparent resin or the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】透過型液晶表示素子を用いたプロジェク
タテレビジョン(PTV)が、実用化されている。現
在、このPTVの開発において、スクリーン上のでの高
輝度をいかに実現するかがその焦点となっており、高出
力のライトバルブや光学装置の開発や、平板マイクロレ
ンズの応用等が精力的に検討されている。
2. Description of the Related Art A projector television (PTV) using a transmission type liquid crystal display device has been put to practical use. Currently, in the development of this PTV, the focus is on how to achieve high brightness on the screen, and the development of high-output light valves and optical devices and the application of flat microlenses are being vigorously studied. Have been.

【0003】このPTVに平板マイクロレンズを用いれ
ば、液晶表示素子のブラックマトリクスや画素電極部分
に入射し、画素開口部の照明には寄与していなかった光
を大きく低減できるため、照明光の強度を上げることな
くスクリーン上の輝度を向上することができ、この結
果、表示素子の光および熱による特性の劣化の問題を解
決することが可能となる。
If a flat microlens is used for the PTV, light that has entered the black matrix or pixel electrode portion of the liquid crystal display element and has not contributed to the illumination of the pixel opening can be greatly reduced. It is possible to improve the luminance on the screen without increasing the luminance, and as a result, it is possible to solve the problem of deterioration of characteristics of the display element due to light and heat.

【0004】この場合、平板マイクロレンズは、液晶表
示素子の光入射側に配置され、ブラックマトリクスや画
素電極部分に入射していた光を、画素開口部に集光して
有効に利用し、実効開口効率を向上させる働きを持って
いる。
In this case, the flat microlens is disposed on the light incident side of the liquid crystal display element, and condenses the light incident on the black matrix and the pixel electrode portion to the pixel opening to effectively use the light. It has the function of improving the aperture efficiency.

【0005】従来、平板マイクロレンズとしては、ソー
ダライムガラスにTi等の耐食性保護皮膜(マスク膜)
を成膜し、周知のフォトリソグラフィ技術を用いて、円
形あるいは直線スリット状の開口を設け、これを溶融塩
に浸漬して開口部からイオン交換を行う、いわゆるイオ
ン交換法により、その断面が略半円状の屈折率分布を形
成した平板マイクロレンズアレイ(特開昭57−537
02号)や、また化学エッチングによってガラス基板表
面に半球面状凹部を形成し、これに透明樹脂等を充填し
レンズとした平板型マイクロレンズが知られている(特
開平5−45624号)。またさらに、ドライエッチン
グによって、半導体基板表面に凹部を形成する方法が開
示されている(特開平1−219702号)。
Conventionally, as a flat plate microlens, a soda lime glass has a corrosion-resistant protective film (mask film) of Ti or the like.
By using a well-known photolithography technique, a circular or linear slit-shaped opening is provided, and the cross-section is substantially formed by a so-called ion exchange method in which this is immersed in a molten salt and ion-exchanged from the opening. Flat microlens array having a semicircular refractive index distribution (Japanese Patent Laid-Open No. 57-537)
No. 02), and a flat microlens in which a hemispherical concave portion is formed on the surface of a glass substrate by chemical etching and filled with a transparent resin or the like and used as a lens is known (Japanese Patent Application Laid-Open No. 5-45624). Furthermore, a method of forming a concave portion on the surface of a semiconductor substrate by dry etching is disclosed (JP-A-1-219702).

【0006】[0006]

【発明が解決しようとする課題】特に、微小開口を多数
その表面に設けたマスク膜付き平面ガラス基板に、化学
エッチングを施し、前記微小開口からエッチングを進め
ることにより得られる、その平面視の輪郭形状が略円形
の凹部に、透明樹脂等を充填しレンズとした平板型マイ
クロレンズの製造においては、化学エッチングの際に欠
陥が生じることがあった。具体的には、本来円形の輪郭
形状となるべきところが、いびつな楕円状(ラグビーボ
ール状)輪郭形状となったり、また化学エッチングの途
中でマスク膜が、ガラス基板から剥離してしまうことが
あった。
In particular, a planar glass substrate provided with a mask film having a large number of fine openings formed on its surface is subjected to chemical etching, and etching is performed from the fine openings to obtain a contour in plan view. In the production of a flat microlens in which a substantially circular concave portion is filled with a transparent resin or the like to form a lens, a defect sometimes occurs during chemical etching. Specifically, a part that should originally have a circular contour shape may have a distorted elliptical (rugby ball) contour shape, or the mask film may peel off from the glass substrate during chemical etching. Was.

【0007】したがって、前記凹部に前記ガラス基板と
屈折率の異なる樹脂等を充填してレンズを形成した場合
に、その集光特性は前記ガラス基板の屈折率と前記樹脂
等の屈折率の差によってだけ決められることになる。ま
た、前記ガラス基板の屈折率や前記樹脂等の屈折率は、
あまり自由に選択することができないので、前記レンズ
の集光特性を自由に変化させることは、難しいこととな
る。
Therefore, when a lens is formed by filling the concave portion with a resin or the like having a different refractive index from that of the glass substrate, the light-collecting characteristic is determined by the difference between the refractive index of the glass substrate and the refractive index of the resin or the like. Only be decided. Further, the refractive index of the glass substrate and the refractive index of the resin and the like,
It is difficult to freely change the light-collecting characteristics of the lens, since the selection cannot be made freely.

【0008】本発明の目的は、エッチング法によって形
成され1次元または2次元に配列された微小凹部の輪郭
形状が円形である平板型マイクロレンズ用のガラス基板
を提供するものである。さらに、それを用いた平板型マ
イクロレンズを提供する。
An object of the present invention is to provide a glass substrate for a flat plate type microlens in which minute concave portions formed by etching and arranged one-dimensionally or two-dimensionally have a circular contour. Further, a flat microlens using the same is provided.

【0009】[0009]

【課題を解決するための手段】本発明は、耐食性膜付き
ガラス基板をエッチャントに浸漬し、マイクロレンズの
微小凹部を形成する際に生じる楕円状欠陥および耐食性
膜の剥離が、前記ガラス基板表面の研磨程度、特に表面
粗さによって支配されているという知見に基づきなされ
たものである。
According to the present invention, an elliptical defect and peeling of a corrosion-resistant film which occur when a glass substrate provided with a corrosion-resistant film is immersed in an etchant to form a minute concave portion of a microlens are formed on the surface of the glass substrate. This is based on the finding that it is governed by the degree of polishing, especially the surface roughness.

【0010】一般にガラス基板は、切断後ラッピングお
よびポリッシングを行い、平滑表面を創出する。しかし
ながら、ラッピングやポリッシング工程で一旦生じた傷
は、ポリッシュが進んで見かけ上判別できなくなって
も、潜傷という形態でガラス基板表面近傍に残ってい
る。
In general, a glass substrate is subjected to lapping and polishing after cutting to create a smooth surface. However, the scratch once generated in the lapping or polishing process remains in the vicinity of the surface of the glass substrate in the form of a latent scratch even if the polish progresses and it cannot be apparently determined.

【0011】ガラス基板表面付近に残った潜傷はガラス
エッチャントと接触すると、エッチャントが潜傷深部に
しみ込み、潜傷部がエッチングされる。これによって、
エッチング前には判別できなかった潜傷が顕在化され
る。
When the latent scratch remaining near the surface of the glass substrate comes in contact with the glass etchant, the etchant penetrates into the deep scratch and the latent scratch is etched. by this,
Latent scratches that could not be determined before etching become apparent.

【0012】潜傷を有するガラス基板に耐食性保護膜を
形成し、例えばこの耐食性膜にレンズアレイの配列に対
応した微小開口を形成し、微小開口からエッチングを行
うことにより凹部を形成しようとする場合、潜傷の顕在
化が起こることにより、楕円状にエッチングが進んだ
り、特定方向にエッチングが速く進むため、耐食性膜の
ガラス基板からの剥離が生じたりすることがある。
When a corrosion-resistant protective film is formed on a glass substrate having a latent scratch, for example, a minute opening corresponding to the arrangement of the lens array is formed in the corrosion-resistant film, and a concave portion is to be formed by etching from the minute opening. When the latent scratches become apparent, the etching proceeds in an elliptical shape, or the etching proceeds rapidly in a specific direction, so that the corrosion-resistant film may peel off from the glass substrate.

【0013】図2に、ガラス基板の表面粗さ(Ra)
と、この基板に耐食性保護膜を形成しさらにこの耐食性
膜に微小開口を形成し、微小開口から等方的にエッチン
グを行ったときに形成される凹部を平面視したときの凹
部の輪郭の例を示す。なお、aは凹部の輪郭の最短の長
さ、bは最長の長さと、定義し測定した。また、図中の
矢印はガラス基板表面の潜傷の方向を示している。な
お、前記表面粗さ(Ra)は、原子間力顕微鏡(デジタ
ルインスツルメント(株)製:NanoScope )にて測定し
た。つまり、ガラス基板表面に潜傷があると、その方向
が特に優先的にエッチングされ、形成される凹部が上述
のようなラグビーボール状となることが確認された。
FIG. 2 shows the surface roughness (Ra) of the glass substrate.
An example of a contour of a concave portion when a concave portion formed when a corrosion-resistant protective film is formed on the substrate, a minute opening is formed in the corrosion-resistant film, and isotropically etched from the minute hole, and a concave portion is formed in a plan view. Is shown. Note that a was defined and measured as a being the shortest length of the contour of the concave portion and b being the longest length. Arrows in the figure indicate the directions of latent scratches on the glass substrate surface. The surface roughness (Ra) was measured with an atomic force microscope (Digital Instruments Co., Ltd .: NanoScope). In other words, it was confirmed that if there is a latent flaw on the surface of the glass substrate, the direction of the latent flaw is particularly preferentially etched, and the recess formed has a rugby ball shape as described above.

【0014】この関係のグラフを図3に示す。この例で
は、ガラス基板のRaが0.55nm以上となると、エ
ッチングにより形成される凹部の輪郭のb/aが1.5
以上となり、さらにその輪郭も乱れておりもはや円形を
なしているとはいえなくなっていることがわかる。一
方、前記基板のRaが0.4nm未満であると、前記b
/aは1.1以下であり前記輪郭はほぼ円形を保ってい
るといえる。
FIG. 3 is a graph showing this relationship. In this example, when Ra of the glass substrate is 0.55 nm or more, the contour b / a of the concave portion formed by etching becomes 1.5 / nm.
As described above, it can be seen that the contour is disturbed and it can no longer be said that it is no longer circular. On the other hand, when Ra of the substrate is less than 0.4 nm, the b
/ A is 1.1 or less, and it can be said that the contour keeps a substantially circular shape.

【0015】さらに前記Raが0.24nm以下である
と、前記b/aはほとんど1であり、前記輪郭は完全な
円形をなしているといえる。
Further, when the Ra is 0.24 nm or less, the b / a is almost 1, and it can be said that the outline is a perfect circle.

【0016】なおこのことは、エッチングにより形成さ
れる微小凹部に上述した潜傷が存在して起こることであ
り、全ての凹部が上述のラグビーボール状になるわけで
はない。ガラス基板のRaが大きい場合(例えば、Ra
>0.7nm)では、ほとんどの凹部が上述のラグビー
ボール状となるのだが、例えば0.4<Ra<0.5n
mの範囲では、ガラス基板表面の潜傷の存在確立の問題
となるので、ある凹部では良好な円形の輪郭形状を有し
ていても、別の凹部ではラグビーボール状になっている
ことがある。
This is caused by the presence of the latent scratches in the minute recesses formed by etching, and not all the recesses have the above-mentioned rugby ball shape. When the Ra of the glass substrate is large (for example, Ra
> 0.7 nm), most of the recesses have the above-mentioned rugby ball shape. For example, 0.4 <Ra <0.5n
In the range of m, there is a problem of establishing the existence of latent scratches on the surface of the glass substrate. Therefore, even if one concave portion has a good circular contour shape, another concave portion may have a rugby ball shape. .

【0017】シリカを主成分とするガラスのHFによる
エッチングメカニズムは、簡単には以下の式で表され
る。 SiO2+6HF → H2SiF6 + 2H2O 一般にエッチングレートを支配するのは、HF2 -イオン
であることが知られており(日経マイクロデバイス,19
90年2月号,p124)、HF2 -イオン濃度は、以下の
解離反応の平衡によって決まる。 HF+H2O → H3++F- HF+F- → HF2 -
The etching mechanism of glass containing silica as a main component by HF is simply represented by the following equation. SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O In general, it is known that HF 2 - ions govern the etching rate (Nikkei Micro Devices, 19
HF 2 - ion concentration is determined by the following equilibrium of the dissociation reaction. HF + H 2 O → H 3 O + + F - HF + F - → HF 2 -

【0018】ここで、エッチングにおけるマスク膜の開
口径と、前記凹部の形状の関係について考えてみる。エ
ッチング反応は、マスク膜の開口部分から等方的に進行
する。このとき、前記開口径とエッチング長の比率が1
/4以下の場合には、前記エッチング反応の進行は、点
拡散として取り扱うことができる。このときの凹部の形
状は、ほぼ半球状と見なせる。
Here, the relationship between the opening diameter of the mask film in the etching and the shape of the concave portion will be considered. The etching reaction proceeds isotropically from the opening of the mask film. At this time, the ratio between the opening diameter and the etching length is 1
In the case of / 4 or less, the progress of the etching reaction can be treated as point diffusion. The shape of the recess at this time can be regarded as substantially hemispherical.

【0019】しかし、前記開口径とエッチング長の比率
が1/4を越える場合には、もはや点拡散として取り扱
うことができなくなってしまう。このときの凹部の形状
は、前記開口径に対応した底部を有するボウルのよう
な、すなわち長円を長軸方向に2等分した半長円を回転
して得られる形状となる(厳密にいうと、この形状は、
市販されているようなボウルの形状とは異なるが、本明
細書ではこの形状をボウル状と呼ぶことにする。
However, when the ratio between the opening diameter and the etching length exceeds 1/4, it can no longer be treated as point diffusion. The shape of the recess at this time is a shape like a bowl having a bottom corresponding to the opening diameter, that is, a shape obtained by rotating a semi-ellipse obtained by bisecting an ellipse in the major axis direction (strictly speaking. And this shape
Although different from the shape of a bowl as is commercially available, this shape will be referred to herein as a bowl shape.

【0020】なお、本発明における微小凹部は、1〜1
00μm程度の大きさ、特に20〜40μm程度のもの
をいう。凹部の大きさが大きいと、上述した潜傷や研磨
傷の顕在化による不均一エッチングが発生しても、その
影響が小さいためである。
In the present invention, the minute concave portions are 1 to 1
It means a size of about 00 μm, especially about 20 to 40 μm. This is because if the size of the concave portion is large, even if uneven etching occurs due to the appearance of the latent scratches and polishing scratches described above, the influence thereof is small.

【0021】本発明では、前記潜傷の顕在化による不均
一エッチングの発生および耐食性膜の剥離を抑制し、前
記微小凹部を平面視したときの輪郭が円形とするため
に、耐食性膜を形成するガラス基板の表面粗さを厳密に
中心線平均粗さRaで0.4nm以下に制御することを
特徴としている。
In the present invention, a corrosion-resistant film is formed in order to suppress the occurrence of non-uniform etching and the peeling of the corrosion-resistant film due to the appearance of the latent scratch, and to make the contour of the minute concave portion circular when viewed in plan. It is characterized in that the surface roughness of the glass substrate is strictly controlled to a center line average roughness Ra of 0.4 nm or less.

【0022】ガラス基板表面の中心線平均粗さRaが
0.4nmを越える場合には、潜傷や研磨傷の顕在化に
よる不均一エッチングの発生および耐食性膜の剥離を生
じ易くなる。
When the center line average roughness Ra of the surface of the glass substrate exceeds 0.4 nm, uneven etching due to the appearance of latent scratches and polishing scratches and peeling of the corrosion-resistant film are liable to occur.

【0023】基本的には、耐食性膜を形成するガラス基
板の表面粗さは、小さいほど好ましいが、実際には、中
心線平均粗さRaを0.05nm未満にすることは技術
的に非常に難しく、またその生産性を確保することが難
しい。
Basically, the surface roughness of a glass substrate on which a corrosion resistant film is formed is preferably as small as possible, but in practice, it is technically very difficult to make the center line average roughness Ra less than 0.05 nm. It is difficult and it is difficult to secure its productivity.

【0024】また、上述の問題点を達成した上で、技術
的・経済的な点を考慮すると、ガラス基板のRaは0.
1〜0.24nm程度が特に好ましい。
Further, considering the technical and economical points after achieving the above-mentioned problems, Ra of the glass substrate is set to 0.1.
About 1 to 0.24 nm is particularly preferable.

【0025】その中心線平均粗さRaを0.4nm以下
に制御したガラス基板の表面は、以下の示す方法等によ
って創出することができる。 (1)従来の研磨方法の酸化セリウム等の砥粒を用いた
最終の研磨工程で、低加重、低速度条件下で研磨を緩や
かに行う (2)最終の研磨工程で粒径の小さな酸化セリウム砥粒
を用いて研磨を行う。 (3)コロイダルシリカ等の形状が球で比較的硬度の低
い砥粒を用いて研磨を行う。
The surface of the glass substrate whose center line average roughness Ra is controlled to 0.4 nm or less can be created by the following method or the like. (1) In a final polishing step using abrasive grains such as cerium oxide in a conventional polishing method, polishing is performed gently under low load and low speed conditions. (2) Cerium oxide having a small particle size in the final polishing step Polishing is performed using abrasive grains. (3) Polishing is performed using abrasive grains having a relatively low hardness such as colloidal silica having a spherical shape.

【0026】また、中心線平均粗さRaが0.4nmを
越える基板に対しては、塗膜熱分解法やゾルゲル法等に
よってガラス基板と同じ組成の皮膜をガラス基板表面に
形成し、これを焼結させ潜傷を埋めることによっても、
ガラス基板の表面粗さが改善でき、中心線平均粗さを
0.4nm以下にすることができる。また、イオン注入
法によって高エネルギーの荷電粒子をガラス基板に衝突
させ、局所的な高温を実現しガラスの粘性流動と焼結を
利用することによってもガラス基板の表面粗さが改善で
き、中心線平均粗さを0.4nm以下にすることができ
る。
For a substrate having a center line average roughness Ra of more than 0.4 nm, a film having the same composition as the glass substrate is formed on the surface of the glass substrate by a coating film thermal decomposition method, a sol-gel method, or the like. By sintering and filling the latent wound,
The surface roughness of the glass substrate can be improved, and the center line average roughness can be reduced to 0.4 nm or less. In addition, the surface roughness of the glass substrate can be improved by using high-energy charged particles to collide with the glass substrate by ion implantation to achieve local high temperature and use viscous flow and sintering of the glass. The average roughness can be 0.4 nm or less.

【0027】前記各種手法によってガラス基板表面を平
滑化することにより、ガラス基板の潜傷による不均一エ
ッチングの発生をなくすることが可能となる。さらに、
ガラス基板に所望のパターンを有する耐食性保護膜を形
成した場合には、この所望のパターンの微小開口から等
方的にエッチングを進行させることできる。この基板の
凹部に透明樹脂等を充填し平板型マイクロレンズを作製
すると、良好な微小レンズを形成することが可能にな
る。
By smoothing the surface of the glass substrate by the above-mentioned various methods, it is possible to eliminate the occurrence of uneven etching due to latent scratches on the glass substrate. further,
When a corrosion-resistant protective film having a desired pattern is formed on a glass substrate, etching can proceed isotropically from the minute opening of the desired pattern. When a transparent resin or the like is filled in the concave portion of the substrate to produce a flat microlens, a favorable microlens can be formed.

【0028】本発明で用いるガラス基板としては、石英
ガラス、ソーダライムガラス、アルカリアルミノシリケ
ートガラス、アルカリボロシリケートガラス、多成分無
アルカリガラス、低膨張結晶化ガラスが挙げられる。
Examples of the glass substrate used in the present invention include quartz glass, soda lime glass, alkali aluminosilicate glass, alkali borosilicate glass, multi-component alkali-free glass, and low expansion crystallized glass.

【0029】本発明で言うところのガラス基板の平滑性
は、従来フォトマスク研磨と称されている研磨レベルで
あり、このレベルのガラス基板の平滑性は、原子間力顕
微鏡等の高分解能を有する分析手法によって、評価する
ことが可能である。
The smoothness of the glass substrate referred to in the present invention is a polishing level conventionally called photomask polishing. The smoothness of the glass substrate at this level has a high resolution such as that of an atomic force microscope. It can be evaluated by an analysis method.

【0030】本発明で用いる耐食性保護膜材料は、用い
るエッチャントに対する耐性やフォトリソパターニング
の作業性および成膜コストによって、適当なものを選定
することができる。また形成する膜厚も目的に応じて任
意に選定することができ、組成の異なる膜材料を多層に
積層することもできる。
As the corrosion-resistant protective film material used in the present invention, an appropriate material can be selected depending on the resistance to the etchant used, the workability of photolithographic patterning, and the film forming cost. The film thickness to be formed can be arbitrarily selected according to the purpose, and film materials having different compositions can be laminated in multiple layers.

【0031】例えば、耐食性保護膜材料として、クロ
ム、ニッケル、タンタル、シリコン、金等の金属および
その酸化物または窒化物が挙げられる。これら耐食性保
護膜は、スパッタリング法、蒸着法などによって形成す
ることができる。
For example, examples of the corrosion-resistant protective film material include metals such as chromium, nickel, tantalum, silicon, and gold, and oxides or nitrides thereof. These corrosion-resistant protective films can be formed by a sputtering method, an evaporation method, or the like.

【0032】上述の耐食性膜付きガラス基板のエッチン
グを行う際の、エッチャント組成はエッチングを行うガ
ラス基板の組成によって選定される。例えば、石英ガラ
ス基板をエッチングする場合には、フッ化水素とドデシ
ルベンゼンスルホン酸ナトリウム等の界面活性剤を含有
する水溶液が、エッチャントとして用いることができ
る。また、ソーダライムガラス基板をエッチングする場
合には、フッ化水素に加えて硫酸等の鉱酸、酢酸等の有
機酸を加えることが多く、必要に応じてドデシルベンゼ
ンスルホン酸ナトリウム等の界面活性剤が加えられると
よい。
When etching the above-mentioned glass substrate with a corrosion-resistant film, the etchant composition is selected according to the composition of the glass substrate to be etched. For example, when etching a quartz glass substrate, an aqueous solution containing hydrogen fluoride and a surfactant such as sodium dodecylbenzenesulfonate can be used as an etchant. In addition, when etching a soda lime glass substrate, a mineral acid such as sulfuric acid and an organic acid such as acetic acid are often added in addition to hydrogen fluoride, and a surfactant such as sodium dodecylbenzenesulfonate is used as necessary. Should be added.

【0033】本発明では、上述した微小凹部が形成する
ガラス基板表面との境界は、平面視したときほぼ完全な
円形となっている。したがって、この微小凹部に前記基
板の屈折率と異なる樹脂等を充填することで、良好な光
学性能を有する平板マイクロレンズが得られる。
In the present invention, the boundary with the surface of the glass substrate formed by the above-mentioned minute concave portion is a substantially perfect circle when viewed in plan. Therefore, a flat microlens having good optical performance can be obtained by filling the minute concave portion with a resin or the like having a different refractive index from the substrate.

【0034】また、本発明の製造方法では、微小な不均
一エッチングの発生および開口を有する耐食性膜の剥離
を抑制するために、耐食性膜を形成するガラス基板の表
面粗さを、上述した種々の方法で厳密に中心線平均粗さ
Raで0.4nm以下に、より好ましくは0.1〜0.
24nmに制御している。このため、ガラス基板表面の
潜傷による不均一エッチングの発生をなくすることが可
能になる。
Further, in the manufacturing method of the present invention, the surface roughness of the glass substrate on which the corrosion-resistant film is formed is controlled in order to suppress the occurrence of minute uneven etching and the peeling of the corrosion-resistant film having openings. Strictly, the center line average roughness Ra is 0.4 nm or less by the method, more preferably 0.1 to 0.
It is controlled to 24 nm. For this reason, it is possible to eliminate the occurrence of uneven etching due to latent scratches on the glass substrate surface.

【0035】また、上述のガラス基板をさらにエッチン
グすることによって、微小凹部が稠密に充填されたガラ
ス基板を得ることができる。
Further, by further etching the above-mentioned glass substrate, a glass substrate in which minute concave portions are densely filled can be obtained.

【0036】[0036]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)粒径の小さな酸化セリウム砥粒(1次粒子
平均粒径0.05μm、2次粒子平均粒径約0.5μ
m)を用いて、低加重(30gf/cm2)、 低速度
(50rpm)で石英ガラス基板の最終研磨を行った。
原子間力顕微鏡(デジタルインスツルメント(株)製:
NanoScope ,以下「AFM」と呼ぶ)により、研磨後の
ガラス基板の表面粗さを調べた結果、中心線平均粗さR
aは0.15nmになっていることが分かった。
(Example 1) Cerium oxide abrasive grains having a small particle diameter (average particle diameter of primary particles: 0.05 μm, average particle diameter of secondary particles: about 0.5 μm)
m), the final polishing of the quartz glass substrate was performed at low load (30 gf / cm 2 ) and low speed (50 rpm).
Atomic force microscope (Digital Instruments Co., Ltd.):
As a result of examining the surface roughness of the polished glass substrate by NanoScope (hereinafter referred to as “AFM”), the center line average roughness R
a was found to be 0.15 nm.

【0037】本石英ガラス基板の表面にスパッタリング
法により、エッチャントに対する耐食性保護膜として、
CrOx/Cr/CrOxの3層膜を形成した。Cr膜の
ESCA分析の結果、トータル膜厚120nmの 40
Cr・60CrOx/75Cr・25CrOx/45Cr
・55CrOx(原子%)の3層構造になっていた。次
に、フォトレジストを塗布、露光、現像をおこなうフォ
トリソグラフィによって3層Cr膜に所定の微小凹部配
列パターンで小開口を形成した。形成した小開口配列
は、六方配列(x方向ピッチ50μm、y方向ピッチ4
0μm)であり、これにより六法配列の微小凹部アレイ
が得られる。本実施例1では、微小凹部を得るために、
前記小開口径を10μmとし、エッチング長は15μm
となるようにエッチング時間を調整した(開口径/エッ
チング長=2/3)。
As a corrosion-resistant protective film against an etchant on the surface of the present quartz glass substrate by a sputtering method,
A three-layer film of CrOx / Cr / CrOx was formed. As a result of ESCA analysis of the Cr film, 40
Cr ・ 60CrOx / 75Cr ・ 25CrOx / 45Cr
-It had a three-layer structure of 55CrOx (atomic%). Next, small openings were formed in the three-layer Cr film in a predetermined micro-recess arrangement pattern by photolithography of applying, exposing, and developing a photoresist. The formed small aperture array has a hexagonal array (pitch in the x direction 50 μm, pitch 4 in the y direction).
0 μm), whereby a six-row array of minute concave portions is obtained. In the first embodiment, in order to obtain a minute concave portion,
The small opening diameter is 10 μm, and the etching length is 15 μm.
(Etching length / etching length = 2).

【0038】前記小開口を有するCr膜付き基板を、H
Fおよび界面活性剤としてのドデシルベンゼンスルホン
酸ナトリウムを含む水溶液に浸漬して、化学エッチング
を行った。ここで、HFおよびドデシルベンゼンスルホ
ン酸ナトリウムの濃度は、それぞれ10重量%および
0.1重量%とした。これにより、前記小開口を始点と
して石英ガラス基板の表面がエッチングされた。前記耐
食性保護膜を、硝酸セリウムアンモニウムと過塩素酸を
含む水溶液でエッチングを行い、これを完全に除去し
た。
The substrate with the Cr film having the small opening is
Chemical etching was performed by immersion in an aqueous solution containing F and sodium dodecylbenzenesulfonate as a surfactant. Here, the concentrations of HF and sodium dodecylbenzenesulfonate were 10% by weight and 0.1% by weight, respectively. Thus, the surface of the quartz glass substrate was etched starting from the small opening. The corrosion-resistant protective film was etched with an aqueous solution containing cerium ammonium nitrate and perchloric acid, and was completely removed.

【0039】この基板を電子顕微鏡(SEM)観察した
結果、曲率半径約15μmの等方的な凹部側壁面と、直
径10μmの底部を有するボウル状凹部(その断面形状
は、長軸が40μm,単軸が30μmの長円を長軸方向
に2等分した半長円)が、マスク開口部形成位置に対応
して得られていることが分かった(図1)。前記微小凹
部をくまなく観察した結果、楕円状欠陥等の欠陥は、全
く観察されなかった。図4(a)に形成された微小凹部
のある一列の輪郭をトレースしたものを、(b)にその
部分拡大断面図を示す。
As a result of observing the substrate with an electron microscope (SEM), it was found that a side wall of an isotropic recess having a radius of curvature of about 15 μm and a bowl-shaped recess having a bottom having a diameter of 10 μm (the cross-sectional shape was 40 μm long axis, single It was found that a half-ellipse obtained by dividing an ellipse having an axis of 30 μm into two in the major axis direction) was obtained corresponding to the position where the mask opening was formed (FIG. 1). As a result of observing the minute concave portions all over, defects such as elliptical defects were not observed at all. FIG. 4A shows a trace of a row of contours having minute recesses formed, and FIG. 4B shows a partially enlarged cross-sectional view thereof.

【0040】上述までの手順によって、それぞれ独立し
その輪郭が全て円形である微小凹部を有する基板が得ら
れる。
By the above-described procedure, a substrate having minute concave portions each independently having a circular outline can be obtained.

【0041】さらに、以下に前記微小凹部を前記基板全
面に稠密配列する場合について述べる。上記基板を、先
のエッチャントに再び浸漬して、基板表面全体をエッチ
ングした。この2段階エッチングにより、平面視でそれ
ぞれが同一の六角形をなし隣接する微小凹部同士が密接
した完全稠密充填配列となった。
Further, a case where the minute concave portions are densely arranged on the entire surface of the substrate will be described below. The substrate was immersed again in the previous etchant to etch the entire substrate surface. The two-stage etching resulted in a completely densely packed arrangement in which adjacent hexagonal concave portions formed the same hexagon in plan view and were in close contact with each other.

【0042】前記2段階エッチングの処理後、微小凹部
に石英ガラス基板よりも屈折率の高いエポキシ系透明樹
脂材料を充填し、その上から別途石英基板を貼合せ、前
記樹脂を光硬化させた。これにより、無欠陥の石英製平
板マイクロレンズを得ることができた。
After the two-step etching process, the fine concave portions were filled with an epoxy-based transparent resin material having a higher refractive index than that of the quartz glass substrate, and a quartz substrate was separately bonded thereon, and the resin was light-cured. As a result, a defect-free quartz flat plate microlens could be obtained.

【0043】(実施例2)コロイダルシリカ(平均粒径
0.05μm)を砥粒として用いて、実施例1と同じ条
件で石英ガラス基板の最終研磨を行った。AFM観察に
より、研磨後のガラス基板の中心線平均粗さRaは、
0.12nmになっていることが分かった。
(Example 2) The final polishing of the quartz glass substrate was performed under the same conditions as in Example 1 by using colloidal silica (average particle size: 0.05 µm) as abrasive grains. According to the AFM observation, the center line average roughness Ra of the polished glass substrate is:
It turned out to be 0.12 nm.

【0044】本石英ガラス基板の表面に、スパッタリン
グ法により、エッチャントに対する耐食性保護膜として
Cr膜を形成した。Cr膜のESCA分析の結果、トー
タル膜厚120nmの80Cr・20CrOx(原子
%)になっていた。次に、実施例1と同様に、前記耐食
性保護膜に小開口パターンを作製し、さらにエッチング
処理を行って、続いて前記耐食性保護膜を除去した。
On the surface of the quartz glass substrate, a Cr film was formed as a corrosion-resistant protective film against an etchant by a sputtering method. As a result of ESCA analysis of the Cr film, it was found to be 80Cr.20CrOx (atomic%) with a total film thickness of 120 nm. Next, in the same manner as in Example 1, a small opening pattern was formed in the corrosion-resistant protective film, an etching process was performed, and then the corrosion-resistant protective film was removed.

【0045】この基板を電子顕微鏡(SEM)観察した
結果、曲率半径約15μmの等方的な凹部側壁面と、直
径10μmの底部を有するボウル状凹部(その断面形状
は、長軸が40μm,単軸が30μmの長円を長軸方向
に2等分した半長円)が、マスク開口部形成位置に対応
して得られていることが分かった。前記微小凹部をくま
なく観察した結果、楕円状欠陥等の欠陥は、全く観察さ
れなかった。
As a result of observing the substrate with an electron microscope (SEM), it was found that a side wall of an isotropic recess having a radius of curvature of about 15 μm and a bowl-shaped recess having a bottom with a diameter of 10 μm (the cross-sectional shape was 40 μm long axis, single It has been found that a half-ellipse obtained by dividing an ellipse whose axis is 30 μm into two in the major axis direction) was obtained corresponding to the mask opening forming position. As a result of observing the minute concave portions all over, defects such as elliptical defects were not observed at all.

【0046】次いで、先のエッチャントに再び浸漬し
て、基板表面全体をエッチングした。この2段階エッチ
ングにより、平面視でそれぞれが同一の六角形をなし隣
接する微小凹部同士が密接した完全稠密充填配列となっ
た。
Next, the substrate was immersed again in the above etchant to etch the entire surface of the substrate. The two-stage etching resulted in a completely densely packed arrangement in which adjacent hexagonal concave portions formed the same hexagon in plan view and were in close contact with each other.

【0047】前記2段階エッチングの処理後、微小凹部
に石英ガラス基板よりも屈折率の高いエポキシ系透明樹
脂材料を充填し、その上から別途石英基板を貼合せ、前
記樹脂を光硬化させた。これにより、無欠陥の石英製平
板マイクロレンズを得ることができた。
After the two-step etching, the fine concave portions were filled with an epoxy-based transparent resin material having a higher refractive index than that of the quartz glass substrate, and a quartz substrate was separately bonded thereon, and the resin was cured by light. As a result, a defect-free quartz flat plate microlens could be obtained.

【0048】(実施例3)テトラエトキシシラン(Si
(OC254) のエタノール溶液に、希塩酸(1重量
%)を加え、室温で1時間攪拌することにより、テトラ
エトキシシランの加水分解、縮重合反応を行った。ここ
で、テトラエトキシシランに対するエタノールと水のモ
ル比は、それぞれ5および6とした。この溶液を、塗膜
の膜厚を制御するためにエタノールでさらに希釈して、
ゾルゲルコーティング溶液とした。
Example 3 Tetraethoxysilane (Si
Dilute hydrochloric acid (1% by weight) was added to an ethanol solution of (OC 2 H 5 ) 4 ), and the mixture was stirred at room temperature for 1 hour to carry out hydrolysis and condensation polymerization of tetraethoxysilane. Here, the molar ratio of ethanol and water to tetraethoxysilane was set to 5 and 6, respectively. This solution was further diluted with ethanol to control the thickness of the coating,
A sol-gel coating solution was used.

【0049】このコーティング溶液を用いて、通常の最
終研磨レベルの石英ガラス基板(Ra=0.6nm)
に、ディップコーティングを行った。室温で1時間乾燥
させた後、熱処理を850℃で5時間行うことにより、
ゾルゲルSiO2 膜の焼結を行った。焼結後、ゾルゲル
SiO2 膜の膜厚は200nmになっていた。AFMに
よる観察結果、焼成後のガラス基板のRaは約0.2n
mになっていることが分かった。
Using this coating solution, a quartz glass substrate (Ra = 0.6 nm) having a normal final polishing level
Was subjected to dip coating. After drying at room temperature for 1 hour, heat treatment is performed at 850 ° C. for 5 hours,
The sol-gel SiO 2 film was sintered. After sintering, the thickness of the sol-gel SiO 2 film was 200 nm. As a result of observation by AFM, Ra of the fired glass substrate was about 0.2 n.
m.

【0050】本石英ガラス基板の表面に、スパッタリン
グ法により、エッチャントに対する耐食性保護膜として
Cr膜を形成した。このCr膜は実施例2と同様のもの
であった。次に、実施例1と同様に、前記耐食性保護膜
に小開口パターンを作製し、さらにエッチング処理を行
って、続いて前記耐食性保護膜を除去した。
On the surface of the quartz glass substrate, a Cr film was formed as a corrosion-resistant protective film against an etchant by a sputtering method. This Cr film was the same as in Example 2. Next, in the same manner as in Example 1, a small opening pattern was formed in the corrosion-resistant protective film, an etching process was performed, and then the corrosion-resistant protective film was removed.

【0051】この基板を電子顕微鏡(SEM)観察した
結果、曲率半径約15μmの等方的な凹部側壁面と、直
径10μmの底部を有するボウル状凹部(その断面形状
は、長軸が40μm,単軸が30μmの長円を長軸方向
に2等分した半長円)が、マスク開口部形成位置に対応
して得られていることが分かった。前記微小凹部をくま
なく観察した結果、楕円状欠陥等の欠陥は、全く観察さ
れなかった。
As a result of observing the substrate with an electron microscope (SEM), it was found that an isotropic concave side wall surface having a radius of curvature of about 15 μm and a bowl-shaped concave section having a bottom with a diameter of 10 μm (the cross-sectional shape was 40 μm long axis, single It has been found that a half-ellipse obtained by dividing an ellipse whose axis is 30 μm into two in the major axis direction) was obtained corresponding to the mask opening forming position. As a result of observing the minute concave portions all over, defects such as elliptical defects were not observed at all.

【0052】次いで、先のエッチャントに再び浸漬し
て、基板表面全体をエッチングした。この2段階エッチ
ングにより、平面視でそれぞれが同一の六角形をなし隣
接する微小凹部同士が密接した完全稠密充填配列となっ
た。
Next, the substrate was immersed again in the above etchant to etch the entire surface of the substrate. The two-stage etching resulted in a completely densely packed arrangement in which adjacent hexagonal concave portions formed the same hexagon in plan view and were in close contact with each other.

【0053】前記2段階エッチングの処理後、微小凹部
に石英ガラス基板よりも屈折率の高いエポキシ系透明樹
脂材料を充填し、その上から別途石英基板を貼合せ、前
記樹脂を光硬化させた。これにより、無欠陥の石英製平
板マイクロレンズを得ることができた。
After the two-step etching, the fine concave portions were filled with an epoxy-based transparent resin material having a higher refractive index than that of the quartz glass substrate, and a quartz substrate was separately bonded thereon, and the resin was cured by light. As a result, a defect-free quartz flat plate microlens could be obtained.

【0054】(実施例4)粒径の小さな酸化セリウム砥
粒(1次粒子平均粒径0.05μm、2次粒子平均粒径
約0.5μm)を用いて、低加重(30gf/c
2)、 低速度(50rpm)でソーダライムガラス基
板の最終研磨を行った。原子間力顕微鏡(AFM)によ
り、研磨後のガラス基板の表面粗さを調べた結果、中心
線平均粗さRaは0.20nmになっていることが分か
った。
(Example 4) Using a cerium oxide abrasive having a small particle diameter (average particle diameter of primary particles: 0.05 μm, average particle diameter of secondary particles: about 0.5 μm), low load (30 gf / c)
m 2 ), the final polishing of the soda lime glass substrate was performed at a low speed (50 rpm). As a result of examining the surface roughness of the polished glass substrate by an atomic force microscope (AFM), it was found that the center line average roughness Ra was 0.20 nm.

【0055】本ソーダライムガラス基板の実施例1と同
じ条件で、CrOx/Cr/CrOxの3層膜を形成し
た。次に、実施例3と同様に、前記耐食性保護膜に小開
口パターンを作製し、さらにエッチング処理を行って、
続いて前記耐食性保護膜を除去した。
Under the same conditions as in Example 1 of the present soda lime glass substrate, a three-layer film of CrOx / Cr / CrOx was formed. Next, in the same manner as in Example 3, a small opening pattern was formed in the corrosion-resistant protective film, and an etching process was performed.
Subsequently, the corrosion-resistant protective film was removed.

【0056】この基板を電子顕微鏡(SEM)観察した
結果、曲率半径約15μmの等方的な凹部側壁面と、直
径10μmの底部を有するボウル状凹部(その断面形状
は、長軸が40μm,単軸が30μmの長円を長軸方向
に2等分した半長円)が、マスク開口部形成位置に対応
して得られていることが分かった。前記微小凹部をくま
なく観察した結果、楕円状欠陥等の欠陥は、全く観察さ
れなかった。
As a result of observing the substrate with an electron microscope (SEM), it was found that an isotropic concave side wall having a radius of curvature of about 15 μm and a bowl-shaped concave having a bottom having a diameter of 10 μm (the cross-sectional shape was 40 μm long axis, single It has been found that a half-ellipse obtained by dividing an ellipse whose axis is 30 μm into two in the major axis direction) was obtained corresponding to the mask opening forming position. As a result of observing the minute concave portions all over, defects such as elliptical defects were not observed at all.

【0057】次いで、先のエッチャントに再び浸漬し
て、基板表面全体をエッチングした。この2段階エッチ
ングにより、平面視でそれぞれが同一の六角形をなし隣
接する微小凹部同士が密接した完全稠密充填配列となっ
た。
Next, the substrate was immersed again in the above etchant to etch the entire surface of the substrate. The two-stage etching resulted in a completely densely packed arrangement in which adjacent hexagonal concave portions formed the same hexagon in plan view and were in close contact with each other.

【0058】前記2段階エッチングの処理後、微小凹部
にソーダライムガラス基板よりも屈折率の高いエポキシ
系透明樹脂材料を充填し、その上から別途石英基板を貼
合せ、前記樹脂を光硬化させた。これにより、無欠陥の
ソーダライムガラス製平板マイクロレンズを得ることが
できた。
After the two-step etching process, the fine concave portions were filled with an epoxy-based transparent resin material having a higher refractive index than the soda-lime glass substrate, and a quartz substrate was separately bonded thereon, and the resin was light-cured. . As a result, a defect-free soda-lime glass flat microlens could be obtained.

【0059】(実施例5)コロイダルシリカ(平均粒径
0.05μm)を砥粒として用いて、実施例4と同じ条
件でソーダライムガラス基板の最終研磨を行った。AF
M観察により研磨後のガラス基板の中心線平均粗さRa
は0.14nmになっていることが分かった。
Example 5 A soda-lime glass substrate was finally polished under the same conditions as in Example 4 using colloidal silica (average particle size: 0.05 μm) as abrasive grains. AF
Observation of the center line average roughness Ra of the polished glass substrate by observation
Was found to be 0.14 nm.

【0060】本ソーダライムガラス基板の表面に、実施
例2と同一条件でCr膜を形成した。次に、実施例2と
同様に、前記耐食性保護膜に小開口パターンを作製し、
さらにエッチング処理を行って、続いて前記耐食性保護
膜を除去した。
A Cr film was formed on the surface of the present soda lime glass substrate under the same conditions as in Example 2. Next, a small opening pattern was formed on the corrosion-resistant protective film in the same manner as in Example 2.
Further, an etching treatment was performed, and then the corrosion-resistant protective film was removed.

【0061】この基板を電子顕微鏡(SEM)観察した
結果、曲率半径約15μmの等方的な凹部側壁面と、直
径10μmの底部を有するボウル状凹部(その断面形状
は、長軸が40μm,単軸が30μmの長円を長軸方向
に2等分した半長円)が、マスク開口部形成位置に対応
して得られていることが分かった。前記微小凹部をくま
なく観察した結果、楕円状欠陥等の欠陥は、全く観察さ
れなかった。
As a result of observing the substrate with an electron microscope (SEM), it was found that a side wall of an isotropic recess having a radius of curvature of about 15 μm and a bowl-shaped recess having a bottom with a diameter of 10 μm (the cross-sectional shape was 40 μm long axis, single It has been found that a half-ellipse obtained by dividing an ellipse whose axis is 30 μm into two in the major axis direction) was obtained corresponding to the mask opening forming position. As a result of observing the minute concave portions all over, defects such as elliptical defects were not observed at all.

【0062】次いで、先のエッチャントに再び浸漬し
て、基板表面全体をエッチングした。この2段階エッチ
ングにより、平面視でそれぞれが同一の六角形をなし隣
接する微小凹部同士が密接した完全稠密充填配列となっ
た。
Next, the substrate was immersed again in the above etchant to etch the entire surface of the substrate. The two-stage etching resulted in a completely densely packed arrangement in which adjacent hexagonal concave portions formed the same hexagon in plan view and were in close contact with each other.

【0063】前記2段階エッチングの処理後、微小凹部
にソーダライムガラス基板よりも屈折率の高いエポキシ
系樹脂材料を充填し、その上から別途石英基板を貼合
せ、前記樹脂を光硬化させた。これにより、無欠陥のソ
ーダライムガラス製平板マイクロレンズを得ることがで
きた。
After the two-stage etching process, the fine concave portions were filled with an epoxy resin material having a higher refractive index than that of the soda lime glass substrate, and a quartz substrate was separately bonded thereon, and the resin was cured by light. As a result, a defect-free soda-lime glass flat microlens could be obtained.

【0064】なお、上述した実施例1から実施例5で
は、いずれも微小凹部を六方配列した場合であったが、
目的に応じて微小凹部を四方配列し、上述の2段階エッ
チングの処理を行えば、平面視にてその輪郭が正方形ま
た長方形であり、前記基板表面に完全稠密に配列された
微小凹部付きガラス基板が得られることは言うまでもな
い。
In each of the first to fifth embodiments described above, the minute concave portions are arranged hexagonally.
If the fine recesses are arranged in four directions according to the purpose and the above-described two-stage etching process is performed, the outline thereof is square or rectangular in a plan view, and the glass substrate with the fine recesses is arranged on the substrate surface in a completely dense manner. Needless to say, this is obtained.

【0065】また、上述した実施例1から実施例5にお
いては、上述した2段階エッチング処理により、基板表
面に完全稠密に配列された微小凹部付きガラス基板を得
ていたが、2段階目のエッチング処理時間によっては、
初期の基板表面を一部残した状態の微小凹部付きガラス
基板が得られることは言うまでもない。
Further, in the above-described first to fifth embodiments, the glass substrate with minute recesses arranged on the substrate surface in a completely dense manner was obtained by the above-described two-stage etching process. Depending on the processing time,
Needless to say, a glass substrate with minute concave portions with a part of the initial substrate surface left can be obtained.

【0066】(比較例1)従来の研磨レベルの石英ガラ
ス基板(R=0.45nm)に対して、実施例1と同一
のCrOx/Cr/CrOxの3層膜形成とフォトリソパ
ターニングを行った。さらに前記小開口を有するCr膜
付き従来研磨の石英基板のエッチングを、実施例1と同
じ条件で行った。これにより、前記小開口を始点とし
て、石英ガラス基板の表面がエッチングされた。
Comparative Example 1 The same three-layer CrOx / Cr / CrOx film as in Example 1 and photolithographic patterning were performed on a quartz glass substrate (R = 0.45 nm) of a conventional polished level. Further, the conventional polishing of the quartz substrate with the Cr film having the small opening was etched under the same conditions as in Example 1. Thus, the surface of the quartz glass substrate was etched starting from the small opening.

【0067】前記耐食性保護膜を除去した後、光学顕微
鏡と電子顕微鏡(SEM)による観察を行った。従来の
研磨レベルであるRaが0.45nm程度の石英ガラス
基板には、表面に潜傷が残存しており、エッチング工程
によってこれが顕在化し、微小凹部が形成されるはず
が、研磨傷および潜傷の方向に対応してその平面視形状
が楕円状のいびつな開口になってしまった。この前記凹
部に透明樹脂等を充填してレンズを形成しようとする
と、この前記凹部ではレンズ欠陥になると判断された。
なお、図5に前記凹部のある一列の輪郭をトレースした
ものを示す。
After removing the corrosion-resistant protective film, observation was made with an optical microscope and an electron microscope (SEM). Latent scratches are left on the surface of a quartz glass substrate having a conventional polishing level of Ra of about 0.45 nm, and these should become evident in the etching process and minute recesses should be formed. Corresponding to the direction, the shape in plan view became an elliptical distorted opening. When it was attempted to form a lens by filling the concave portion with a transparent resin or the like, it was determined that the concave portion would cause a lens defect.
FIG. 5 shows a trace of the outline of one row having the concave portion.

【0068】(比較例2)従来の研磨レベルのソーダラ
イムガラス基板(R=0.75nm)に対して、実施例
4と同一のCrOx/Cr/CrOxの3層膜形成とフォ
トリソパターニングを行った。さらに前記小開口を有す
るCr膜付き従来研磨のソーダライムガラス基板のエッ
チングを実施例4と同じ条件で行った。これにより、前
記小開口を始点として、ソーダライムガラス基板の表面
がエッチングされた。
Comparative Example 2 The same three-layer film of CrOx / Cr / CrOx and photolithographic patterning as in Example 4 were performed on a soda-lime glass substrate (R = 0.75 nm) of the conventional polishing level. . Further, etching of the conventional polished soda lime glass substrate with the Cr film having the small opening was performed under the same conditions as in Example 4. Thereby, the surface of the soda lime glass substrate was etched starting from the small opening.

【0069】耐食性保護膜を除去した後、光学顕微鏡と
電子顕微鏡(SEM)による観察を行った。従来の研磨
レベルであるRaが0.75nm程度のソーダライムガ
ラス基板には、表面に潜傷が残存しており、エッチング
工程によってこれが顕在化し、微小凹部が形成されるは
ずが、研磨傷および潜傷の方向に対応してその平面視形
状が楕円状のいびつな開口になってしまった。また、C
r膜がエッチング処理の途中で剥離してしまい、前記凹
部は形成されていないところがあった。前記凹部および
Cr膜の剥離が生じた部分は、レンズ欠陥になるような
欠陥になると判断された。
After removing the corrosion-resistant protective film, observation was performed with an optical microscope and an electron microscope (SEM). Latent scratches remain on the surface of a soda lime glass substrate having a conventional polishing level of Ra of about 0.75 nm, and these should become evident in the etching process, and minute recesses should be formed. The shape in plan view became an elliptical distorted opening corresponding to the direction of the scratch. Also, C
The r film was peeled off during the etching process, and the recess was not formed. It was determined that the concave portion and the portion where the Cr film was peeled off were defects such as lens defects.

【0070】今回の実施例では、石英ガラス基板とソー
ダライムガラス基板の結果を示したが、多成分無アルカ
リガラスや低膨張結晶化ガラスにおいても、ガラス表面
粗さとエッチング特性の関係は、同じ傾向を示した。
In the present embodiment, the results for the quartz glass substrate and the soda lime glass substrate are shown. However, the relationship between the glass surface roughness and the etching characteristics is the same for multi-component alkali-free glass and low expansion crystallized glass. showed that.

【0071】[0071]

【発明の効果】上述したような種々の方法によって、そ
の表面の中心線平均粗さRaで0.4nm以下に平滑化
したガラス基板をエッチング法によって微小凹部を形成
すると、ガラス基板の潜傷や研磨傷による不均一エッチ
ングの発生をなくすることが可能になる。
According to the various methods described above, when a fine concave portion is formed on a glass substrate whose surface is smoothed to have a center line average roughness Ra of 0.4 nm or less by an etching method, latent scratches on the glass substrate can be obtained. It is possible to eliminate uneven etching caused by polishing scratches.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるエッチングによる微小凹部を有す
るガラス基板を平面視したときの図。
FIG. 1 is a plan view of a glass substrate having minute concave portions formed by etching according to the present invention.

【図2】ガラス基板のRaと微小凹部の輪郭との関係を
表す模式図。
FIG. 2 is a schematic diagram illustrating a relationship between Ra of a glass substrate and a contour of a minute concave portion.

【図3】ガラス基板のRaと微小凹部の輪郭との関係を
表すグラフ。
FIG. 3 is a graph showing the relationship between Ra of a glass substrate and the contour of a minute concave portion.

【図4】ガラス基板のRa=0.15nmのときの微小
凹部の輪郭および部分拡大断面を表す模式図。
FIG. 4 is a schematic diagram showing a contour of a minute concave portion and a partially enlarged cross section when Ra = 0.15 nm of a glass substrate.

【図5】従来の研磨状態の悪い場合(Ra=0.45n
m)のガラス基板から得られた楕円状(ラグビーボール
状)輪郭凹部の輪郭を表す模式図。
FIG. 5 shows a case where a conventional polishing state is poor (Ra = 0.45n)
The schematic diagram showing the outline of the elliptical (rugby ball-shaped) outline concave part obtained from the glass substrate of m).

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…エッチング部分、3…微小凹部の
輪郭、4…透明樹脂。
Reference numeral 1 denotes a glass substrate, 2 denotes an etched portion, 3 denotes a contour of a minute concave portion, 4 denotes a transparent resin.

フロントページの続き (72)発明者 浜中 賢二郎 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (56)参考文献 特開 平8−220306(JP,A) 特開 平9−43588(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 3/00 Continuation of the front page (72) Inventor Kenjiro Hamanaka 3-5-1-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd. (56) References JP-A-8-220306 (JP, A) JP-A-9 −43588 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 3/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】研磨法にて表面の中心線平均粗さRaを
0.4nm以下としたガラス基板表面に、エッチング法
によって形成された微小凹部が多数個1次元または2次
元に規則配列された平板マイクロレンズ用ガラス基板で
あって、 前記微小凹部は略ボウル状をなすとともに、底部の曲率
半径は側部の曲率半径よりも大きく、また前記微小凹部
を平面視したときの輪郭はほぼ円形であり、さらにその
長径と短径の比が1.1以下であることを特徴とする微
小凹部付きガラス基板。ただし、輪郭の最も長い径を長
径と、最も短い径を短径とする。
1. A large number of minute recesses formed by an etching method are regularly arranged one-dimensionally or two-dimensionally on a glass substrate surface having a center line average roughness Ra of 0.4 nm or less by a polishing method. A glass substrate for a flat microlens, wherein the minute concave portion has a substantially bowl shape, a radius of curvature of a bottom portion is larger than a radius of curvature of a side portion, and an outline of the minute concave portion when viewed in plan is substantially circular. And a ratio of the major axis to the minor axis of 1.1 or less. However, the longest diameter of the contour is the long diameter, and the shortest diameter is the short diameter.
【請求項2】請求項1に記載の微小凹部付きガラス基板
において、 前記輪郭が円形である微小凹部付きガラス基板。
2. The glass substrate with minute recesses according to claim 1, wherein the outline is circular.
【請求項3】研磨法にて表面の中心線平均粗さRaを
0.4nm以下としたガラス基板表面に、エッチング法
によって形成された微小凹部が多数個1次元または2次
元に規則配列された平板マイクロレンズ用ガラス基板で
あって、 前記微小凹部は、略ボウル状をなすとともに、底部の曲
率半径は側部の曲率半径よりも大きく、さらに前記基板
のレンズ形成面のほぼ全面に形成されていることを特徴
とする微小凹部付きガラス基板。
3. A large number of minute concave portions formed by an etching method are regularly arranged in a one-dimensional or two-dimensional manner on the surface of a glass substrate having a center line average roughness Ra of 0.4 nm or less by a polishing method. A glass substrate for a flat microlens, wherein the minute concave portion has a substantially bowl shape, a radius of curvature of a bottom portion is larger than a radius of curvature of a side portion, and is formed on substantially the entire surface of the substrate on which a lens is formed. A glass substrate with minute recesses.
【請求項4】請求項3に記載の微小凹部付きガラス基板
において、 前記微小凹部は完全稠密に配列され、前記輪郭形状は平
面視にて、正方形、長方形、正六角形または六角形であ
る微小凹部付きガラス基板。
4. The glass substrate with minute recesses according to claim 3, wherein the minute recesses are arranged in a completely dense manner, and the outline shape is a square, a rectangle, a regular hexagon or a hexagon in plan view. With glass substrate.
【請求項5】請求項1から4に記載の微小凹部付きガラ
ス基板の前記微小凹部に、前記ガラス基板の屈折率と異
なる樹脂を充填し、レンズ作用を持たせたことを特徴と
する平板型マイクロレンズアレイ。
5. A flat plate type wherein the minute concave portions of the glass substrate with minute concave portions according to claim 1 are filled with a resin having a refractive index different from that of the glass substrate to have a lens function. Micro lens array.
JP19393395A 1995-07-28 1995-07-28 Glass substrate with minute recess and flat microlens array using this glass substrate Expired - Fee Related JP3357222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19393395A JP3357222B2 (en) 1995-07-28 1995-07-28 Glass substrate with minute recess and flat microlens array using this glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19393395A JP3357222B2 (en) 1995-07-28 1995-07-28 Glass substrate with minute recess and flat microlens array using this glass substrate

Publications (2)

Publication Number Publication Date
JPH0943404A JPH0943404A (en) 1997-02-14
JP3357222B2 true JP3357222B2 (en) 2002-12-16

Family

ID=16316165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19393395A Expired - Fee Related JP3357222B2 (en) 1995-07-28 1995-07-28 Glass substrate with minute recess and flat microlens array using this glass substrate

Country Status (1)

Country Link
JP (1) JP3357222B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054270A4 (en) 1996-07-22 2004-07-28 Maikurooputo Co Ltd Method of manufacturing flat plate microlens and flat plate microlens
JP2003107721A (en) * 2001-09-28 2003-04-09 Nikon Corp Manufacturing method for microlens, manufacturing method for article, working method for resist layer and microlens

Also Published As

Publication number Publication date
JPH0943404A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
JP4935209B2 (en) Polarizing element and manufacturing method thereof
JP4858539B2 (en) Method for forming multilayer film of mask blank for EUV lithography, and method for manufacturing mask blank for EUV lithography
JP4945460B2 (en) Method for forming antireflection structure and antireflection structure
JP2910546B2 (en) Manufacturing method of reflector
US7712333B2 (en) Method for smoothing a surface of a glass substrate for a reflective mask blank used in EUV lithography
EP2482104A2 (en) High ultraviolet transmitting double-layer wire grid polarizer for fabricating photo-alignment layer and fabrication method thereof
JPH09146259A (en) Gradation mask and its production and method for generating special surface shape by using gradation mask
JPS6345092B2 (en)
JP2016177317A (en) Substrate for mask blank, mask blank, reflection type mask blank, transfer mask, reflection type mask and manufacturing method therefor
JP2790076B2 (en) Glass substrate with minute recess and method of manufacturing the same
JP3357222B2 (en) Glass substrate with minute recess and flat microlens array using this glass substrate
JP7253373B2 (en) Substrate for mask blank, substrate with multilayer reflective film, reflective mask blank, reflective mask, transmissive mask blank, transmissive mask, and method for manufacturing semiconductor device
JPH0763904A (en) Compound spherical microlens array and its production
JP6713336B2 (en) Mask blank manufacturing method and transfer mask manufacturing method
JP3319568B2 (en) Plasma etching method
JP4983313B2 (en) Transfer mask and manufacturing method thereof
JPS58114037A (en) Blank material for photomask
JPH07104106A (en) Production of aspherical microlens array
JP5464246B2 (en) Screen manufacturing method
JP2000003029A (en) Photomask and production of photomask
JP5135739B2 (en) Manufacturing method of substrate with recess
JP5003321B2 (en) Mask blank and mask blank manufacturing method
JP2007001829A (en) Substrate with recessed portion, its production method, lens substrate, transmission screen and rear projector
JP2012038787A (en) Method of manufacturing reflective mask blank having pseudo phase defect, and method of manufacturing reflective mask having pseudo phase defect
JP2007008739A (en) Method for manufacturing substrate with concave portion, substrate with concave portion, lens substrate, transmission type screen, and rear type projector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees