JP3352819B2 - Combustion control device for two-cycle engine - Google Patents

Combustion control device for two-cycle engine

Info

Publication number
JP3352819B2
JP3352819B2 JP14367094A JP14367094A JP3352819B2 JP 3352819 B2 JP3352819 B2 JP 3352819B2 JP 14367094 A JP14367094 A JP 14367094A JP 14367094 A JP14367094 A JP 14367094A JP 3352819 B2 JP3352819 B2 JP 3352819B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
control
convergence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14367094A
Other languages
Japanese (ja)
Other versions
JPH0814086A (en
Inventor
公裕 野中
雅彦 加藤
和広 中村
Original Assignee
三信工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三信工業株式会社 filed Critical 三信工業株式会社
Priority to JP14367094A priority Critical patent/JP3352819B2/en
Priority to US08/481,846 priority patent/US5697353A/en
Publication of JPH0814086A publication Critical patent/JPH0814086A/en
Application granted granted Critical
Publication of JP3352819B2 publication Critical patent/JP3352819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの燃焼制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device for an engine.

【0002】[0002]

【従来の技術】自動車や船外機等のエンジンにあって
は、空燃比を制御することにより、エンジンの燃焼状態
を良好にし、もってエンジン出力の向上を図るとともに
排気ガス中の有害成分を低減するようにしている。この
空燃比の制御では、排ガスセンサを設置して排ガス中の
酸素量を検出し、該検出値から空燃比を求め、これが目
標空燃比に一致するように燃料供給量を制御するのが一
般的である。
2. Description of the Related Art In engines such as automobiles and outboard motors, controlling the air-fuel ratio improves the combustion state of the engine, thereby improving engine output and reducing harmful components in exhaust gas. I am trying to do it. In the control of the air-fuel ratio, it is common to install an exhaust gas sensor to detect the amount of oxygen in the exhaust gas, obtain the air-fuel ratio from the detected value, and control the fuel supply amount so that this matches the target air-fuel ratio. It is.

【0003】一方、2サイクルエンジンは、新気により
既燃ガスを排出する掃気行程を備えており、そのため2
サイクルエンジンでは排気ガス中に新気が混合する吹き
抜け現象がある。従って排気管内を流れる排気ガス中の
酸素濃度を検出した場合、正確な空燃比を求めることは
できない。そこで、2サイクルエンジンの空燃比制御で
は、燃焼室内の既燃ガスの酸素濃度を検出し、これによ
り空燃比を求めるようにしている。この酸素濃度の検出
においては、位相差を有する隣接気筒同士を検出通路で
連通接続し、該通路にO2 センサを介設し、一方の気筒
から他方の気筒に既燃ガスを流動させることにより被検
出ガスを採取することが考えられる。なお、本発明にお
いて、既燃ガスとは吹き抜けガスを含まない燃焼ガスの
みのガス、又は吹き抜けガスの含有量が酸素濃度検出に
それほど支障とならない程度である場合のガスの意味で
あり、排気ガスとは吹き抜けガスと燃焼ガスとの混合ガ
スの意味である。また、混合気とは、新気と燃料との混
合ガスの意味である。
On the other hand, a two-stroke engine has a scavenging stroke for discharging burned gas by fresh air.
In a cycle engine, there is a blow-by phenomenon in which fresh air is mixed in exhaust gas. Therefore, when the oxygen concentration in the exhaust gas flowing in the exhaust pipe is detected, an accurate air-fuel ratio cannot be obtained. Therefore, in the air-fuel ratio control of the two-cycle engine, the oxygen concentration of the burned gas in the combustion chamber is detected, and the air-fuel ratio is obtained based on the detected oxygen concentration. In the detection of the oxygen concentration, adjacent cylinders having a phase difference are connected to each other through a detection passage, an O 2 sensor is interposed in the passage, and burned gas flows from one cylinder to the other cylinder. It is conceivable to collect the gas to be detected. In the present invention, the burned gas refers to a gas containing only a combustion gas that does not include a blow-by gas, or a gas when the content of the blow-by gas is such that the oxygen concentration detection is not so hindered. Means a mixed gas of blow-through gas and combustion gas. Further, the mixture refers to a mixed gas of fresh air and fuel.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来の
方法では、一般的な燃焼制御においては、特にフィード
バック制御開始時(空燃比が目標空燃比から大きくずれ
ているのが通例)に、空燃比を目標空燃比に到達させる
までの収束時間が長いという問題がある。この収束時間
を短縮するには制御係数を大きく設定すれば良いが、単
に制御係数を大きくした場合は、収束後においてA/F
値のハンチング等が発生し、エンジンの燃焼状態が不安
定となる問題がある。
However, in the above-mentioned conventional method, in general combustion control, particularly at the start of feedback control (generally, the air-fuel ratio largely deviates from the target air-fuel ratio). However, there is a problem that the convergence time required to reach the target air-fuel ratio is long. To shorten the convergence time, a large control coefficient may be set. However, if the control coefficient is simply increased, the A / F
There is a problem that hunting of values occurs and the combustion state of the engine becomes unstable.

【0005】また、上記既燃ガスを採取する空燃比検出
方法の場合、エンジンの運転状態によって採取ガス量が
異なり、そのため検出センサの応答性が変化し、その結
果、空燃比がハンチングし易いという問題がある。
In the air-fuel ratio detection method for collecting burned gas, the amount of gas to be collected varies depending on the operating state of the engine, and the response of the detection sensor changes. As a result, the air-fuel ratio tends to hunt. There's a problem.

【0006】本発明は、上記問題点に鑑みてなされたも
ので、空燃比を短時間で収束でき、かつ安定させること
ができ、もってエンジンの燃焼状態を常に安定化できる
2サイクルエンジンの燃焼制御装置を提供することを目
的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is possible to converge and stabilize an air-fuel ratio in a short period of time, so that the combustion control of a two-cycle engine can always be stabilized. It is intended to provide a device.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、2サ
イクルエンジンの燃焼制御装置において、既燃ガスの性
状から混合気の空燃比を求める空燃比検出手段と、フィ
ードバック制御における制御係数を、検出空燃比が目標
空燃比より所定値以上ずれているときの収束前制御係数
と、検出空燃比が目標空燃比近傍の所定範囲内にあると
きの収束後制御係数とに区分するとともに、収束前制御
係数を収束後制御係数より大きく設定し、かつ収束前制
御係数及び収束後制御係数をエンジン回転数が低いほど
大きく、高いほど小さく設定する制御係数演算手段と、
上記空燃比検出手段によって求められた空燃比が目標空
燃比と一致するように、上記制御係数演算手段によって
求められた制御係数でもって燃料供給量をフィードバッ
ク制御する帰還制御手段とを備えたことを特徴としてい
る。
According to a first aspect of the present invention, there is provided a combustion control apparatus for a two-stroke engine, comprising: an air-fuel ratio detecting means for obtaining an air-fuel ratio of an air-fuel mixture from properties of burned gas; And a control coefficient before convergence when the detected air-fuel ratio deviates from the target air-fuel ratio by a predetermined value or more, and a post-convergence control coefficient when the detected air-fuel ratio is within a predetermined range near the target air-fuel ratio. Control coefficient calculating means for setting the previous control coefficient larger than the post-convergence control coefficient, and setting the pre-convergence control coefficient and the post-convergence control coefficient to be larger as the engine speed is lower and smaller as the engine speed is higher;
Feedback control means for feedback-controlling the fuel supply amount with the control coefficient calculated by the control coefficient calculation means so that the air-fuel ratio determined by the air-fuel ratio detection means matches the target air-fuel ratio. Features.

【0008】[0008]

【0009】請求項2の発明は、請求項1において、上
記空燃比検出手段が、既燃ガスの酸素濃度を検出するO
2 センサを有しており、該O2 センサは位相差を有する
一方の気筒と他方の気筒とを連通する検出通路の途中に
介設されており、該検出通路の導入口は上記一方の気筒
の排気ポートと掃気ポートとの間に位置しており、排出
口は上記他方の気筒の上記排気ポートより下死点側に位
置しており、上記導入口,排出口が、一方の気筒の排気
行程開始後の一定期間と上記他方の気筒の圧縮行程開始
前の一定期間とにおいて同時に開き、この期間において
一方の気筒内の既燃ガスが他方の気筒に向かって流れる
ように上記位相差が設定されていることを特徴としてい
る。
According to a second aspect of the present invention, in the first aspect, the air-fuel ratio detecting means detects the oxygen concentration of the burned gas.
The O 2 sensor is provided in the middle of a detection passage that connects one cylinder having the phase difference and the other cylinder, and the introduction port of the detection passage is connected to the one cylinder. The exhaust port is located between the exhaust port and the scavenging port of the other cylinder, the exhaust port is located closer to the bottom dead center than the exhaust port of the other cylinder, and the inlet port and the exhaust port are located at the exhaust port of one cylinder. The phase difference is set so as to open simultaneously during a certain period after the start of the stroke and a certain period before the start of the compression stroke of the other cylinder, and during this period, the burned gas in one cylinder flows toward the other cylinder. It is characterized by being.

【0010】ここで本発明における制御係数とは、例え
ばPI制御における比例成分P,及び積分成分Iの値の
意味である。なお、PI制御では、例えば検出A/Fが
リッチ側から目標A/Fに達すると、それまでの燃料噴
射幅をPだけ一気に増加させ、その後検出A/Fがリー
ン側から目標A/Fに戻るまで上記燃料噴射幅をIずつ
徐々に増加させてゆき、リーン側から目標A/Fに達す
ると今度は燃料噴射幅をPだけ一気に減少し、その後、
Iずつ徐々に減少する。
Here, the control coefficient in the present invention means, for example, the values of the proportional component P and the integral component I in PI control. In the PI control, for example, when the detected A / F reaches the target A / F from the rich side, the fuel injection width up to that point is increased at a stroke by P, and then the detected A / F is changed from the lean side to the target A / F. The fuel injection width is gradually increased by I until returning, and when the target A / F is reached from the lean side, the fuel injection width is reduced at once by P, and thereafter,
It gradually decreases by I.

【0011】[0011]

【作用】請求項1の発明の2サイクルエンジンの燃焼制
御装置によれば、検出空燃比と目標空燃比との差が所定
値以上のときには、該差が所定範囲内にあるときより制
御係数を大きく設定したので、例えばフィードバックの
掛けられていない始動増量によって空燃比が大きくリッ
チ側にあるときに、フィードバック制御が開始された場
合には、大きな収束前制御係数でもって帰還制御がなさ
れるので、検出空燃比は短時間で目標空燃比に達する。
そして、検出空燃比が目標空燃比の近傍の所定範囲に達
すると、小さい収束後制御係数で制御されるので、空燃
比のハンチングを回避できる。このように、検出空燃比
と目標空燃比との差に応じて燃料噴射幅を変化させたの
で、検出値の収束時間を短縮できるとともに、収束後の
A/Fのハンチングを小さくすることができる。
According to the first aspect of the present invention, when the difference between the detected air-fuel ratio and the target air-fuel ratio is equal to or greater than a predetermined value, the control coefficient is set higher than when the difference is within a predetermined range. Since the setting is large, for example, when the feedback control is started when the air-fuel ratio is largely on the rich side due to the start-up increase in which the feedback is not applied, the feedback control is performed with a large pre-convergence control coefficient. The detected air-fuel ratio reaches the target air-fuel ratio in a short time.
When the detected air-fuel ratio reaches a predetermined range near the target air-fuel ratio, control is performed with a small post-convergence control coefficient, so that hunting of the air-fuel ratio can be avoided. As described above, since the fuel injection width is changed in accordance with the difference between the detected air-fuel ratio and the target air-fuel ratio, the convergence time of the detected value can be shortened, and the hunting of the A / F after convergence can be reduced. .

【0012】また、収束前,収束後制御係数をエンジン
回転数が低いほど大きく、高いほど小さく設定するよう
にしたので、より一層収束時間を短縮できるとともに、
A/Fのハンチングを減少できる。
Further, since the control coefficients before and after convergence are set to be larger as the engine speed is lower and smaller as the engine speed is higher, the convergence time can be further shortened.
A / F hunting can be reduced.

【0013】即ち、エンジン回転数が低い運転域では検
出通路に導入される既燃ガス量(採取ガス量)が少な
く、センサの応答性が低いので、例えばセンサ出力がリ
ッチから目標空燃比を越えてリーンに変化した時点では
実際の空燃比は既にかなり大きくリーン側に変化してい
ると考えられる。従って、制御係数をより大きくして燃
料量をより多くすることにより、目標空燃比側により速
く反転させることができる。
That is, in the operating range where the engine speed is low, the burned gas amount (collected gas amount) introduced into the detection passage is small, and the response of the sensor is low. Therefore, for example, the sensor output exceeds the target air-fuel ratio from rich to target. It is considered that the actual air-fuel ratio has already significantly changed to the lean side when the air-fuel ratio has changed to lean. Therefore, by making the control coefficient larger and increasing the fuel amount, it is possible to more quickly invert the target air-fuel ratio.

【0014】一方、エンジン回転数が高い運転域では検
出通路に導入される既燃ガス量が多くセンサの応答性が
高いので、例えばセンサ出力がリッチからリーンに変化
した時点では実際の空燃比はまだ目標空燃比近傍にある
と考えられる。従って制御係数をあまり大きくすること
なく燃料の増加量を控え目にすることにより、目標空燃
比側により早く反転させることができる。
On the other hand, in the operating range where the engine speed is high, the amount of burned gas introduced into the detection passage is large, and the response of the sensor is high. Therefore, for example, when the sensor output changes from rich to lean, the actual air-fuel ratio becomes It is considered that it is still near the target air-fuel ratio. Therefore, by making the amount of increase in fuel conservative without making the control coefficient too large, it is possible to invert the target air-fuel ratio more quickly.

【0015】請求項2の発明の2サイクルエンジンの燃
焼制御装置によれば、位相差を有する一方の気筒と他方
の気筒の掃気ポートより燃焼室側部分同士を、一方の気
筒が排気行程開始時で、他方の気筒が圧縮行程開始前の
所定期間のみ連通する検出通路で接続し、該通路の途中
に既燃ガスの酸素濃度を検出するO2 センサを介設した
ので、略既燃ガスのみの空燃比を検出することができ、
フィードバック制御の精度を向上することができ、エン
ジンの燃焼状態を常に安定化できる。
According to the combustion control device for a two-stroke engine of the second aspect of the present invention, one of the cylinders having a phase difference and the other from the scavenging port of the other cylinder on the combustion chamber side, and one of the cylinders starts the exhaust stroke. Since the other cylinder is connected by a detection passage that communicates only for a predetermined period before the start of the compression stroke, and an O 2 sensor that detects the oxygen concentration of the burned gas is provided in the middle of the passage, almost only the burned gas is used. Can detect the air-fuel ratio of
The accuracy of the feedback control can be improved, and the combustion state of the engine can always be stabilized.

【0016】[0016]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1ないし図9は本発明の一実施例による2サイク
ルエンジンの燃焼制御装置を説明するための図であり、
図1は上記実施例装置の概略構成図、図2は検出通路の
取り付け位置を説明するための模式図、図3は,気
筒クランク角度,筒内圧及び検出通路の開閉の関係を示
す特性図、図4はA/F値とO2 センサ出力値の関係を
示す特性図、図5は検出A/F値と燃料噴射幅との関係
を示す特性図、図6はエンジン回転数とフィードバック
係数との関係を示す特性図、図7は機能ブロック図、図
8は検出A/F値と燃料噴射幅との関係の変形例を示す
特性図、図9はエンジン回転数とフィードバック係数と
の関係を示す特性図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 to 9 are views for explaining a combustion control device for a two-stroke engine according to one embodiment of the present invention.
FIG. 1 is a schematic configuration diagram of the above-described embodiment device, FIG. 2 is a schematic diagram for explaining a mounting position of a detection passage, FIG. 3 is a characteristic diagram showing a relationship between a cylinder crank angle, an in-cylinder pressure, and the opening and closing of the detection passage. 4 is a characteristic diagram showing the relationship between the A / F value and the output value of the O 2 sensor, FIG. 5 is a characteristic diagram showing the relationship between the detected A / F value and the fuel injection width, and FIG. 6 is a graph showing the relationship between the engine speed and the feedback coefficient. FIG. 7 is a functional block diagram, FIG. 8 is a characteristic diagram showing a modification of the relationship between the detected A / F value and the fuel injection width, and FIG. 9 is a diagram showing the relationship between the engine speed and the feedback coefficient. FIG.

【0017】図1において、1はクランク軸縦置き3気
筒2サイクル船外機用エンジンであり、これはシリンダ
ブロック2のシリンダボア3a内にピストン3を摺動自
在に配置し、該ピストン3をコンロッド4でクランク軸
5に連結した構造のものである。なお、図1のA−A断
面中、〜は気筒番号を示しており、各気筒〜の
位相差は120°に設定されている。
In FIG. 1, reference numeral 1 denotes an engine for a three-cylinder, two-stroke outboard motor having a vertically mounted crankshaft, in which a piston 3 is slidably disposed in a cylinder bore 3a of a cylinder block 2, and the piston 3 is connected to a connecting rod. 4 is connected to the crankshaft 5. In the AA cross section in FIG. 1, indicates a cylinder number, and the phase difference between the cylinders is set to 120 °.

【0018】上記シリンダブロック2の合面にはシリン
ダヘッド6が装着されており、該シリンダヘッド6に形
成された燃焼凹部内には点火プラグ7が挿入されてい
る。なお、2aは排気ポート、2bは掃気ポートであ
る。上記シリンダヘッド6には筒内圧を測定するための
圧力センサ31が装着され、上記クランク軸5にはクラ
ンク角度(エンジン回転数)を検出するための角度セン
サ33が設けられている。上記シリンダブロック2の反
ヘッド側にはクランク室8が設けられている。該クラン
ク室8には吸気温または機関の温度を測定するための温
度センサ32と、クランク室内圧を測定するための圧力
センサ34とが設けられている。
A cylinder head 6 is mounted on the mating surface of the cylinder block 2, and a spark plug 7 is inserted into a combustion recess formed in the cylinder head 6. 2a is an exhaust port and 2b is a scavenging port. The cylinder head 6 is provided with a pressure sensor 31 for measuring an in-cylinder pressure, and the crankshaft 5 is provided with an angle sensor 33 for detecting a crank angle (engine speed). A crank chamber 8 is provided on the side of the cylinder block 2 opposite to the head. The crank chamber 8 is provided with a temperature sensor 32 for measuring intake air temperature or engine temperature, and a pressure sensor 34 for measuring crank chamber pressure.

【0019】また番気筒(他方の気筒)と番気筒
(一方の気筒)との間にはバイパス通路(検出通路)4
0が配設されており、該通路40の途中部分に、既燃ガ
スの空燃比を検出するためのO2 センサ35が設けられ
ている。この場合、図2に示すように、上記バイパス通
路40の導入口65は、番気筒の排気ポート2aの開
タインミング位置H1と掃気ポート2bの開タイミング
位置H2との間に、例えば排気ポート2aと同時に開閉
されるように配設されている。また、上記通路40の排
出口68は、番気筒の上記排気ポート2aの閉タイミ
ング位置H1より進角側(下死点側)位置に、例えば掃
気ポート2bの開直前に開き、閉直後に閉じるように配
設されており、上記各導入口65,排出口68はそれぞ
れの気筒のピストン3により開閉される。
A bypass passage (detection passage) 4 is provided between the numbered cylinder (the other cylinder) and the numbered cylinder (one cylinder).
0 is provided, and an O 2 sensor 35 for detecting the air-fuel ratio of the burned gas is provided at an intermediate portion of the passage 40. In this case, as shown in FIG. 2, the introduction port 65 of the bypass passage 40 is connected between the opening timing position H1 of the exhaust port 2a of the cylinder No. and the opening timing position H2 of the scavenging port 2b, for example, with the exhaust port 2a. It is arranged to be opened and closed at the same time. The discharge port 68 of the passage 40 opens at a position advanced (closed to the bottom dead center) from the closing timing position H1 of the exhaust port 2a of the cylinder No., for example, immediately before the scavenging port 2b opens, and closes immediately after the closing. The inlet 65 and the outlet 68 are opened and closed by the pistons 3 of the respective cylinders.

【0020】ここで、図3に示すように、番気筒のシ
リンダ内圧力P2と、番気筒のシリンダ内圧力P1と
は、両気筒の位相差 120°をもって変動する。また上記
導入口65は、番気筒において、上記排気ポート2a
の開タインミングクランク角Aから閉タイミングクラン
ク角Bまで開となる。一方、上記排出口68は、番気
筒の掃気ポート2bの開タイミングクランク角(図示せ
ず)から閉タイミング直後クランク角Dまで開となる。
従って、上記導入口65と排出口68とは上記クランク
角A〜Dの期間は同時に開き、この間は圧力差によって
ガスが番気筒から番気筒に向かって流動する。な
お、符号Eは番気筒の排気ポート2aの閉タイミング
クランク角を示す。
Here, as shown in FIG. 3, the in-cylinder pressure P2 of the numbered cylinder and the in-cylinder pressure P1 of the numbered cylinder fluctuate with a phase difference of 120 ° between the two cylinders. In addition, the introduction port 65 is connected to the exhaust port 2a in the cylinder number.
From the open timing crank angle A to the close timing crank angle B. On the other hand, the discharge port 68 is opened from the open timing crank angle (not shown) of the scavenging port 2b of the cylinder No. to the crank angle D immediately after the close timing.
Therefore, the inlet port 65 and the outlet port 68 are simultaneously opened during the period of the crank angles A to D, and during this time, the gas flows from the cylinder number to the cylinder number due to the pressure difference. The symbol E indicates a closing timing crank angle of the exhaust port 2a of the cylinder number.

【0021】ここで上記導入口65を番気筒の排気ポ
ート2aと掃気ポート2bとの間に配置したのは排気ポ
ート2aより上死点側に配置すると、番気筒の圧縮過
程で、圧縮されるべき新気が上記通路40を通って逃
げ、圧縮効率が低下してしまうからである。また、掃気
ポート2bより下死点側に配置すると導入口65と排出
口68が同時に開き、既燃ガスが番気筒から番気筒
に向かって流れる期間が短くなってしまうからである。
Here, when the inlet port 65 is disposed between the exhaust port 2a and the scavenging port 2b of the cylinder No. 2 when it is disposed closer to the top dead center than the exhaust port 2a, it is compressed in the compression process of the cylinder No. 2. This is because the fresh air to be escaped through the passage 40, and the compression efficiency is reduced. In addition, if it is located closer to the bottom dead center than the scavenging port 2b, the introduction port 65 and the discharge port 68 are opened at the same time, and the period during which the burned gas flows from the cylinder number to the cylinder number becomes shorter.

【0022】通路40の導入口65,排出口68の位置
を上述のように設定したので、番気筒のピストン3に
よって導入口65が排気行程開始直後に開いたときに
は、番気筒の流出口68は圧縮行程開始直前位置に位
置するピストン3によってまだ開いているので、上記導
入口65の開と同時に、番気筒及び番気筒間のシリ
ンダ内圧力の圧力差によって、番気筒内の既燃ガスが
導入口65から排出口68へ向かって上記通路40内を
流れ、上記センサ35がこの既燃ガスの中の酸素量を測
定する。なお、排出口68が、番気筒において掃気ポ
ート2bが開く直前に閉じるので、上記通路40内を流
れる既燃ガス中に吹き抜け新気が含まれない。このた
め、上記センサ35は、吹き抜け新気を含まない既燃ガ
ス中の酸素量を測定でき、吹き抜け新気を含まない既燃
ガスの空燃比を検出できる。
Since the positions of the inlet 65 and the outlet 68 of the passage 40 are set as described above, when the inlet 65 is opened immediately after the start of the exhaust stroke by the piston 3 of the numbered cylinder, the outlet 68 of the numbered cylinder is closed. Since the piston 3 is still opened by the piston 3 located immediately before the start of the compression stroke, the burned gas in the cylinder number is introduced by the pressure difference between the cylinder number and the cylinder pressure between the cylinder numbers simultaneously with the opening of the introduction port 65. The gas flows through the passage 40 from the port 65 to the discharge port 68, and the sensor 35 measures the amount of oxygen in the burned gas. Since the discharge port 68 is closed immediately before the scavenging port 2b is opened in the cylinder No., the burned gas flowing through the passage 40 does not include blow-through fresh air. Therefore, the sensor 35 can measure the amount of oxygen in the burned gas that does not include the blow-by fresh air, and can detect the air-fuel ratio of the burned gas that does not include the blow-by fresh air.

【0023】また、上記通路40は絞り部がない均一径
に形成されているので、船外機のトローリング運転時の
ようなエンジン1の極低速運転時に、不完全燃焼によっ
てカーボンやスラッジ等が発生しても、これらのカーボ
ン等によって上記通路40内が閉塞されることはない。
Further, since the passage 40 is formed to have a uniform diameter without a constricted portion, carbon or sludge is generated due to incomplete combustion when the engine 1 is operated at an extremely low speed such as a trolling operation of the outboard motor. Even so, the inside of the passage 40 is not blocked by the carbon or the like.

【0024】更に、上記通路40の導入口65,排出口
68は番気筒,番気筒のそれぞれのピストン3によ
り開閉操作され、上述のようにクランク角A〜Dの期間
のみ同時に開くようになっており、つまりいずれかの開
口がほとんど常時閉じているので、導入口65又は排出
口68から上記通路40内へいずれかの気筒内の既燃ガ
スが逆流することはない。
Further, the inlet port 65 and the discharge port 68 of the passage 40 are opened and closed by the respective pistons 3 of the cylinder No. and cylinder No. 2, and are simultaneously opened only during the crank angles A to D as described above. That is, since one of the openings is almost always closed, the burned gas in any one of the cylinders does not flow backward from the inlet 65 or the outlet 68 into the passage 40.

【0025】また、上記通路40はシンプルな構成であ
るため、流体抵抗が少なく、このため、例えば過度運転
時においてもサイクル毎の空燃比を検出でき、過度運転
時に最適な空燃比制御が実施できる。
Further, since the passage 40 has a simple structure, the fluid resistance is small, and therefore, for example, the air-fuel ratio for each cycle can be detected even during excessive operation, and the optimal air-fuel ratio control can be performed during excessive operation. .

【0026】なお、上記実施例ではエンジン1が3気筒
2サイクルエンジンの場合を説明したが、各気筒間に位
相差があり、上記通路40の導入口65,排出口68を
適切なタイミング位置に配置できれば良いので、V型4
気筒あるいはV型6気筒の2サイクルエンジンについて
も適用できる。
In the above embodiment, the case where the engine 1 is a three-cylinder two-stroke engine has been described. However, since there is a phase difference between the cylinders, the inlet 65 and the outlet 68 of the passage 40 are set at appropriate timing positions. V type 4
The present invention is also applicable to a two-stroke engine of a cylinder or a V-type six cylinder.

【0027】また、上記O2 センサ35の出力は、図4
の特性線7−1に示すように、A/Fが理論空燃比近傍
のa〜bのときにa´〜b´となる。本実施例では、目
標A/F値をエンジン運転状態に応じて上記(a〜b)
の範囲で可変制御するものである。なお、上記O2 セン
サとして図4の特性線7−2に示すような直線的な出力
特性を備えるリニア型のセンサを用いても良い。このリ
ニヤ型センサを用いた場合には目標A/Fの可変範囲を
大幅に拡大できる。
The output of the O 2 sensor 35 is shown in FIG.
As shown by the characteristic line 7-1, when A / F is ab near the stoichiometric air-fuel ratio, a'b 'is obtained. In the present embodiment, the target A / F value is set in accordance with the above (a to b) according to the engine operating state.
Is variably controlled within the range. Note that a linear sensor having a linear output characteristic as shown by a characteristic line 7-2 in FIG. 4 may be used as the O 2 sensor. When this linear sensor is used, the variable range of the target A / F can be greatly expanded.

【0028】上記各クランク室8には吸気通路10がシ
リンダボア3aを介して連通するようにそれぞれ接続さ
れている。該各吸気通路10のクランク室側開口近傍に
は、吸気の逆流を防止するためのリードバルブ11が配
設されている。また上記各吸気通路10には該吸気通路
内に燃料を噴射するためのインジェクタ12が装着され
ており、該インジェクタ12には燃料供給装置13が接
続されている。なお、インジェクタを全気筒共通として
もよい。この場合には吸気マニホールドの集合部に設け
ることになる。また上記吸気通路10内にはスロットル
バルブ15が配設されており、該スロットルバルブ15
の回転量すなわちスロットル角はセンサ41により検出
されるようになっている。さらに船外機本体50には、
トリム角βを検出するためのトリム角検出センサ42が
設けられている。
An intake passage 10 is connected to each of the crank chambers 8 through a cylinder bore 3a. A reed valve 11 for preventing backflow of the intake air is disposed near the opening of the intake passage 10 near the crank chamber. Each of the intake passages 10 is provided with an injector 12 for injecting fuel into the intake passage, and a fuel supply device 13 is connected to the injector 12. The injector may be common to all cylinders. In this case, it is provided at the gathering portion of the intake manifold. A throttle valve 15 is provided in the intake passage 10.
, Ie, the throttle angle is detected by the sensor 41. Further, the outboard motor body 50 includes:
A trim angle detection sensor 42 for detecting the trim angle β is provided.

【0029】上記エンジン1は制御部としてのECU3
0を備えている。該ECU30には、上記筒内圧検出セ
ンサ31,吸気温検出センサ32,クランク角度検出セ
ンサ33,クランク室内圧検出センサ34,O2 センサ
35,背圧検出センサ36,エンジン温度検出センサ3
7,スロットル角検出センサ41,大気圧検出センサ,
シフトスイッチ,冷却水温度検出センサ,及びエンジン
振動センサの各検出信号が入力されている。
The engine 1 includes an ECU 3 as a control unit.
0 is provided. The said ECU 30, the cylinder pressure sensor 31, intake air temperature detection sensor 32, a crank angle sensor 33, the crank chamber pressure detecting sensor 34, O 2 sensor 35, the back pressure detecting sensor 36, an engine temperature sensor 3
7, throttle angle detection sensor 41, atmospheric pressure detection sensor,
Each detection signal of the shift switch, the cooling water temperature detection sensor, and the engine vibration sensor is input.

【0030】上記ECU30は、図7に示すように、燃
料噴射幅を制御するための制御係数を目標空燃比と検出
空燃比との差及びエンジンの運転状態に応じて設定する
制御係数演算手段71として機能するとともに、上記O
2 センサ35からの検出値(空燃比)が上記目標空燃比
となるように上記制御係数でもって燃料噴射弁12から
の燃料噴射量をフィードバック制御する帰還制御手段6
0として機能する。そして、上記ECU30には、図6
に示すエンジン回転数とフィードバック係数(IA,I
B)との関係を示す特性図がマップデータとして格納さ
れている。ここで、上記フィードバック係数IAは、検
出A/Fが目標A/Fに達する前における収束前フィー
ドバック係数を、IBは検出A/Fが目標A/Fに一旦
達した後の収束後フィードバック係数を表し、IAはI
Bより大きく設定されている。またフィードバック係数
IA,IBは図6に示すように、エンジン回転数が低い
ほど大きく、高いほど小さくなるよう設定されている。
なお、検出A/Fと目標A/Fとの差が所定値以上の場
合は収束前フィードバック係数IAを採用し、所定値未
満の場合は収束後フィードバック係数IBを採用するよ
うにしても良い。
As shown in FIG. 7, the ECU 30 sets a control coefficient for controlling the fuel injection width in accordance with the difference between the target air-fuel ratio and the detected air-fuel ratio and the operating state of the engine. As well as O
2 Feedback control means 6 for feedback-controlling the fuel injection amount from the fuel injection valve 12 with the control coefficient so that the detection value (air-fuel ratio) from the sensor 35 becomes the target air-fuel ratio.
Functions as 0. Then, the ECU 30 has the configuration shown in FIG.
Engine speed and feedback coefficient (IA, I
A characteristic diagram showing the relationship with B) is stored as map data. Here, the feedback coefficient IA is a feedback coefficient before convergence before the detected A / F reaches the target A / F, and IB is a post-convergence feedback coefficient after the detected A / F once reaches the target A / F. Where IA is I
B is set larger than B. As shown in FIG. 6, the feedback coefficients IA and IB are set so as to increase as the engine speed decreases and to decrease as the engine speed increases.
When the difference between the detected A / F and the target A / F is equal to or more than a predetermined value, the pre-convergence feedback coefficient IA may be employed, and when the difference is less than the predetermined value, the post-convergence feedback coefficient IB may be employed.

【0031】次に、本実施例の動作を図5に基づいて説
明する。本実施例装置では、上記O2 センサ35の検出
値から混合気のA/F値が求められ、該A/F値が目標
A/F値に最初に達するまでは、図6の収束前フィード
バック係数IAの変化を示す特性曲線に基づいてエンジ
ン回転数に応じたフィードバック係数が演算される。そ
して、上記求められたA/F値が目標A/F値に最初に
到達した後は、上記IAより小さい変化量を有する収束
後フィードバック係数IBの特性曲線より上記同様に制
御係数が演算される。
Next, the operation of this embodiment will be described with reference to FIG. In the present embodiment, the A / F value of the air-fuel mixture is obtained from the detection value of the O 2 sensor 35, and the feedback before convergence shown in FIG. 6 is performed until the A / F value first reaches the target A / F value. A feedback coefficient corresponding to the engine speed is calculated based on a characteristic curve indicating a change in the coefficient IA. After the calculated A / F value reaches the target A / F value for the first time, the control coefficient is calculated in the same manner as described above from the characteristic curve of the post-convergence feedback coefficient IB having a smaller change amount than the IA. .

【0032】詳細には、図5に示すように、エンジン始
動時の始動時増量,あるいは加速時増量等により空燃比
が大きくリッチ側にあるときにフィードバック制御が開
始された場合には、上記収束前フィードバック係数IA
に示す大きな制御係数でもって帰還制御を行い、燃料噴
射量を大幅に減少させて、検出A/F値を目標A/F値
に速やかに収束させる。そして、該目標A/F値に到達
後は、上記IAより小さい収束後フィードバック係数I
Bでもって上記燃料噴射量を帰還制御して、小さい変動
幅で上記目標空燃比に安定させる。なお、このフィード
バック制御では、リッチ側から目標A/Fに達すると燃
料噴射幅を一気に増加させる一方、リーン側から目標A
/Fに達すると燃料噴射幅を一気に減少させる、いわゆ
るPI制御をしている。
More specifically, as shown in FIG. 5, when feedback control is started when the air-fuel ratio is large and rich due to an increase in engine start-up amount or an increase in acceleration time, the convergence occurs. Previous feedback coefficient IA
The feedback control is performed using the large control coefficient shown in (1), the fuel injection amount is greatly reduced, and the detected A / F value quickly converges to the target A / F value. After reaching the target A / F value, the post-convergence feedback coefficient I smaller than the IA
In B, the fuel injection amount is feedback-controlled to stabilize the target air-fuel ratio with a small fluctuation width. In this feedback control, when the target A / F is reached from the rich side, the fuel injection width is increased at once, while the target A / F is increased from the lean side.
When / F is reached, the fuel injection width is reduced at once, so-called PI control is performed.

【0033】このように、本実施例では、始動後,加速
後等においてフィードバック制御が開始された場合のよ
うな、検出空燃比と目標空燃比との差が大きい時には制
御係数を大きく設定するよう構成したので、上記差が大
きいときには燃料噴射量を大きく変化させて、上記検出
空燃比を目標空燃比に短時間で収束させることができ
る。また、該収束後は、上記制御係数を小さく設定した
ので、小さい変化量でもって燃料噴射量を制御でき、も
ってA/F値の安定性を向上できる。
As described above, in this embodiment, when the difference between the detected air-fuel ratio and the target air-fuel ratio is large, such as when feedback control is started after starting, after acceleration, or the like, the control coefficient is set large. With this configuration, when the difference is large, the fuel injection amount can be largely changed to converge the detected air-fuel ratio to the target air-fuel ratio in a short time. After the convergence, the control coefficient is set small, so that the fuel injection amount can be controlled with a small change amount, and thus the stability of the A / F value can be improved.

【0034】また、上記制御係数をエンジン回転数が低
いほど大きく、高いほど小さく設定するようにしたの
で、エンジン回転数が低いときに、O2 センサ35に供
給される採取ガス量が減少することにより上記センサ3
5の応答性が低下することによるA/Fの収束遅れ,ハ
ンチングを回避でき、また、エンジン回転数が高いとき
に、上記センサ35に供給される採取ガス量が増加して
上記センサ35の応答性が高い場合に燃料量の変化が過
剰になることを回避できる。
Further, since the control coefficient is set to be larger as the engine speed is lower, and set smaller as the engine speed is higher, the amount of sampled gas supplied to the O 2 sensor 35 decreases when the engine speed is low. The above sensor 3
5, the convergence delay and hunting of the A / F due to the decrease in the responsiveness of the sensor 35 can be avoided, and when the engine speed is high, the amount of sampled gas supplied to the sensor 35 increases and the response of the sensor 35 increases. When the performance is high, it is possible to avoid an excessive change in the fuel amount.

【0035】また、上記O2 センサ35を上記検出通路
40に配設したので、既燃ガスのみの空燃比を正確に検
出することができ、もってフィードバック制御の精度を
向上することができる。
Further, since the O 2 sensor 35 is disposed in the detection passage 40, the air-fuel ratio of only the burned gas can be accurately detected, so that the accuracy of the feedback control can be improved.

【0036】ここで、上記実施例では、フィードバック
係数Iの大きさを収束前と後とで変化させるようにした
が、フィードバック係数Pを変化させるようにしても良
い。具体的には、図8に示すように、フィードバック開
始時に検出A/F値が目標A/F値に最初に達するまで
は、燃料噴射幅を収束前フィードバック係数PAだけ一
気に減少させ、その後一定のフィードバック係数Iの割
合で減少させる。そして、検出A/F値が上記目標A/
F値に到達(収束)後は、該目標値より大幅に離れるこ
とのないように、上記収束前フィードバック係数PAよ
り小さい収束後フィードバック係数PBでもって燃料噴
射幅を一気に増加させる。この場合、上記PA,PB
は、図9に示すように、エンジン回転数が低いほど大き
く設定される。なお、図8においてフィードバック係数
Iは収束前,収束後のいずれの領域においても同じであ
る。
Although the magnitude of the feedback coefficient I is changed before and after convergence in the above embodiment, the feedback coefficient P may be changed. Specifically, as shown in FIG. 8, until the detected A / F value reaches the target A / F value for the first time at the start of feedback, the fuel injection width is reduced at once by the pre-convergence feedback coefficient PA, and thereafter, the fuel injection width is fixed. It is reduced at the rate of the feedback coefficient I. The detected A / F value is equal to the target A / F.
After the F value has been reached (converged), the fuel injection width is increased at a stretch with a post-convergence feedback coefficient PB smaller than the pre-convergence feedback coefficient PA so as not to deviate significantly from the target value. In this case, the above PA, PB
Is set higher as the engine speed is lower, as shown in FIG. In FIG. 8, the feedback coefficient I is the same in both regions before and after convergence.

【0037】また、上記実施例では、制御係数P,Iの
いずれか一方のみを検出A/Fと目標A/Fとの差に応
じて変化させたが、この両制御係数P,Iを同時に変化
させても良く、このようにすればより一層収束時間を短
縮できるとともにA/Fのハンチングを防止できる。
In the above embodiment, only one of the control coefficients P and I is changed according to the difference between the detected A / F and the target A / F. The convergence time can be further reduced, and the hunting of the A / F can be prevented.

【0038】なお、上記実施例では、一方の気筒と他方
の気筒を連通する検出通路の途中にO2 センサを設けた
場合を示したが、これ以外のO2 センサの設置方法も採
用可能である。すなわち、2番気筒に連結された通路の
一端を、該通路の断面積よりも大きな断面積を有する蓄
圧室に連結し、この蓄圧室にO2 センサを臨ませ、蓄圧
室内に蓄えられた既燃ガスの酸素濃度を検出する方法が
採用できる。ここで蓄圧室に導かれた既燃ガスを排出す
る通路の設け方としては、他気筒に接続する、排気
通路に接続する、既燃ガスが入ってくる入口側通路を
そのまま使い、自気筒(2番気筒)に戻す、等の方法が
採用できる。このようにすることによって、排出通路を
設ける自由度、すなわちレイアウトの自由度を拡大でき
る。
[0038] In the above embodiment, although the case in which the O 2 sensor in the middle of the detection path communicating one cylinder and the other cylinder, the method can also be employed placed in other O 2 sensor is there. In other words, already the one end of the passageway connected to the second cylinder, connected to the accumulator chamber having a larger cross-sectional area than the cross-sectional area of the passage, to face the O 2 sensor in the accumulator, which accumulated in the accumulation chamber A method of detecting the oxygen concentration of the combustion gas can be adopted. Here, the way of providing a passage for discharging the burned gas led to the accumulator chamber is as follows. The cylinder is connected to another cylinder, connected to the exhaust passage, and the inlet passage through which the burned gas enters. (The second cylinder). By doing so, the degree of freedom in providing the discharge passage, that is, the degree of freedom in layout can be increased.

【0039】[0039]

【発明の効果】以上のように請求項1の発明に係る2サ
イクルエンジンの燃焼制御装置では、検出空燃比と目標
空燃比との差が所定値以上のときには、該差が所定範囲
内にあるときより制御係数を大きく設定するように構成
したので、検出A/F値の収束時間を短縮できる効果が
あるとともに、収束後のA/Fの安定性を向上し、ハン
チングを防止できる効果がある。
As described above, in the combustion control device for a two-stroke engine according to the first aspect of the present invention, when the difference between the detected air-fuel ratio and the target air-fuel ratio is equal to or greater than a predetermined value, the difference is within a predetermined range. Since the control coefficient is set to be larger than usual, there is an effect that the convergence time of the detected A / F value can be shortened, and there is an effect that the stability of the A / F after convergence is improved and hunting can be prevented. .

【0040】また、収束前,収束後制御係数をエンジン
回転数が低いほど大きく、高いほど小さく設定するよう
にしたので、エンジン回転数が低いときにセンサの応答
性が低下することに起因する収束時間の延長,ハンチン
グを回避できる効果があり、また上記回転数が高い時に
センサの応答性が高い場合の燃料変化量の過剰に起因す
るA/Fのハンチングを回避できる効果がある。
Further, since the control coefficients before and after convergence are set to be larger as the engine speed is lower and smaller as the engine speed is higher, the convergence caused by a decrease in the response of the sensor when the engine speed is low is set. This has the effect of avoiding the extension of time and hunting, and the effect of avoiding hunting of the A / F caused by excessive fuel change when the response of the sensor is high when the rotation speed is high.

【0041】請求項2の発明の2サイクルエンジンの燃
焼制御装置では、位相差を有する一方,他方の気筒を、
一方が排気行程開始時で、他方が圧縮行程開始前の所定
期間のみ連通する検出通路で接続し、該検出通路の途中
に、既燃ガスの酸素濃度を検出するO2 センサを設けた
ので、吹き抜け新気を含まない既燃ガスのみの空燃比を
検出できる効果があり、もって上記既燃ガスのみの空燃
比によりフィードバック制御することでエンジンの運転
状態を常に安定化できる効果がある。
In the combustion control device for a two-stroke engine according to the second aspect of the invention, one of the cylinders having a phase difference is
One is at the start the exhaust stroke, the other is connected by detecting passage communicating only a predetermined period before starting the compression stroke, in the middle of the detection passage, is provided with the O 2 sensor for detecting the oxygen concentration in the burnt gas, There is an effect that the air-fuel ratio of only the burned gas that does not include the blow-by fresh air can be detected. Thus, the feedback control based on the air-fuel ratio of only the burned gas has an effect that the operation state of the engine can always be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による2サイクルエンジンの
燃焼制御装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a combustion control device of a two-cycle engine according to one embodiment of the present invention.

【図2】上記実施例装置の検出通路の取り付け位置を説
明するための模式図である。
FIG. 2 is a schematic diagram for explaining a mounting position of a detection passage of the apparatus of the embodiment.

【図3】上記実施例装置の,気筒クランク角度,筒
内圧及び検出通路の開閉の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship among a cylinder crank angle, an in-cylinder pressure, and the opening and closing of a detection passage in the apparatus of the embodiment.

【図4】上記実施例装置のA/F値とO2 センサ出力値
の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between an A / F value and an O 2 sensor output value of the apparatus of the embodiment.

【図5】上記実施例装置の検出A/F値と燃料噴射幅
(フィードバック係数)との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a detected A / F value and a fuel injection width (feedback coefficient) of the embodiment device.

【図6】上記実施例装置のエンジン回転数とフィードバ
ック係数との関係を示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between an engine speed and a feedback coefficient of the embodiment device.

【図7】上記実施例装置の機能ブロック図である。FIG. 7 is a functional block diagram of the device of the embodiment.

【図8】上記実施例装置の検出A/F値と燃料噴射幅
(フィードバック係数)との関係の変形例を示す特性図
である。
FIG. 8 is a characteristic diagram showing a modified example of the relationship between the detected A / F value and the fuel injection width (feedback coefficient) of the embodiment device.

【図9】上記変形例のエンジン回転数とフィードバック
係数との関係を示す特性図である。
FIG. 9 is a characteristic diagram illustrating a relationship between an engine speed and a feedback coefficient according to the modification.

【符号の説明】[Explanation of symbols]

1 2サイクルエンジン 2a 排気ポート 2b 掃気ポート 30 ECU(制御係数演算手段,帰還制御手段) 35 O2 センサ(空燃比検出手段) 40 検出通路 65 導入口 68 排出口 一方の気筒 他方の気筒1 Two-cycle engine 2a Exhaust port 2b Scavenging port 30 ECU (control coefficient calculating means, feedback control means) 35 O 2 sensor (air-fuel ratio detecting means) 40 Detection passage 65 Inlet port 68 Discharge port One cylinder The other cylinder

フロントページの続き (56)参考文献 特開 昭63−21342(JP,A) 特開 平2−75738(JP,A) 特開 昭60−50242(JP,A) 特開 昭58−48741(JP,A) 特開 平4−81538(JP,A) 特開 昭57−73840(JP,A) 特開 昭63−314341(JP,A) 特開 昭60−198348(JP,A) 特開 平3−117644(JP,A) 特開 平3−117645(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 Continuation of the front page (56) References JP-A-63-21342 (JP, A) JP-A-2-75738 (JP, A) JP-A-60-50242 (JP, A) JP-A-58-48741 (JP) JP-A-4-81538 (JP, A) JP-A-57-73840 (JP, A) JP-A-63-314341 (JP, A) JP-A-60-198348 (JP, A) 3-117644 (JP, A) JP-A-3-117645 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02D 41/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2サイクルエンジンの燃焼制御装置にお
いて、既燃ガスの性状から混合気の空燃比を求める空燃
比検出手段と、フィードバック制御における制御係数
を、検出空燃比が目標空燃比より所定値以上ずれている
ときの収束前制御係数と、検出空燃比が目標空燃比近傍
の所定範囲内にあるときの収束後制御係数とに区分する
とともに、収束前制御係数を収束後制御係数より大きく
設定し、かつ収束前制御係数及び収束後制御係数をエン
ジン回転数が低いほど大きく、高いほど小さく設定する
制御係数演算手段と、上記空燃比検出手段によって求め
られた空燃比が目標空燃比と一致するように、上記制御
係数演算手段によって求められた制御係数でもって燃料
供給量をフィードバック制御する帰還制御手段とを備え
たことを特徴とする2サイクルエンジンの燃焼制御装
置。
An air-fuel ratio detecting means for obtaining an air-fuel ratio of an air-fuel mixture from properties of burned gas, a control coefficient in feedback control, and a detected air-fuel ratio being a predetermined value from a target air-fuel ratio. The pre-convergence control coefficient is divided into a pre-convergence control coefficient when the detected air-fuel ratio is within a predetermined range near the target air-fuel ratio, and the pre-convergence control coefficient is set to be larger than the post-convergence control coefficient. Control coefficients before and after convergence.
A control coefficient calculating means for setting the higher the gin rotation speed and a smaller value for the higher gin rotation speed, and a control coefficient calculated by the control coefficient calculating means such that the air-fuel ratio obtained by the air-fuel ratio detecting means coincides with the target air-fuel ratio. A combustion control device for a two-stroke engine, comprising: feedback control means for performing feedback control of a fuel supply amount using a coefficient.
【請求項2】 請求項1において、上記空燃比検出手段
が、既燃ガスの酸素濃度を検出するO2 センサを有して
おり、該O2 センサは位相差を有する一方の気筒と他方
の気筒とを連通する検出通路の途中に介設されており、
該検出通路の導入口は上記一方の気筒の排気ポートと掃
気ポートとの間に位置しており、排出口は上記他方の気
筒の上記排気ポートより下死点側に位置しており、上記
導入口,排出口が、一方の気筒の排気行程開始後の一定
期間と上記他方の気筒の圧縮行程開始前の一定期間とに
おいて同時に開き、この期間において一方の気筒内の既
燃ガスが他方の気筒に向かって流れるように上記位相差
が設定されていることを特徴とするエンジンの燃焼制御
装置。
2. An air-fuel ratio detecting means according to claim 1, wherein said air-fuel ratio detecting means has an O 2 sensor for detecting the oxygen concentration of the burned gas, and said O 2 sensor has one phase having a phase difference and the other having a phase difference. It is interposed in the middle of the detection passage communicating with the cylinder,
The inlet of the detection passage is located between the exhaust port and the scavenging port of the one cylinder, and the outlet is located at the bottom dead center side of the exhaust port of the other cylinder. The port and the discharge port are simultaneously opened during a certain period after the start of the exhaust stroke of one cylinder and during a certain period before the start of the compression stroke of the other cylinder, and during this period, the burned gas in one cylinder is released from the other cylinder. The combustion control device for an engine according to claim 1, wherein the phase difference is set so as to flow toward the engine.
JP14367094A 1994-06-24 1994-06-24 Combustion control device for two-cycle engine Expired - Lifetime JP3352819B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14367094A JP3352819B2 (en) 1994-06-24 1994-06-24 Combustion control device for two-cycle engine
US08/481,846 US5697353A (en) 1994-06-24 1995-06-07 Feedback engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14367094A JP3352819B2 (en) 1994-06-24 1994-06-24 Combustion control device for two-cycle engine

Publications (2)

Publication Number Publication Date
JPH0814086A JPH0814086A (en) 1996-01-16
JP3352819B2 true JP3352819B2 (en) 2002-12-03

Family

ID=15344212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14367094A Expired - Lifetime JP3352819B2 (en) 1994-06-24 1994-06-24 Combustion control device for two-cycle engine

Country Status (1)

Country Link
JP (1) JP3352819B2 (en)

Also Published As

Publication number Publication date
JPH0814086A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
JP3250475B2 (en) Control device for in-cylinder injection type internal combustion engine
JP3226720B2 (en) Combustion control device for two-cycle engine
JPH11182295A (en) Control device for cylinder fuel injection type engine
JP3248439B2 (en) Control device for in-cylinder injection type internal combustion engine
JP3924015B2 (en) Combustion control device for 2-cycle engine for outboard motor
JPH0814092A (en) Combustion control device for two-cycle engine
JPH08177471A (en) Two-cycle engine
JP3883231B2 (en) Engine operation control device
JPH0814093A (en) Starting control device for two-cycle engine
JPH11182289A (en) Control device for cylinder fuel injection type two-cycle engine
JP3614912B2 (en) Engine combustion control device
US6176217B1 (en) Fuel vapor processing apparatus and method of internal combustion engine
JP3352819B2 (en) Combustion control device for two-cycle engine
JP3559811B2 (en) Combustion control device for two-cycle engine
JP3621147B2 (en) Operation control device for fuel injection type 2-cycle engine for outboard motor
JPH11182291A (en) Control device for cylinder fuel injection engine
JP4170427B2 (en) Direct cylinder injection type 2-cycle engine
JPH11182282A (en) Control device for cylinder fuel injection type engine
US7404392B2 (en) Method and device for controlling an internal combustion engine
JP3437266B2 (en) Engine air-fuel ratio detector
JPH0814085A (en) Combustion control device for two-cycle engine
JPH1037769A (en) Two-cycle engine of intra-cylinder injection type
JP3426018B2 (en) Engine operation control device
JP2998346B2 (en) Engine fuel injection control system
JP2912420B2 (en) Port scavenging / fuel injection type 2-cycle engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020910

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10