JP3354655B2 - Method for producing fuel electrode of solid electrolyte type electrolytic cell - Google Patents

Method for producing fuel electrode of solid electrolyte type electrolytic cell

Info

Publication number
JP3354655B2
JP3354655B2 JP24431793A JP24431793A JP3354655B2 JP 3354655 B2 JP3354655 B2 JP 3354655B2 JP 24431793 A JP24431793 A JP 24431793A JP 24431793 A JP24431793 A JP 24431793A JP 3354655 B2 JP3354655 B2 JP 3354655B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
zro
nio
particle size
mgal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24431793A
Other languages
Japanese (ja)
Other versions
JPH07105956A (en
Inventor
洋 佃
北條  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24431793A priority Critical patent/JP3354655B2/en
Publication of JPH07105956A publication Critical patent/JPH07105956A/en
Application granted granted Critical
Publication of JP3354655B2 publication Critical patent/JP3354655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池あ
るいは高温水蒸気電解に用いる固体電解質型電解セルの
燃料極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fuel electrode of a solid oxide fuel cell or a solid oxide electrolytic cell used for high-temperature steam electrolysis.

【0002】[0002]

【従来の技術】固体電解質燃料電池ではアノードとして
Niを用いるが、固体電解質の安定化ジルコニアと熱膨
張率が異なるために固体電解質を破壊する可能性がある
ので、安定化ジルコニア(安定化ZrO2 )やマグネシ
ウムアルミニウムスピネル(MgAl2 4 )を添加し
て用いている。しかし従来技術においては成膜前に熱処
理は行われていない。
2. Description of the Related Art In a solid electrolyte fuel cell, Ni is used as an anode. However, since the thermal expansion coefficient of the solid electrolyte is different from that of stabilized zirconia, the solid electrolyte may be destroyed. Therefore, stabilized zirconia (stabilized ZrO 2) is used. ) And magnesium aluminum spinel (MgAl 2 O 4 ). However, in the prior art, heat treatment is not performed before film formation.

【0003】[0003]

【発明が解決しようとする課題】固体電解質の破壊を防
ぐためには、電極の熱膨張率を厳密に固体電解質に適合
させることが必要であり、熱膨張率がNiより小さいM
gAl2 4 を電極に添加することが安定化ZrO2
添加するより有効である。ところが、MgAl24
添加した電極材は成膜した際の導電率が目標とする値よ
りも低い傾向がある。
In order to prevent the destruction of the solid electrolyte, it is necessary to strictly adjust the coefficient of thermal expansion of the electrode to that of the solid electrolyte.
Adding gAl 2 O 4 to the electrode is more effective than adding stabilized ZrO 2 . However, the electrode material to which MgAl 2 O 4 is added tends to have a lower conductivity than a target value when the film is formed.

【0004】本発明は上記技術水準に鑑み、付着性が良
好で導電率が高く、しかも電解セルが破損されることも
ない固体電解質型電解セルの燃料極の製造方法を提供し
ようとするものである。
The present invention has been made in view of the above technical level, and has as its object to provide a method of manufacturing a fuel electrode of a solid electrolyte type electrolysis cell which has good adhesion, high conductivity, and does not damage the electrolysis cell. is there.

【0005】[0005]

【課題を解決するための手段】本発明者らはNi,Mg
Al2 4 系電極材の成膜した状態での導電率を向上す
るために、種々の検討を行った結果、成膜前に熱処理を
行い予め固溶体を形成することが有効であることを見い
だした。さらに、成膜強度(付着性)を向上させるため
には、少量の安定化ZrO2 の添加が有効であることを
見いだした。
Means for Solving the Problems The present inventors have studied Ni, Mg
Various studies were conducted to improve the electrical conductivity of the Al 2 O 4 -based electrode material in a film-formed state. As a result, it was found that it is effective to perform a heat treatment before the film formation to form a solid solution in advance. Was. Further, it has been found that the addition of a small amount of stabilized ZrO 2 is effective for improving the film forming strength (adhesion).

【0006】本発明は上述の知見に基づいて完成された
ものであって、本発明は(1)NiOとMgAl2 4
との混合物を1500℃以上の温度で熱処理してなる固
溶体を粉砕したのち溶媒に分散させてスラリー化し、該
スラリーをZrO2 系固体電解質の片面に塗布・乾燥し
空気中で焼成したのち、還元雰囲気で熱処理することを
特徴とする固体電解質型電解セルの燃料極の製造方法
(第一発明)、及び(2)NiOとMgAl2 4 との
混合物を1500℃以上の温度で熱処理してなる固溶体
を安定化ZrO2 と混合して粉砕したのち溶媒に分散さ
せてスラリー化し、該スラリーをZrO2 系固体電解質
の片面に塗布・乾燥し空気中で焼成したのち、還元雰囲
気で熱処理することを特徴とする固体電解質型電解セル
の燃料極の製造方法(第二発明)、である。
The present invention has been completed based on the above findings, and the present invention provides (1) NiO and MgAl 2 O 4
The solid solution formed by heat-treating the mixture at a temperature of 1500 ° C. or higher is pulverized, then dispersed in a solvent to form a slurry, and the slurry is applied to one surface of a ZrO 2 -based solid electrolyte, dried, calcined in air, and reduced. Method for producing fuel electrode of solid electrolyte type electrolytic cell characterized by heat treatment in atmosphere
(1st invention) and (2) A solid solution obtained by heat-treating a mixture of NiO and MgAl 2 O 4 at a temperature of 1500 ° C. or more is mixed with stabilized ZrO 2 , pulverized, and then dispersed in a solvent to form a slurry. A method for producing a fuel electrode of a solid electrolyte type electrolysis cell, wherein the slurry is applied to one side of a ZrO 2 -based solid electrolyte, dried, fired in air, and then heat-treated in a reducing atmosphere (second invention). It is.

【0007】[0007]

【作用】Ni,MgAl2 4 系電極材の成膜した状態
での導電率が低い原因は導電性を発現するNi成分が膜
内で連続に接触した状態でつながっていないためであ
る。本発明では膜内でのNi成分のを連続させるため
に、予め熱処理を行いNi成分を原料内に均一に分散さ
せる固溶体化処理を行った。また、電極の付着性は固体
電解質と電極の界面での接着力に依存する。この接着力
を改善するためには焼きつき性を向上する必要がある。
そこで、電極材に固体電解質と同じ成分の安定化ZrO
2 を添加し、焼きつき性を向上した。
The reason why the electrical conductivity of the Ni, MgAl 2 O 4 -based electrode material in the formed film is low is that the Ni component exhibiting conductivity is not connected in a state of being continuously contacted in the film. In the present invention, in order to make the Ni component in the film continuous, a solid solution treatment for performing a heat treatment in advance and uniformly dispersing the Ni component in the raw material was performed. Further, the adhesiveness of the electrode depends on the adhesive force at the interface between the solid electrolyte and the electrode. In order to improve the adhesion, it is necessary to improve the seizure.
Therefore, stabilized ZrO having the same components as the solid electrolyte is used for the electrode material.
2 was added to improve the seizure property.

【0008】第一発明に関して成分限定理由並びに処理
条件限定理由を以下に述べる。 出発原料NiO粒度範囲:固溶体生成のためには、粉体
の反応性が高い、すなわち粉体の粒径が細かいことが望
ましく、一般的には5μm以下の粒径が好ましい。 出発原料MgAl2 4 粒度範囲:NiO粒度範囲と同
様に固溶体生成のためには、粉体の反応性が高い、すな
わち粉体の粒径が細かいことが望ましく、一般的には5
μm以下の粒径が好ましい。 NiOとMgAl2 4 の混合割合:固体電解質として
用いるZrO2 系固体電解質の熱膨張率は約10×10
-6/K程度である。NiOの熱膨張率は約14×10-6
/K、MgAl2 4 の熱膨張率は約8×10-6/Kで
あり、これらの混合比率は混合物焼結体の熱膨張率がZ
rO2 系固体電解質の熱膨張率に近くなる方が望まし
い。ただし、NiO含有率が下がると導電率が低下する
ためにこの点を考慮し、NiO含有率を40〜60vo
l%が適当である。このとき混合物焼結体の熱膨張率は
10.4〜11.6×10-6/K程度となる。 固溶体化熱処理:NiOとMgAl2 4 の固溶体を作
るためには、ある程度高い温度と時間が必要であり、1
500℃以上で1時間以上が適当である。 固溶体の粉砕(固体電解質上への成膜後焼成条件を含
む):固溶体の粒度が大きすぎると、熱的に安定であり
固体電解質上に成膜焼成した際に、十分に焼き付かず成
膜強度が低くなる可能性がある。固体電解質上に成膜焼
成する温度を1300〜1500℃(この温度が極端に
高いと電解質と反応し絶縁体が生成する可能性がある)
が適当であり、この温度領域で成膜焼成するためには固
溶体の粒径は5μm以下にすることが望ましい。このた
めには固溶体の焼成体をスタンプミで粉砕した後に、ボ
ールミルで50時間以上粉砕する必要がある。 スラリー化する溶媒の種類:固体電解質上に塗布するこ
とを目的として、スラリー化を行なうので、溶媒の種類
は特に限定されない。一般的に使用可能な溶媒は水、エ
タノール等のアルコール、トルエン等があげられる。た
だし、水系の溶媒を用いる場合には分散剤の添加がスラ
リーの安定化(沈殿を防ぐ)を向上する目的で必要であ
り、分散剤の添加量は2%以下が一般的である。 還元時温度条件:固体電解質燃料電池作動条件にて還元
する。具体的には、温度1000℃、還元剤は燃料の水
素、CO、CH4 等である。
[0008] The reasons for limiting the components and the processing conditions for the first invention are described below. Starting material NiO particle size range: In order to form a solid solution, it is desirable that the powder has high reactivity, that is, the powder has a small particle size, and generally a particle size of 5 μm or less. Starting material MgAl 2 O 4 particle size range: As in the case of NiO particle size range, in order to form a solid solution, it is desirable that the powder has high reactivity, that is, the powder has a fine particle size.
Particle sizes below μm are preferred. Mixing ratio of NiO and MgAl 2 O 4 : The thermal expansion coefficient of the ZrO 2 -based solid electrolyte used as the solid electrolyte is about 10 × 10
-6 / K. The thermal expansion coefficient of NiO is about 14 × 10 -6
/ K and MgAl 2 O 4 have a coefficient of thermal expansion of about 8 × 10 −6 / K.
It is desirable that the coefficient of thermal expansion be close to the coefficient of thermal expansion of the rO 2 -based solid electrolyte. However, when the NiO content decreases, the electrical conductivity decreases, and in consideration of this point, the NiO content is set to 40 to 60 vol.
1% is appropriate. At this time, the thermal expansion coefficient of the mixture sintered body is about 10.4 to 11.6 × 10 −6 / K. Solid solution heat treatment: To form a solid solution of NiO and MgAl 2 O 4 , a somewhat high temperature and time are required, and 1
Appropriately at 500 ° C. or higher for 1 hour or longer. Pulverization of solid solution (including baking conditions after film formation on solid electrolyte): If the particle size of the solid solution is too large, it is thermally stable and does not stick sufficiently when film formation and baking on the solid electrolyte. Strength may be low. The temperature at which the film is formed and fired on the solid electrolyte is 1300 to 1500 ° C. (If this temperature is extremely high, it may react with the electrolyte to form an insulator.)
It is preferable that the particle diameter of the solid solution is 5 μm or less in order to form and bake a film in this temperature range. For this purpose, it is necessary to pulverize the solid solution fired body with a stamp mill and then pulverize it with a ball mill for 50 hours or more. Type of solvent to be slurried: Since the slurry is formed for the purpose of coating on the solid electrolyte, the type of the solvent is not particularly limited. Generally usable solvents include water, alcohols such as ethanol, toluene and the like. However, when an aqueous solvent is used, the addition of a dispersant is necessary for the purpose of improving the stability of the slurry (preventing precipitation), and the addition amount of the dispersant is generally 2% or less. Temperature conditions at the time of reduction: Reduction is performed under operating conditions of the solid oxide fuel cell. Specifically, the temperature is 1000 ° C., and the reducing agent is hydrogen, CO, CH 4 or the like of the fuel.

【0009】第二発明に関して成分限定理由並びに処理
条件限定理由を以下に述べる。 出発原料NiO粒度範囲:固溶体生成のためには、粉体
の反応性が高い、すなわち粉体の粒径が細かいことが望
ましく、一般的には5μm以下の粒径が好ましい。 出発原料MgAl2 4 粒度範囲:NiO粒度範囲と同
様に固溶体生成のためには、粉体の反応性が高い、すな
わち粉体の粒径が細かいことが望ましく、一般的には5
μm以下の粒径が好ましい。 出発原料ZrO2 粒度範囲:ZrO2 の粒径は固体電解
質との密着性を改善する目的から焼結性が良好である必
要がある。したがって、粒径は小さいほうが望ましく1
μm以下がよい。また、ZrO2 は固体電解質として使
用する安定化ZrO2 と同様安定化剤を含有することは
当然である。 NiOとMgAl2 4 の混合割合及びZrO2 の割
合:固体電解質として用いるZrO2 系固体電解質の熱
膨張率は約10×10-6/K程度である。NiOの熱膨
張率は約14×10-6/K、MgAl2 4 の熱膨張率
は約8×10-6/K、ZrO2 の熱膨張率は約10×1
-6/Kであり、これらの混合比率は混合物焼結体の熱
膨張率がZrO2 系固体電解質の熱膨張率に近くなる方
が望ましい。ただし、NiO含有率が下がると導電率が
低下するためにこの点を考慮し、NiO含有率を40〜
60vol%が適当である。また、ZrO2 は固体電解
質との密着性を改善するために加えられ、あまり多すぎ
ると熱膨張率が大きくなるため15vol%以下が望ま
しい。ZrO2 を10vol%添加した場合の混合物焼
結体の熱膨張率は10.6〜11.8×10-6/K程度
となる。 固溶体化熱処理:NiOとMgAl2 4 の固溶体を作
るためには、ある程度高い温度と時間が必要であり、1
500℃以上で1時間以上が適当である。 固溶体及びZrO2 の粉砕(固体電解質上への成膜後焼
成条件を含む):固溶体及びZrO2 の粒度が大きすぎ
ると、熱的に安定であり固体電解質上に成膜焼成した際
に、十分に焼き付かず成膜強度が低くなる可能性があ
る。固体電解質上に成膜焼成する温度を1300〜15
00℃(この温度が極端に高いと電解質と反応し絶縁体
が生成する可能性がある)が適当であり、この温度領域
で成膜焼成するためには、固溶体及びZrO2 の粒径は
5μm以下にすることが望ましい。このためには固溶体
及びZrO2 の焼成体をスタンプミルで粉砕した後に、
ボールミルで50時間以上粉砕する必要がある。 スラリー化する溶媒の種類:固体電解質上に塗布するこ
とを目的として、スラリー化を行なうので、溶媒の種類
は特に限定されない。一般的に使用可能な溶媒は水、エ
タノール等のアルコール、トルエン等があげられる。た
だし、水系の溶媒を用いる場合には分散剤の添加がスラ
リーの安定化(沈殿を防ぐ)を向上する目的で必要であ
り、分散剤の添加量は2%以下が一般的である。 還元時温度条件:固体電解質燃料電池作動条件にて還元
する。具体的には、温度1000℃、還元剤は燃料の水
素、CO、CH4 等である。
Regarding the second invention, the reasons for limiting the components and the reasons for limiting the processing conditions will be described below. Starting material NiO particle size range: In order to form a solid solution, it is desirable that the powder has high reactivity, that is, the powder has a small particle size, and generally a particle size of 5 μm or less. Starting material MgAl 2 O 4 particle size range: As in the case of NiO particle size range, in order to form a solid solution, it is desirable that the powder has high reactivity, that is, the powder has a fine particle size.
Particle sizes below μm are preferred. Starting material ZrO 2 particle size range: The particle size of ZrO 2 needs to have good sinterability for the purpose of improving the adhesion to the solid electrolyte. Therefore, it is desirable that the particle size is small.
μm or less is preferred. Further, ZrO 2 can of course containing stabilized ZrO 2 and similar stabilizers to be used as a solid electrolyte. Mixing ratio of NiO and MgAl 2 O 4 and ratio of ZrO 2 : The thermal expansion coefficient of the ZrO 2 -based solid electrolyte used as the solid electrolyte is about 10 × 10 −6 / K. NiO has a thermal expansion coefficient of about 14 × 10 −6 / K, MgAl 2 O 4 has a thermal expansion coefficient of about 8 × 10 −6 / K, and ZrO 2 has a thermal expansion coefficient of about 10 × 1.
0 is -6 / K, these mixing ratio Write thermal expansion coefficient of the mixture sintered body is close to the coefficient of thermal expansion of the ZrO 2 based solid electrolyte is desirable. However, when the NiO content decreases, the electrical conductivity decreases.
60 vol% is appropriate. Further, ZrO 2 is added to improve the adhesion to the solid electrolyte, and if it is too much, the thermal expansion coefficient becomes large, so ZrO 2 is desirably 15 vol% or less. The thermal expansion coefficient of the mixture sintered body in the case where the ZrO 2 was added 10 vol% will be 10.6~11.8 × 10 -6 / K approximately. Solid solution heat treatment: To form a solid solution of NiO and MgAl 2 O 4 , a somewhat high temperature and time are required, and 1
Appropriately at 500 ° C. or higher for 1 hour or longer. Grinding of solid solution and ZrO 2 (including conditions for firing after film formation on solid electrolyte): If the particle size of solid solution and ZrO 2 is too large, it is thermally stable, and when film forming and firing on solid electrolyte, sufficient There is a possibility that the film formation strength is lowered without being burned to the surface. The temperature for firing the film on the solid electrolyte is 1300 to 15
00 ° C. (if this temperature is extremely high, there is a possibility that an insulator may be formed by reacting with the electrolyte). In order to form a film in this temperature range, the particle diameter of the solid solution and ZrO 2 is 5 μm It is desirable to make the following. For this purpose, after the solid solution and the fired body of ZrO 2 are pulverized by a stamp mill,
It is necessary to grind in a ball mill for 50 hours or more. Type of solvent to be slurried: Since the slurry is formed for the purpose of coating on the solid electrolyte, the type of the solvent is not particularly limited. Generally usable solvents include water, alcohols such as ethanol, toluene, and the like. However, when an aqueous solvent is used, the addition of a dispersant is necessary for the purpose of improving the stability of the slurry (preventing precipitation), and the addition amount of the dispersant is generally 2% or less. Temperature conditions at the time of reduction: Reduction is performed under operating conditions of the solid oxide fuel cell. Specifically, the temperature is 1000 ° C., and the reducing agent is hydrogen, CO, CH 4 or the like of the fuel.

【0010】[0010]

【実施例】【Example】

(実施例1)平均粒径0.5μmのNiOを50vol
%、平均粒径0.3μmのMgAl 2 4 を50vol
%秤量し、ボールミルで24時間エタノールを溶媒とし
て湿式で混合する。乾燥後に直径50mmの円盤状に最
大荷重1000kg/cm2静水圧プレス法により成形
し、電気炉を用いて1600℃で2時間焼成した。次い
で、この焼成体をスタンプミルで粉砕し、さらにボール
ミルを用いて100時間粉砕した。次いで、この粉体を
水、分散剤(ポリカルボン酸アンモニウム)中に分散さ
せ、粉体濃度72wt%のスラリーを作った。分散剤は
1wt%とし、ボールミルを用いて100時間分散処理
した。次いで、このスラリーの中に緻密で厚さ300μ
mの安定化ZrO2 系固体電解質管を浸漬し、電極膜を
成膜した。電極膜は室内で12時間乾燥後、1500℃
にて空気中で焼成した。焼成後、還元雰囲気下(100
0℃、水素雰囲気)でニッケル酸化物をニッケルとして
導電率を測定した。測定は電極として白金を用い直流4
端子法にて測定した。
 (Example 1) 50 vol of NiO having an average particle size of 0.5 μm
%, MgAl with average particle size of 0.3 μm TwoOFour50vol
% In a ball mill for 24 hours using ethanol as a solvent.
And mix wet. After drying, a disc with a diameter of 50 mm
Large load 1000kg / cmTwoFormed by isostatic pressing
Then, firing was performed at 1600 ° C. for 2 hours using an electric furnace. Next
Then, the fired body is pulverized with a stamp mill,
Milling was performed for 100 hours using a mill. Then, this powder
Dispersed in water, dispersant (ammonium polycarboxylate)
Then, a slurry having a powder concentration of 72 wt% was prepared. The dispersant is
1 wt%, dispersion treatment for 100 hours using a ball mill
did. Next, the slurry is dense and 300 μm thick.
m stabilized ZrOTwoImmerse the solid electrolyte tube in the
A film was formed. The electrode film is dried at room temperature for 12 hours
And fired in the air. After firing, under a reducing atmosphere (100
Nickel oxide as nickel at 0 ° C in a hydrogen atmosphere)
The conductivity was measured. The measurement was performed using a direct current 4
It was measured by the terminal method.

【0011】また、比較材1として、平均粒径0.5μ
mのNiOを50vol%、平均粒径0.3μmのMg
Al2 4 を50vol%秤量し、この粉体を水、分散
剤(ポリカルボン酸アンモニウム)中に分散させ、粉体
濃度72wt%のスラリーを作った。分散剤は1wt%
とし、ボールミルを用いて100時間分散処理した。さ
らに比較材2として平均粒径0.5μmのNiOを40
vol%、平均粒径0.2μmの8mol%−ZrO2
を60vol%秤量し、この粉体を水、分散剤(ポリカ
ルボン酸アンモニウム)中に分散させ、粉体濃度72w
t%のスラリーを作った。分散剤は1wt%とし、ボー
ルミルを用いて100時間分散処理した。最後の空気中
及び還元雰囲気中の焼成と測定は本発明の場合と同じで
ある。結果を以下に示す。
As Comparative Material 1, an average particle size of 0.5 μm was used.
50 vol% of NiO of m, Mg of 0.3 μm in average particle size
50 vol% of Al 2 O 4 was weighed, and this powder was dispersed in water and a dispersant (ammonium polycarboxylate) to prepare a slurry having a powder concentration of 72 wt%. 1 wt% dispersant
And a dispersion treatment was performed for 100 hours using a ball mill. Further, as comparative material 2, 40 NiO having an average particle size of 0.5 μm was used.
vol%, 8 mol% -ZrO 2 having an average particle size of 0.2 μm
Is weighed at 60 vol%, and the powder is dispersed in water and a dispersant (ammonium polycarboxylate) to give a powder concentration of 72 w
A t% slurry was made. The dispersant was 1 wt%, and dispersion treatment was performed for 100 hours using a ball mill. The final firing and measurement in air and in a reducing atmosphere are the same as in the case of the present invention. The results are shown below.

【0012】[0012]

【表1】 本発明により、付着性が良好で導電率の高い電極材を提
供できる。また素子が破損されることもない。
[Table 1] According to the present invention, it is possible to provide an electrode material having good adhesion and high conductivity. Also, the element is not damaged.

【0013】(実施例2)平均粒径0.5μmのNiO
を40vol%、平均粒径0.3μmのMgAl 2 4
を50vol%、平均粒径0.2μmの8mol%−Z
rO2 を10vol%秤量する。まずはじめに、NiO
とMgAl2 4 のみをボールミルで24時間エタノー
ルを溶媒として湿式で混合する。乾燥後に直径50mm
の円盤状に最大荷重1000kg/cm2 静水圧プレス
法により成形し、電気炉を用いて1600℃で2時間焼
成した。次いで、この焼成体をスタンプミルで粉砕し、
さらにボールミルを用いて100時間粉砕した。このと
きZrO2 をを加え同時に混合を行なった。次いで、こ
の粉体を水、分散剤(ポリカルボン酸アンモニウム)中
に分散させ、粉体濃度72wt%のスラリーを作った。
分散剤は1wt%とし、ボールミルを用いて100時間
分散処理した。次いで、このスラリーの中に緻密で厚さ
300μmの安定化ZrO2 系固体電解質管をつけ、電
極膜を成膜した。電極膜は室内で12時間乾燥後150
0℃にて空気中で焼成した。焼成後、還元雰囲気下(1
000℃、水素雰囲気)でニッケル酸化物をニッケルと
して導電率を測定した。測定は電極として白金を用い直
流4端子法にて測定した。
Example 2 NiO having an average particle size of 0.5 μm
Is 40 vol%, MgAl having an average particle size of 0.3 μm TwoOFour
50 vol%, 8 mol% -Z having an average particle size of 0.2 μm
rOTwoIs weighed at 10 vol%. First, NiO
And MgAlTwoOFourOnly in a ball mill for 24 hours
And wet mixed with the solvent. 50mm diameter after drying
Maximum load 1000kg / cmTwoHydrostatic press
And baking at 1600 ° C for 2 hours using an electric furnace.
Done. Next, the fired body is pulverized with a stamp mill,
Further, it was pulverized for 100 hours using a ball mill. This and
ZrOTwoWas added and mixed at the same time. Then,
Powder in water, dispersant (polyammonium polycarboxylate)
And a slurry having a powder concentration of 72 wt% was prepared.
Dispersant is 1 wt%, 100 hours using a ball mill
Distributed processing. Then, in this slurry dense and thick
300 μm stabilized ZrOTwoAttach the solid electrolyte tube
An extreme film was formed. The electrode film is dried in a room for 12 hours and then dried for 150 hours.
Calcination was performed in air at 0 ° C. After firing, under a reducing atmosphere (1
2,000 ° C, hydrogen atmosphere)
The conductivity was measured. The measurement was made using platinum as the electrode.
The current was measured by a four-terminal method.

【0014】また、比較材として、平均粒径0.5μm
のNiOを40vol%、平均粒径0.3μmのMgA
2 4 を50vol%、平均粒径0.2μmの8mo
l%−ZrO2 を10vol%秤量し、この粉体を水、
分散剤(ポリカルボン酸アンモニウム)中に分散させ、
粉体濃度72wt%のスラリーを作った。分散剤は1w
t%とし、ボールミルを用いて100時間分散処理し
た。さらに比較材2として平均粒径0.5μmのNiO
を40vol%、平均粒径0.2μmの8mol%−Z
rO2 を60vol%秤量し、この粉体を水、分散剤
(ポリカルボン酸アンモニウム)中に分散させ、粉体濃
度72wt%のスラリーを作った。分散剤は1wt%と
し、ボールミルを用いて100時間分散処理した。最後
の空気中及び還元雰囲気中の焼成と測定は本発明の場合
と同じである。結果を以下に示す。
As a comparative material, the average particle size is 0.5 μm
MgO with 40 vol% of NiO and average particle diameter of 0.3 μm
50 mol% of l 2 O 4 , 8 mo having an average particle size of 0.2 μm
1% -ZrO 2 is weighed at 10 vol%, and this powder is
Dispersed in a dispersant (ammonium polycarboxylate)
A slurry having a powder concentration of 72 wt% was prepared. 1w dispersant
The dispersion treatment was performed using a ball mill for 100 hours. Further, as comparative material 2, NiO having an average particle size of 0.5 μm was used.
Is 8 mol% -Z with an average particle diameter of 0.2 μm.
60 vol% of rO 2 was weighed, and this powder was dispersed in water and a dispersant (ammonium polycarboxylate) to prepare a slurry having a powder concentration of 72 wt%. The dispersant was 1 wt%, and dispersion treatment was performed for 100 hours using a ball mill. The final firing and measurement in air and in a reducing atmosphere are the same as in the case of the present invention. The results are shown below.

【0015】[0015]

【表2】 本発明により、付着性が良好で導電率の高い電極材を提
供できる。また素子が破損されることもない。
[Table 2] According to the present invention, it is possible to provide an electrode material having good adhesion and high conductivity. Also, the element is not damaged.

【0016】[0016]

【発明の効果】本発明により、付着性が良好で導電率が
高く、しかも電解セルが破損されることもない固体電解
質型電解セルの燃料極を製造することができる。
According to the present invention, it is possible to manufacture a fuel electrode of a solid electrolyte type electrolytic cell having good adhesion, high electric conductivity, and without damaging the electrolytic cell.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−33266(JP,A) 特開 平5−67472(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/88 C25B 11/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-33266 (JP, A) JP-A-5-67472 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/88 C25B 11/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 NiOとMgAl2 4 との混合物を
500℃以上の温度で熱処理してなる固溶体を粉砕した
のち溶媒に分散させてスラリー化し、該スラリーをZr
2 系固体電解質の片面に塗布・乾燥し空気中で焼成し
たのち、還元雰囲気で熱処理することを特徴とする固体
電解質型電解セルの燃料極の製造方法。
The method according to claim 1 mixture of NiO and MgAl 2 O 4 1
A solid solution obtained by heat treatment at a temperature of 500 ° C. or more is pulverized and then dispersed in a solvent to form a slurry.
A method for producing a fuel electrode of a solid electrolyte type electrolysis cell, comprising applying and drying one surface of an O 2 -based solid electrolyte, firing it in air, and then performing heat treatment in a reducing atmosphere.
【請求項2】 NiOとMgAl2 4 との混合物を
500℃以上の温度で熱処理してなる固溶体を安定化Z
rO2 と混合して粉砕したのち溶媒に分散させてスラリ
ー化し、該スラリーをZrO2 系固体電解質の片面に塗
布・乾燥し空気中で焼成したのち、還元雰囲気で熱処理
することを特徴とする固体電解質型電解セルの燃料極の
製造方法。
2. A method a mixture of NiO and MgAl 2 O 4 1
Stabilizes the solid solution formed by heat treatment at a temperature of 500 ° C. or more.
A solid characterized by being mixed with rO 2 , pulverized, dispersed in a solvent to form a slurry, applied to one surface of a ZrO 2 -based solid electrolyte, dried, fired in air, and then heat-treated in a reducing atmosphere. A method for manufacturing a fuel electrode of an electrolyte type electrolytic cell.
JP24431793A 1993-09-30 1993-09-30 Method for producing fuel electrode of solid electrolyte type electrolytic cell Expired - Fee Related JP3354655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24431793A JP3354655B2 (en) 1993-09-30 1993-09-30 Method for producing fuel electrode of solid electrolyte type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24431793A JP3354655B2 (en) 1993-09-30 1993-09-30 Method for producing fuel electrode of solid electrolyte type electrolytic cell

Publications (2)

Publication Number Publication Date
JPH07105956A JPH07105956A (en) 1995-04-21
JP3354655B2 true JP3354655B2 (en) 2002-12-09

Family

ID=17116929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24431793A Expired - Fee Related JP3354655B2 (en) 1993-09-30 1993-09-30 Method for producing fuel electrode of solid electrolyte type electrolytic cell

Country Status (1)

Country Link
JP (1) JP3354655B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270885B2 (en) * 2007-09-05 2013-08-21 株式会社東芝 Fuel electrode for solid oxide electrochemical cell, method for producing the same, and solid oxide electrochemical cell
JP5637652B2 (en) * 2008-02-13 2014-12-10 株式会社東芝 ELECTROCHEMICAL CELL AND ITS MANUFACTURING METHOD AND OPERATION METHOD
JP5613286B2 (en) * 2013-05-09 2014-10-22 株式会社東芝 Solid oxide electrochemical cell anode and solid oxide electrochemical cell

Also Published As

Publication number Publication date
JPH07105956A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
JP3887413B2 (en) Sintered solid electrolyte with high oxygen ion conductivity
US4735666A (en) Method of producing ceramics
Duran et al. Processing and characterisation of a fine nickel oxide/zirconia/composite prepared by polymeric complex solution synthesis
US6709628B2 (en) Process for the production of sintered ceramic oxide
Murphy et al. Tape casting of lanthanum chromite
JP2617204B2 (en) Method for producing solid electrolyte
JPH09502047A (en) Method for producing electrode layer on solid oxide electrolyte of solid fuel cell
JP4360110B2 (en) Lanthanum gallate sintered body and solid oxide fuel cell using the same as a solid electrolyte
JP2001064080A (en) Silicon nitride sintered body and its production
JP3354655B2 (en) Method for producing fuel electrode of solid electrolyte type electrolytic cell
JP2000353530A (en) MANUFACTURE OF NiO AND/OR Ni/YSZ COMPOSITE POWDER AND MANUFACTURE OF SOLID ELECTROLYTE FUEL CELL USING THEREOF
JP2004288445A (en) Method for manufacturing solid electrolyte
JP3336851B2 (en) Method for producing Ni / YSZ cermet raw material powder
JP3034132B2 (en) Zirconia solid electrolyte
JP7365947B2 (en) Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
JP3604210B2 (en) Method for producing NiO / YSZ composite powder
JPH11343123A (en) Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
CN114478006A (en) KNNS-BNZ + CuO piezoceramic material and preparation method and application thereof
JP4038628B2 (en) Oxide ion conductor, method for producing the same, and solid oxide fuel cell
JP3077054B2 (en) Heat-resistant conductive ceramics
JP4517949B2 (en) Nickel oxide powder for electrode of solid oxide fuel cell and method for producing the same
JP2006004874A (en) Anode material for solid oxide fuel cell and its manufacturing method
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP3748084B2 (en) Method for producing NiO / YSZ composite powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020827

LAPS Cancellation because of no payment of annual fees