JP3354660B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method

Info

Publication number
JP3354660B2
JP3354660B2 JP26056193A JP26056193A JP3354660B2 JP 3354660 B2 JP3354660 B2 JP 3354660B2 JP 26056193 A JP26056193 A JP 26056193A JP 26056193 A JP26056193 A JP 26056193A JP 3354660 B2 JP3354660 B2 JP 3354660B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
nox
desulfurization
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26056193A
Other languages
Japanese (ja)
Other versions
JPH07112117A (en
Inventor
徹 高品
直彦 鵜川
沖野  進
裕士 田中
浩養 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26056193A priority Critical patent/JP3354660B2/en
Publication of JPH07112117A publication Critical patent/JPH07112117A/en
Application granted granted Critical
Publication of JP3354660B2 publication Critical patent/JP3354660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は石炭焚き排ガスや重質油
燃焼排ガスの如きNOxとSO2 を含む排ガスの処理方
法に関する。
The present invention relates to a method of treating exhaust gas containing such NOx and SO 2 in coal gas or heavy oil combustion exhaust gas.

【0002】[0002]

【従来の技術】排ガス中のNOxの除去法として、排ガ
ス中にNH3 を添加し触媒上で反応させてN2 とH2
に分解する選択還元脱硝方法(SCR法)が火力発電用
ボイラ排ガスなどに広く適用されている。一方、SO2
の除去法としては石灰石(CaCO3 )を吸収剤として
排ガスのSO2 を吸収除去し、副生品として石膏を回収
する湿式石灰石膏法が広く実用化されている。
2. Description of the Related Art As a method for removing NOx from exhaust gas, NH 3 is added to the exhaust gas and reacted on a catalyst to form N 2 and H 2 O.
The selective reduction denitration method (SCR method), which decomposes into gas, is widely applied to boiler exhaust gas for thermal power generation. On the other hand, SO 2
The removal method limestone (CaCO 3) of SO 2 in exhaust gas is absorbed and removed as an absorbent, wet lime-gypsum method for recovering gypsum is widely used as a by-product.

【0003】[0003]

【発明が解決しようとする課題】前記の脱硝方法は今ま
では脱硝率が80%程度のところで運用されてきたが、
最近の排ガス規制の強化に伴って、脱硝率90−100
%という高効率脱硝の要求がなされ、さらに脱硫におい
ても同様の高効率化のニーズがある。上記要求に応える
べく高効率な脱硝を行なうためには、次式で示す反応当
量以上のNH3 を添加する必要がある。 4NO+4NH3 +O2 → 4N2 +6H2 O NO+NO2 +2NH3 → 2N2 +3H2 O しかし、NH3 の添加量をNOxに対して反応当量以上
にすると、NOxと反応しない過剰のNH3 が煙突から
排出されることになり、環境上好ましくなく、過剰なN
3 を還元脱硝反応器後流で除去する新たな装置を導入
する必要がある。
The above-mentioned denitration method has been operated at a denitration rate of about 80%.
With the recent tightening of exhaust gas regulations, the denitration rate was 90-100.
%, And there is a demand for the same high efficiency in desulfurization. In order to perform denitration with high efficiency to meet the above demand, it is necessary to add NH 3 in an amount equal to or more than the reaction equivalent shown by the following formula. 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O However, if the added amount of NH 3 is more than the reaction equivalent to NOx, excess NH 3 not reacting with NOx is discharged from the chimney. Environmentally unfriendly and excessive N
It is necessary to introduce a new apparatus for removing H 3 downstream of the denitration reactor.

【0004】一方、CaCO3 を吸収剤とする湿式脱硫
装置においても高効率な脱硫を行うためには次式で示す
反応当量以上に吸収剤であるCaCO3 を添加する必要
があり、一般式には過剰にCaCO3 を入れるほど脱硫
率は向上する。 SO2 +CaCO3 + 1/2O2 → CaSO4 +CO
2 しかし、脱硝と同様に過剰なCaCO3 は副生物である
石膏に混入し、石膏の純度を低下させる上、CaCO3
の消費増大を招く欠点があった。これを解決する目的で
湿式脱硫装置ではCaCO3 溶解速度を増加させ、これ
により脱硫率を向上させる各種脱硫助剤が提案されてい
る。
On the other hand, in order to perform a highly efficient desulfurization even in a wet desulfurization unit for the CaCO 3 with the absorbent must be added to CaCO 3 is absorbent or reaction equivalent shown by the following formula, the formula The desulfurization rate increases as CaCO 3 is added in excess. SO 2 + CaCO 3 + 1 / 2O 2 → CaSO 4 + CO
2 However, as in the case of denitration, excess CaCO 3 is mixed into gypsum as a by-product, reducing the purity of the gypsum and causing CaCO 3
There is a drawback that leads to an increase in consumption. In order to solve this problem, various desulfurization auxiliaries have been proposed in a wet desulfurization apparatus that increase the CaCO 3 dissolution rate and thereby improve the desulfurization rate.

【0005】例えば、脱硫助剤として、Na2 SO4
Na2 SO3 、NaOH、Na2 CO3 、NaHC
3 、NaHSO3 などのナトリウム化合物を使用する
方法は特開昭60−84133号公報や特許第8947
25号明細書や特許第903276号明細書を初め、特
開昭53−129167号、特開昭55−124530
号、特開昭56−65615号及び特開昭51−975
97号各公報において開示されており、マグネシウム化
合物を脱硫助剤とする方法については特開昭53−17
565号公報により開示されている。しかしながら本発
明の重要な構成であるNH3 ガスを脱硫助剤として使用
する方法については上記公開資料によっても全く触れら
れていない。
For example, Na 2 SO 4 ,
Na 2 SO 3 , NaOH, Na 2 CO 3 , NaHC
Methods using sodium compounds such as O 3 and NaHSO 3 are disclosed in JP-A-60-84133 and JP-A-8947.
No. 25, Japanese Patent No. 903276, JP-A-53-129167 and JP-A-55-124530.
JP-A-56-65615 and JP-A-51-975.
No. 97, each of which discloses a method of using a magnesium compound as a desulfurization aid.
No. 565 discloses this. However, there is no mention of the method of using NH 3 gas as a desulfurization aid, which is an important component of the present invention, even in the above-mentioned publication.

【0006】本発明は前記従来法の欠点を改善すべく、
過剰なNH3 が高効率の脱硝を可能とし、さらにNH3
が高効率な脱硫を可能とすることを見い出し、その結果
として還元脱硝反応器の後流のNH3 除去装置が不要で
あり、かつこの過剰NH3 を脱硫助剤として使用するこ
とができる高効率な脱硫を備えた排ガスの処理方法を提
供しようとするものである。さらに、本発明では脱硫吸
収液からNH3 を回収し、NH3 の有効利用も可能とす
る方法を提供しようとするものである。
[0006] The present invention aims to remedy the drawbacks of the conventional method.
Excess NH 3 enables high-efficiency denitration, and NH 3
Makes it possible to achieve high-efficiency desulfurization, and as a result, there is no need for an NH 3 removal device downstream of the reductive denitration reactor, and a high efficiency in which this excess NH 3 can be used as a desulfurization aid It is an object of the present invention to provide a method for treating an exhaust gas having a proper desulfurization. Further, the present invention aims to provide a method of recovering NH 3 from a desulfurization absorption liquid and enabling effective use of NH 3 .

【0007】[0007]

【課題を解決するための手段】本発明は、(1)排ガス
中のNOxを還元触媒を充填した還元脱硝反応装置で脱
硝し、SO2 を石灰石を吸収剤とする湿式脱硫装置で脱
硫する排ガス処理方法において、排ガス中のNOxとの
反応当量以上のNH3 を前記還元脱硝反応装置の上流の
排ガスに添加して前記還元脱硝反応装置においてNOx
とNH3 を反応させ、次いで排ガス中に残存するNH3
を含む排ガスを前記湿式脱硫装置へ導き、排ガス中のS
2 を除去することを特徴とする排ガスの処理方法、及
(2)湿式脱硫装置の吸収液の一部を系外に排出する
過程で、吸収液pHを10以上に予め調整後加熱して吸
収液よりNH3 をガスとして回収する工程と、回収した
NH3 ガスを排ガス中のNOxと反応させるために添加
使用するNH3 ガスの一部として供給することを特徴と
する上記(1)記載の排ガスの処理方法である。
SUMMARY OF THE INVENTION The present invention, exhaust gas desulfurization by the wet desulfurization apparatus according to (1) denitration by reduction denitration reactor the NOx in the exhaust gas was charged with reduction catalyst absorber limestone SO 2 in the processing method, NOx in the reduction denitration reactor was added upstream of the exhaust gas of the NH 3 above reaction equivalent of the NOx in the exhaust gas the reducing denitration reactor
With NH 3 and then NH 3 remaining in the exhaust gas
To the wet desulfurization unit, and the S in the exhaust gas
An exhaust gas treatment method characterized by removing O 2 ,
And (2) a step of preliminarily adjusting the pH of the absorbing solution to 10 or more and heating it to recover NH 3 as a gas from the absorbing solution in the process of discharging a part of the absorbing solution of the wet desulfurization device outside the system. NH 3 gas is how to process the exhaust gas (1) above, wherein the feeding as part of the NH 3 gas used added to react with NOx in the exhaust gas.

【0008】[0008]

【作用】前記本発明(1)においては、NOxの還元脱
硝反応器の上流において排ガス中のNOxとの反応当量
以上のNH3 を排ガスに添加することによって、NOx
の還元脱硝反応器においては排ガス中のNOxが充分に
かつ、高効率に脱硝される。NOxの還元脱硝反応器を
出た排ガス中に残存するNH3 は湿式脱硫装置へ導か
れ、湿式脱硫装置の吸収液に吸収される。吸収液に吸収
されたNH3 はアンモニウム塩として吸収液中に溶解す
る。このアンモニウム塩が従来使用されていたナトリウ
ム塩やマグネシウム塩の脱硫助剤としての効果に比べて
著しく高い効果を示すことを新たに見い出した。
In [act] The present invention (1), by the NH 3 above reaction equivalent of the NOx in the exhaust gas upstream of the reducing denitration reactor NOx added to the exhaust gas, NOx
In the reduction denitration reactor, NOx in the exhaust gas is sufficiently and efficiently denitrated. NH 3 remaining in the exhaust gas that has exited the NOx reduction denitration reactor is led to the wet desulfurization unit, and is absorbed by the absorption liquid of the wet desulfurization unit. NH 3 absorbed in the absorbing solution is dissolved in the absorbing solution as an ammonium salt. It has been newly found that this ammonium salt has a remarkably higher effect than the effect of a conventionally used sodium salt or magnesium salt as a desulfurization aid.

【0009】そこで、本発明の根幹をなす、アンモニウ
ム塩共存時のCaCO3 溶解作用の促進効果を図3をも
って説明する。図3は本発明の出願人と同一グループが
学会誌に発表{ J.Chem,Eng.Japan,26 , 112 (1993) }
して公知となっている方法により、吸収液中の塩濃度が
石灰石の溶解速度に及ぼす影響検討した結果である。す
なわち、各種塩を溶解した溶液中に一定濃度(0.1モ
ル/リットル)となるようCaCO3 の粉体を加え、こ
の溶液のpHが一定(5.2)となるよう硫酸を加えて
いったときの、硫酸添加速度からCaCO3 の溶解速度
を測定したものである。図3において、縦軸は塩を加え
ない場合に対する塩を加えた場合のCaCO3 の溶解速
度の比を示したものである。横軸は各種塩の濃度を示し
たものである。図3から明らかなようにアンモニウム塩
は従来知られているナトリウム塩やマグネシウム塩のよ
うな脱硫助剤と異なり、低濃度でも石灰石の溶解速度を
大幅に増大する作用のあることが明らかである。本発明
(1)は上記の事実に基づいてなされたものである。
The effect of promoting the CaCO 3 dissolving effect in the presence of an ammonium salt, which is the basis of the present invention, will be described with reference to FIG. FIG. 3 shows the same group as the applicant of the present invention published in a journal. J. Chem, Eng. Japan, 26, 112 (1993).
This is a result of examining the effect of the salt concentration in the absorbing solution on the dissolution rate of limestone by a known method. That is, powder of CaCO 3 was added to a solution in which various salts were dissolved so as to have a constant concentration (0.1 mol / liter), and sulfuric acid was added so that the pH of the solution was constant (5.2). The dissolution rate of CaCO 3 was measured from the rate of addition of sulfuric acid. In FIG. 3, the vertical axis indicates the ratio of the dissolution rate of CaCO 3 when a salt is added to the case where no salt is added. The horizontal axis shows the concentrations of various salts. As is clear from FIG. 3, the ammonium salt is different from the conventionally known desulfurization aids such as sodium salt and magnesium salt, and has an effect of greatly increasing the dissolution rate of limestone even at a low concentration. The present invention (1) has been made based on the above facts.

【0010】前記本発明(2)においては、前記本発明
(1)の作用に加えて、湿式脱硫装置の吸収液の一部を
系外に排出する過程で、吸収液pHを10以上に予め調
整後加熱することにより、吸収液に溶解していたアンモ
ニウム塩がNH3 ガスとなって放散する。これを回収
し、前記NOxの還元脱硝反応器の上流の排ガス中に供
給し、これによってNH3 が有効に利用される。
In the present invention (2), in addition to the operation of the present invention (1), the pH of the absorbing solution is set to 10 or more in the process of discharging a part of the absorbing solution of the wet desulfurization device out of the system. By heating after the adjustment, the ammonium salt dissolved in the absorbing solution becomes NH 3 gas and diffuses. This is recovered and supplied to the exhaust gas upstream of the NOx reduction denitration reactor, whereby NH 3 is effectively used.

【0011】[0011]

【実施例】【Example】

(実施例1)本発明の一実施例を図1によって説明す
る。この実施例1は石炭焚き排ガスの処理方法に係わる
ものである。ボイラ1からの燃焼排ガスの流路にはアン
モニアタンク2から供給されるNH3 を排ガスに注入す
るNH3 注入部3が設置されている。NH3 が注入され
た排ガスは還元脱硝反応器4へ導かれ、ここで脱硝が行
われる。還元脱硝反応器4には還元触媒が充填されてお
り、この触媒としては酸化チタンを担体としたバナジウ
ム、モリブデン、タングステン系などの触媒を使用する
ことができる。還元脱硝反応器4の後流には、空気加熱
器5及び電気集塵器6が設置されているが、この2つの
機器は本発明が目的とする脱硝及び脱硫には関係なく、
各々ボイラへ供給する空気の加熱と排ガスからの集塵を
目的としており、本発明の構成要素ではない。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG. The first embodiment relates to a method for treating coal-fired exhaust gas. In the flow path of the combustion exhaust gas from the boiler 1, an NH 3 injection unit 3 for injecting NH 3 supplied from the ammonia tank 2 into the exhaust gas is installed. The exhaust gas into which NH 3 has been injected is led to the reduction denitration reactor 4, where the denitration is performed. The reduction denitration reactor 4 is filled with a reduction catalyst, and a vanadium, molybdenum, tungsten-based catalyst using titanium oxide as a carrier can be used as the catalyst. An air heater 5 and an electrostatic precipitator 6 are installed downstream of the reduction denitration reactor 4, and these two devices are not related to the denitration and desulfurization aimed at by the present invention.
Each of them aims at heating air supplied to the boiler and collecting dust from exhaust gas, and is not a component of the present invention.

【0012】電気集塵器6の後流には湿式脱硫装置7が
設置されている。ここでは、SO2の吸収剤であるCa
CO3 を含む懸濁液(スラリ)が循環しており、排ガス
との気液接触により排ガスからSO2 が吸収除去され
る。さらに、本発明では還元脱硝反応器4で過剰となっ
たNH3 が排ガスとともに湿式脱硫装置に到達し、SO
2 と同様にスラリ中へ吸収される。吸収されたNH3
スラリ中にアンモニウム塩として吸収剤であるCaCO
3 と共存する。
A wet desulfurizer 7 is provided downstream of the electrostatic precipitator 6.
is set up. Here, SOTwoCa as an absorbent
COThreeSuspension (slurry) containing
From the exhaust gas by gas-liquid contact with SOTwoIs absorbed and removed
You. Further, in the present invention, the excess amount is
NHThreeReaches the wet desulfurization unit together with the exhaust gas,
TwoIs absorbed into the slurry as well. NH absorbedThreeIs
CaCO as an absorbent as an ammonium salt in the slurry
ThreeCoexist with

【0013】表1に本発明の効果を確認するために実施
した前記実施例のパイロットプラントのテスト条件を示
す。 表1 パイロットプラントテスト条件 (1)排ガス条件 排ガス源 : 微粉炭燃焼排ガス 処理ガス流量 : 200Nm3 /h(ドライ
ベース) 排ガスのSO2 濃度 : 800ppm(ドライベー
ス) 排ガスのNOx濃度 : 250ppm(ドライベー
ス) (2)還元脱硝反応器条件 NH3 /NOxモル比 : 1.1 (3)湿式脱硫装置条件 吸収剤 : CaCO3 (325メッシ
ュ90%通過の粉体) 吸収塔液ガス比 : 17.5リットル/Nm3 スラリ設定pH : 6.3
Table 1 shows the test conditions of the pilot plant of the above embodiment, which were carried out to confirm the effect of the present invention. Table 1 Pilot plant test conditions (1) Exhaust gas conditions Exhaust gas source: Pulverized coal combustion exhaust gas Processing gas flow rate: 200 Nm 3 / h (dry base) SO 2 concentration in exhaust gas: 800 ppm (dry base) NOx concentration in exhaust gas: 250 ppm (dry base) (2) Reducing denitration reactor conditions NH 3 / NOx molar ratio: 1.1 (3) Wet desulfurization device conditions Absorbent: CaCO 3 (powder passing 325 mesh 90%) Absorption tower liquid gas ratio: 17.5 Liter / Nm 3 slurry setting pH: 6.3

【0014】以上の条件で排ガスを処理したときの脱硝
率及び脱硫率は以下のとおりとなった。 脱硝率 : 95%以上 脱硫率 : 98.5%
The denitration rates and desulfurization rates when the exhaust gas was treated under the above conditions were as follows. Denitration rate: 95% or more Desulfurization rate: 98.5%

【0015】比較のため、還元脱硝反応器で排ガス中の
NOxと反応当量以下のNH3 を添加する運転、すなわ
ち、NH3 /NOxモル比0.9の条件で、かつそれ以
外の運転条件は表1と同一とした場合、脱硝率及び脱硫
率は以下のとおりとなった。 脱硝率 : 82% 脱硫率 : 92.5%
For comparison, an operation in which NO 3 in the exhaust gas is added in an amount equal to or less than the reaction equivalent of NH 3 in the reductive denitration reactor, that is, an NH 3 / NOx molar ratio of 0.9, and other operating conditions are as follows. When the same as in Table 1, the denitration rate and desulfurization rate were as follows. Denitration rate: 82% Desulfurization rate: 92.5%

【0016】(実施例2)本発明の他の実施例2を図2
に基づいて説明する。この実施例は実施例1の湿式脱硫
装置7の吸収液からNH3 ガスを回収する工程と回収し
たNH3 ガスを排ガスの添加に使用するNH3 ガスの一
部として供給する工程を付加したものであり、実施例1
と重複する説明は省略する。
(Embodiment 2) FIG. 2 shows another embodiment 2 of the present invention.
It will be described based on. This embodiment is obtained by adding the process of supplying NH 3 gas and recovery step of recovering the NH 3 gas from the absorption liquid of a wet desulfurization apparatus 7 of Example 1 as a part of the NH 3 gas used the addition of exhaust gas Example 1
Descriptions that are the same as those described above are omitted.

【0017】湿式脱硫装置7では前記のとおり、脱硫の
ためCaCO3 を含む吸収液を使用しているが、脱硫に
よって次式のように石膏が生成するため吸収液の一部が
抜き出されている。 SO2 +CaCO3 + 1/2O2 → CaSO4 +CO
2 抜き出しライン9によって抜き出された吸収液は遠心分
離器などの固液分離器10で石膏11が分離される。一
方、分離ろ液の大部分は湿式脱硫装置7へ戻されるが、
その一部はpH調整槽12に供給され、ここで強アルカ
リによってpHが10以上に調整された後、加熱装置1
3に送液され、ここでろ液中のアンモニウム塩はNH3
ガスとして回収され、ライン14により還元脱硝反応器
4の上流に注入される。強アルカリとしてはCa(O
H)2 あるいはNaOHなどが使用可能でこの際の中和
反応と加熱によるNH3 ガスの回収は以下の反応式で表
せる。 〇中和反応 2NH4 X+Ca(OH)2 →2NH4 OH+CaX2 NH4 X+NaOH → NH4 OH+NaX Xはアニオンを示す。 〇NH3 ガス回収 NH4 OH → NH3 + H2 O 加熱装置からライン15を経て排出される液は、必要に
応じて排水処理を行った後、系外に排出される。
As described above, in the wet desulfurization apparatus 7, an absorbent containing CaCO 3 is used for desulfurization. However, a part of the absorbent is withdrawn because gypsum is formed by the following equation. I have. SO 2 + CaCO 3 + 1 / 2O 2 → CaSO 4 + CO
2 The gypsum 11 is separated from the absorption liquid extracted by the extraction line 9 by a solid-liquid separator 10 such as a centrifuge. On the other hand, most of the separated filtrate is returned to the wet desulfurization unit 7,
A part thereof is supplied to a pH adjusting tank 12, where the pH is adjusted to 10 or more by a strong alkali.
3 where the ammonium salt in the filtrate is NH 3
The gas is recovered as a gas and injected into the upstream of the reductive denitration reactor 4 by a line 14. As a strong alkali, Ca (O
H) 2 or NaOH can be used. In this case, the neutralization reaction and the recovery of NH 3 gas by heating can be represented by the following reaction formula. 〇Neutralization reaction 2NH 4 X + Ca (OH) 2 → 2NH 4 OH + CaX 2 NH 4 X + NaOH → NH 4 OH + NaX X indicates an anion. 〇NH 3 gas recovery The liquid discharged from the NH 4 OH → NH 3 + H 2 O heating device via the line 15 is subjected to drainage treatment as required, and then discharged out of the system.

【0018】前記装置で実施例1の表1に示すテスト条
件で運転した結果、脱硝率及び脱硫率は実施例1と同様
で以下のとおりであった。 脱硝率 : 95%以上 脱硫率 : 98.5% さらに、実施例2では実施例1に比較し、以下に示すよ
うにNH3 使用量が低減できた。 NH3 使用量(実施例1) : 2.5モル/リットル NH3 使用量(実施例2) : 2.2モル/リットル
As a result of operating the above apparatus under the test conditions shown in Table 1 of Example 1, the denitration rate and desulfurization rate were the same as in Example 1 and were as follows. Denitration rate: 95% or more Desulfurization rate: 98.5% Further, in Example 2, as compared with Example 1, the amount of NH 3 used could be reduced as shown below. NH 3 usage (Example 1): 2.5 mol / L NH 3 usage (Example 2): 2.2 mol / L

【0019】[0019]

【発明の効果】アンモニウム塩の脱硫助剤としての顕著
な効果に注目した本発明の方法を適用することにより、
従来方法に比較し、経済的に有利な方法で高効率な脱硝
と脱硫を同時に達成することが可能となった。さらに、
脱硫助剤であるNH3 ガスを湿式脱硫装置の吸収液から
回収し、循環利用することで、系外から供給するNH3
量を低減することが可能となった。
According to the method of the present invention, which focuses on the remarkable effect of an ammonium salt as a desulfurization aid,
Compared with the conventional method, it has become possible to simultaneously achieve highly efficient denitration and desulfurization in an economically advantageous manner. further,
NH 3 gas, which is a desulfurization aid, is recovered from the absorption liquid of the wet desulfurization unit and circulated and used to supply NH 3 gas from outside the system.
The amount can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明(1)の一実施態様の説明図。FIG. 1 is an explanatory view of one embodiment of the present invention (1).

【図2】本発明(2)の一実施態様の説明図。FIG. 2 is an explanatory view of one embodiment of the present invention (2).

【図3】アンモニウム塩共存時の石灰石溶解作用の促進
効果を示す図表。
FIG. 3 is a table showing the effect of promoting the limestone dissolving action in the presence of an ammonium salt.

フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/86 ZAB B01D 53/36 101Z 53/94 (72)発明者 田中 裕士 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (72)発明者 筒井 浩養 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社本社内 (56)参考文献 特開 昭51−146368(JP,A) 特開 昭50−9569(JP,A) 特開 昭51−26678(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 B01D 53/14 Continued on the front page. (51) Int.Cl. 7 Identification code FI B01D 53/86 ZAB B01D 53/36 101Z 53/94 (72) Inventor Yuji Tanaka 4-6-22 Kanonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima, Japan Mitsubishi Heavy Industries Hiroshima Research Laboratory Co., Ltd. (72) Inventor Hiroyasu Tsutsui 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. (56) References JP-A-51-146368 (JP, A) JP-A-50 -9569 (JP, A) JP-A-51-26678 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/34 B01D 53/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 排ガス中のNOxを還元触媒を充填した
還元脱硝反応装置で脱硝し、SO2 を石灰石を吸収剤と
する湿式脱硫装置で脱硫する排ガス処理方法において、
排ガス中のNOxとの反応当量以上のNH3 を前記還元
脱硝反応装置の上流の排ガスに添加して前記還元脱硝反
応装置においてNOxとNH3 を反応させ、次いで排ガ
ス中に残存するNH3 を含む排ガスを前記湿式脱硫装置
へ導き、排ガス中のSO2 を除去することを特徴とする
排ガスの処理方法。
An exhaust gas treatment method for denitrifying NOx in exhaust gas with a reduction denitration reactor filled with a reduction catalyst and desulfurizing SO 2 with a wet desulfurization device using limestone as an absorbent.
Of NH 3 more than the reaction equivalent of the NOx in the exhaust gas is added to the exhaust gas upstream of the reducing denitration reactor by reacting NOx with NH 3 in the reducing denitration reactor, and then includes the NH 3 remaining in the exhaust gas A method for treating exhaust gas, comprising: introducing exhaust gas to the wet desulfurization device to remove SO 2 in the exhaust gas.
【請求項2】 湿式脱硫装置の吸収液の一部を系外に排
出する過程で、吸収液pHを10以上に予め調整後加熱
して吸収液よりNH3 をガスとして回収する工程と、回
収したNH3 ガスを排ガス中のNOxと反応させるため
に添加使用するNH3 ガスの一部として供給することを
特徴とする請求項1に記載の排ガスの処理方法。
2. A process of recovering NH 3 as a gas from the absorbing solution by adjusting the pH of the absorbing solution in advance to 10 or more and heating it in the process of discharging a part of the absorbing solution of the wet desulfurization device out of the system processing method of an exhaust gas according to claim 1, wherein the the NH 3 gas and supplying a part of the NH 3 gas used added to react with NOx in the exhaust gas.
JP26056193A 1993-10-19 1993-10-19 Exhaust gas treatment method Expired - Fee Related JP3354660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26056193A JP3354660B2 (en) 1993-10-19 1993-10-19 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26056193A JP3354660B2 (en) 1993-10-19 1993-10-19 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH07112117A JPH07112117A (en) 1995-05-02
JP3354660B2 true JP3354660B2 (en) 2002-12-09

Family

ID=17349670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26056193A Expired - Fee Related JP3354660B2 (en) 1993-10-19 1993-10-19 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3354660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074230A1 (en) 2009-12-14 2011-06-23 バブコック日立株式会社 Method for removing mercury from combustion gas, and combustion gas cleaner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420949B2 (en) 1997-12-25 2003-06-30 キヤノン株式会社 Soil purification device and method for repairing contaminated soil
US6863875B1 (en) 1998-04-13 2005-03-08 Mitsubishi Heavy Industries, Ltd. Flue gas treating system and process
FR2800298B1 (en) * 1999-10-29 2002-01-11 Sud Ouest Travaux PROCESS FOR THE PURIFICATION OF EXHAUST GASES FROM HEAT ENGINES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074230A1 (en) 2009-12-14 2011-06-23 バブコック日立株式会社 Method for removing mercury from combustion gas, and combustion gas cleaner
US8372363B2 (en) 2009-12-14 2013-02-12 Babcock-Hitachi Kabushiki Kaisha Method of mercury removal from combustion exhaust gas and combustion exhaust gas purification apparatus

Also Published As

Publication number Publication date
JPH07112117A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
CN105854560B (en) The method of flue gas desulfurization and denitrification
US5624649A (en) Process for reduction of sulfur dioxide emission from combustion gases combined with production of potassium sulfate
US8147785B2 (en) Combustion flue gas NOx treatment
KR100364652B1 (en) Wet Flue Gas Desulphurisation Process Using Limestone
KR101937801B1 (en) Method and apparatus for removing carbon dioxide and SOx from flue gas
CN105233647B (en) A kind of method of ammonium sulfide solution desulphurization denitration
JPH0262296B2 (en)
CN110064293B (en) Method for desulfurization, denitrification and demercuration of flue gas
CN107321149A (en) Low-temp desulfurization denitrating system in coking of coal
EP3368192B1 (en) Process and system for removing sulfur dioxide from flue gas
JP3354660B2 (en) Exhaust gas treatment method
CN113251420A (en) Industrial waste treatment method and device
CN105080317B (en) Method that is a kind of while reclaiming sulphur and nitre
JP3248956B2 (en) Exhaust gas treatment method
JP3358904B2 (en) Exhaust gas treatment method
JPH08955A (en) Exhaust gas treatment process
CN111359398B (en) Method for denitration and whitening of flue gas
KR100531767B1 (en) H2S Gas Exclusion Method and The Apparatus of Coke Oven Gas
JPH07108131A (en) Treatment of waste gas
JP4169497B2 (en) Combustion exhaust gas treatment method and treatment apparatus
JP3411755B2 (en) Flue gas desulfurization equipment
CN110465190A (en) A kind of photo-thermal coupling excitation H2O2Flue gas desulfurization and denitration method and product utilization
WO2001053202A1 (en) Enhancement of ammonia containing fly ash and collection of ammonia byproduct
JPH08951A (en) Exhaust gas desulfurizing process
CN215863435U (en) Industrial waste's processing apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees