JP3345538B2 - Electrolytic dressing grinding method and equipment - Google Patents

Electrolytic dressing grinding method and equipment

Info

Publication number
JP3345538B2
JP3345538B2 JP33857895A JP33857895A JP3345538B2 JP 3345538 B2 JP3345538 B2 JP 3345538B2 JP 33857895 A JP33857895 A JP 33857895A JP 33857895 A JP33857895 A JP 33857895A JP 3345538 B2 JP3345538 B2 JP 3345538B2
Authority
JP
Japan
Prior art keywords
grindstone
grinding
conductive
conductive film
electrolytic dressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33857895A
Other languages
Japanese (ja)
Other versions
JPH09174431A (en
Inventor
弘之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP33857895A priority Critical patent/JP3345538B2/en
Publication of JPH09174431A publication Critical patent/JPH09174431A/en
Application granted granted Critical
Publication of JP3345538B2 publication Critical patent/JP3345538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解ドレッシング
研削法及び装置に関し、より詳細には、鏡面仕上げ加工
時と粗加工時における導電性砥石表面の不導体皮膜を各
々の加工工程に適した安定かつ適正な状態を保って研削
する電解ドレッシング研削方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for electrolytic dressing grinding, and more particularly, to a method for stabilizing a nonconductive film on a conductive grindstone surface during a mirror finishing process and a roughing process suitable for each processing step. The present invention also relates to an electrolytic dressing grinding method and apparatus for grinding while maintaining an appropriate state.

【0002】[0002]

【従来の技術】研削加工においては、砥石の目つぶれや
目詰りによる研削抵抗の増加、あるいは被削材の焼き付
き等の現象が生じ、研削加工(以後、加工と記す)上の
問題となる。このような問題を解決するために、近年、
特開平1−188266号公報に示されるような導電性
砥石の電解ドレッシング(目立て)方法が実用化されて
いる。
2. Description of the Related Art In a grinding process, phenomena such as an increase in grinding resistance due to crushing or clogging of a grindstone or a seizure of a work material occur, which is a problem in grinding (hereinafter referred to as machining). In recent years, to solve such problems,
An electrolytic dressing (sharpening) method of a conductive grindstone as disclosed in JP-A-1-188266 has been put to practical use.

【0003】特開平1−188266号公報は、導電性
の砥石を正電極として該砥石と僅かに離間して負電極を
設け、正電極と負電極との間に研削加工液として水溶性
の導電性研削液を流しながら電極間に電圧を印加し、砥
石を電解により砥石の結合剤(ボンド材)を溶解し、ド
レッシングしながら加工する方法である。しかし、上述
のドレッシング方法では、電解による研削加工液や砥石
の成分が砥石の加工面に金属酸化物による不導体皮膜を
生成する。特に、鉄を主成分とするボンド材を使用した
砥石の場合、砥石の加工作用の及ぼす面に不導体皮膜を
生成した状態で加工が行われる。不導体皮膜は、ボンド
材の溶解を妨げられたりして、ドレッシングの効果が低
下するが、逆に、砥石表面に不導体皮膜のような緩衝材
がないと、鏡面研削仕上等の場合、砥石のボンド材と工
作物が直接接触し、加工荒れや焼き付きの現象が生ずる
という課題があった。
Japanese Patent Application Laid-Open No. Hei 1-188266 discloses that a conductive grinding wheel is used as a positive electrode, a negative electrode is provided slightly apart from the grinding wheel, and a water-soluble conductive material is used as a grinding fluid between the positive electrode and the negative electrode. In this method, a voltage is applied between the electrodes while flowing the abrasive grinding fluid, and the grindstone is processed by electrolysis to dissolve the binder (bond material) of the grindstone and dressing. However, in the above-mentioned dressing method, the grinding fluid and the components of the grindstone by electrolysis generate a non-conductive film of metal oxide on the work surface of the grindstone. In particular, in the case of a grindstone using a bonding material containing iron as a main component, the processing is performed in a state in which a nonconductive film is formed on the surface of the grindstone on which the processing action is exerted. The non-conductive film impedes the dissolution of the bond material and reduces the effect of dressing.On the contrary, if there is no buffer material such as a non-conductive film on the grindstone surface, the grindstone can be used for mirror finishing. However, there is a problem that the bonding material and the workpiece come into direct contact with each other, and the phenomenon of roughening and seizure occurs.

【0004】特開平4−164570号公報は、上記課
題に対して粗加工や仕上げ加工などの加工区分に応じ
て、不導体皮膜量を常に適正な状態に保つように研削液
中の不導体皮膜除去成分量を制御するという電解ドレッ
シング加工法に関するものであるが、該公報の中では、
粗加工から中仕上げ加工時には砥石表面に不導体皮膜を
生成させない方が得策で、鏡面仕上加工時には、砥石表
面を不導体皮膜で覆った方が良いという内容が記述され
ている。
Japanese Patent Application Laid-Open No. 4-164570 discloses a non-conductive film in a grinding fluid so that the amount of the non-conductive film is always kept in an appropriate state in accordance with the type of processing such as roughing and finishing. The present invention relates to an electrolytic dressing method of controlling the amount of a removed component.
It is described that it is advisable not to form a nonconductive film on the surface of the grindstone during rough processing to medium finishing processing, and it is better to cover the grindstone surface with a nonconductive film during mirror finishing.

【0005】[0005]

【発明が解決しようとする課題】本発明者の実験による
と、電解ドレッシング加工法による鏡面仕上げ加工にお
いては、表面粗さの小さい加工面を得るために、砥粒の
大きさとの関係において、不導体皮膜の働きが特に重要
であり、また、粗加工や中加工時にも、不導体皮膜の役
割は重要であり、不導体皮膜が生成されない場合は、被
削材と砥石母地が直接接触して、加工面は摩擦熱により
加熱され、黒く変色することが起ることが判明した。
According to the experiments of the present inventor, in the mirror finishing by the electrolytic dressing method, in order to obtain a machined surface having a small surface roughness, there is a problem in relation to the size of the abrasive grains. The function of the conductive film is particularly important, and the role of the nonconductive film is also important during roughing and medium processing.If a nonconductive film is not generated, the work material and the grinding wheel base contact directly. As a result, it was found that the processed surface was heated by frictional heat and turned black.

【0006】本発明は、鏡面仕上加工時や粗加工時に不
導体皮膜を安定で、かつ、適正な状態にすることで、電
解ドレッシング研削において、各加工工程に合った効果
を十分に得ること、すなわち、鏡面仕上げ加工において
は、表面粗さの小さい高品位な加工面を、また、粗加工
時には高能率な加工を安定して実現することを目的とす
る。
According to the present invention, it is possible to obtain an effect suitable for each processing step in electrolytic dressing grinding by making a nonconductive film stable and proper at the time of mirror finish processing or rough processing. That is, in the mirror finishing, it is an object to stably realize a high-quality processed surface having a small surface roughness and a highly efficient processing during the roughing.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、導電
性研削液の存在下で導電性砥石に電圧を印加し、該砥石
を電解によりドレッシングしながら加工する電解ドレッ
シング研削法において、前記電解により前記砥石の表面
に形成される前記不導体皮膜の厚さを、該不導体皮膜中
に保持されている砥粒径以上に保ちながら鏡面仕上げ加
工をするようにしたものである。
According to the present invention, there is provided an electrolytic dressing grinding method in which a voltage is applied to a conductive grindstone in the presence of a conductive grinding fluid, and the grindstone is processed while being dressed by electrolysis. Mirror finishing is performed while maintaining the thickness of the non-conductive film formed on the surface of the grindstone by electrolysis to be equal to or greater than the abrasive grain size held in the non-conductive film.

【0008】請求項2の発明は、請求項1の発明におい
て、前記砥石の表面に形成される不導体皮膜中に保持さ
れている砥粒の径を10μm以下とし、該10μm以下の
砥粒により鏡面仕上げ加工をするようにしたものであ
る。
According to a second aspect of the present invention, in the first aspect of the present invention, the diameter of the abrasive grains held in the non-conductive film formed on the surface of the grinding stone is set to 10 μm or less, and the diameter of the abrasive grains is set to 10 μm or less. The mirror finish processing is performed.

【0009】請求項3の発明は、導電性研削液の存在下
で導電性砥石に電圧を印加し、前記砥石を電解によりド
レッシングしながら加工をする電解ドレッシング研削法
において、前記電解により前記導電性砥石の表面に形成
される前記不導体皮膜の厚さを、該不導体皮膜中に保持
されている砥粒径以下に保ちながら粗加工するようにし
たものである。
A third aspect of the present invention is an electrolytic dressing grinding method in which a voltage is applied to a conductive grindstone in the presence of a conductive grinding fluid to perform processing while dressing the grindstone by electrolysis. The thickness of the non- conductive film formed on the surface of the grindstone is held in the non-conductive film.
Roughing is performed while keeping the abrasive grain size below the specified value.

【0010】請求項4の発明は、請求項3の発明におい
て、前記砥石の表面に形成された不導体皮膜の下の電解
作用が及んでいないボンド材の母地部分に保持されてい
る40μm以上の径の砥粒により粗加工するようにした
ものである。
[0010] In a fourth aspect of the present invention, in the third aspect of the present invention, 40 μm or more is held at a base portion of the bond material under the non-conductive film formed on the surface of the whetstone, which is not affected by the electrolytic action. Roughing is performed using abrasive grains having a diameter of

【0011】請求項5の発明は、請求項1乃至4の何れ
かに記載の発明において、前記導電性砥石の表面に形成
される前記不導体皮膜の厚さを常に一定になるように制
御しながら加工するようにしたものである。
According to a fifth aspect of the present invention, in the first aspect of the present invention, the thickness of the non-conductive film formed on the surface of the conductive grindstone is controlled to be always constant. It is designed to be processed while processing.

【0012】請求項6の発明は、請求項5の発明におい
て、前記導電性砥石の表面に形成される前記不導体皮膜
の厚さをモニタしながら電解の強さを制御して、研削加
工中における前記不導体皮膜の厚さを常に一定にするよ
うにしたものである。
According to a sixth aspect of the present invention, in the grinding process according to the fifth aspect of the present invention, the intensity of electrolysis is controlled while monitoring the thickness of the non-conductive film formed on the surface of the conductive grindstone. Wherein the thickness of the nonconductive film is always constant.

【0013】請求項7の発明は、請求項1乃至6の何れ
かに記載の発明において、前記導電性砥石の表面に形成
される不導体皮膜の下の母地の後退に合わせて、前記電
極を前記導電性砥石の方向に移動させ、電解用電極と前
記砥石母地の間隔を一定に保つようにしたものである。
According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the electrode is adjusted in accordance with the retreat of the base under the nonconductive film formed on the surface of the conductive grindstone. Is moved in the direction of the conductive grindstone so as to keep the distance between the electrode for electrolysis and the matrix of the grindstone constant.

【0014】請求項8の発明は、請求項7の発明におい
て、前記導電性砥石の表面に形成される前記不導体皮膜
の下の母地の後退量を、渦電流式の変位センサで測定し
たものである。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention, the amount of retreat of the base under the nonconductive film formed on the surface of the conductive grindstone is measured by an eddy current type displacement sensor. Things.

【0015】請求項9の発明は、請求項1乃至8の何れ
かに記載の発明において、前記電解ドレッシング研削法
に使用する導電性研削液中に含まれるハロゲンイオン濃
度の変化をモニタリングしながら、研削加工を行うよう
にしたものである。
According to a ninth aspect of the present invention, in the invention according to any one of the first to eighth aspects, while monitoring a change in the concentration of halogen ions contained in the conductive grinding fluid used in the electrolytic dressing grinding method, The grinding process is performed.

【0016】請求項10の発明は、請求項9の発明にお
いて、前記ハロゲンイオンをCl-イオンとし、該Cl-
イオン濃度を30ppm以下に保ちながら研削加工をする
ようにしたものである。
[0016] The invention of claim 10 is the invention of claim 9, said halide ion Cl - as an ion, the Cl -
Grinding is performed while maintaining the ion concentration at 30 ppm or less.

【0017】請求項11の発明は、前記請求項1乃至1
0のいずれかの電解ドレッシング研削法を使用する電解
ドレッシング研削装置であって、前記導電性砥石の表面
に形成される不導体皮膜下の母地の後退量を測定する渦
電流式の変位センサと、該変位センサの測定値に基づい
て、電解用電極と前記砥石との間隔を一定に保つ
ように、前記電極を前記砥石の方向に移動させる砥石駆
動手段を有したものである。
The invention according to claim 11 is the invention according to claim 1 to claim 1.
An electrolytic dressing grinding apparatus using any one of the electrolytic dressing grinding methods according to any one of (1) to (3), wherein an eddy current type displacement sensor for measuring a retreat amount of a base under a nonconductive film formed on a surface of the conductive grindstone; And a whetstone driving means for moving the electrode in the direction of the whetstone so as to keep the distance between the electrode for electrolysis and the base of the whetstone constant based on the measurement value of the displacement sensor.

【0018】[0018]

【発明の実施の形態】まず、本発明による電解ドレッシ
ング研削方法において、不導体皮膜の働きが特に重要で
あることを示す本発明者の実験を、砥石の構成の面から
説明する。図1は、鏡面仕上げ加工に好適な砥石を説明
するための砥石断面の概念図であり、図中、11は母
地、12は不導体皮膜、13は砥粒、14は加工作用面
である。
BEST MODE FOR CARRYING OUT THE INVENTION First, an experiment by the present inventor showing that the function of a non-conductive film is particularly important in the electrolytic dressing grinding method according to the present invention will be described in terms of the configuration of a grindstone. FIG. 1 is a conceptual diagram of a cross section of a grindstone for explaining a grindstone suitable for mirror finishing, in which 11 is a base, 12 is a non-conductive film, 13 is an abrasive grain, and 14 is a working surface. .

【0019】図1に示した砥石は、砥粒13を導電性で
磁性体のボンド材で固めた母地11と、電解により形成
されたボンド材の酸化による不導体皮膜12とからな
り、不導体皮膜12の表面には、砥粒13が突出して、
加工作用面14となっており、不導体皮膜12の厚さが
砥粒13の径よりも大きい鏡面仕上げ加工に用いられる
場合のものである。
The grindstone shown in FIG. 1 comprises a matrix 11 in which abrasive grains 13 are solidified with a conductive and magnetic bonding material, and a nonconductive film 12 formed by oxidation of a bonding material formed by electrolysis. Abrasive grains 13 protrude from the surface of conductive film 12,
It is a working surface 14 and is used for mirror finishing in which the thickness of the non-conductive film 12 is larger than the diameter of the abrasive grains 13.

【0020】図1に示した不導体皮膜12の厚さが砥粒
13の径より大きい砥石の砥粒により加工すると、表面
粗さの小さい加工面が得られ、鏡面仕上げ加工に好適で
ある。その理由は、不導体皮膜12は砥石母地11より
も強度が小さいため、砥粒13を保持する力が小さく、
13が母地11に保持されている時に比べて、加工
物に柔らかく作用しているため、不導体皮膜12が砥粒
径に対して厚く存在することで、目詰りが起こりやすい
砥石においても目詰まりが起こらなくなると考えられ
る。
When the thickness of the non-conductive film 12 shown in FIG. 1 is processed with abrasive grains of a grindstone larger than the diameter of the abrasive grains 13, a processed surface having a small surface roughness is obtained, which is suitable for mirror finishing. The reason is that the strength of the non-conductive film 12 is smaller than that of the grindstone base 11, so that the force holding the abrasive grains 13 is small,
Than when the abrasive grains 13 are held in the mother land 11, because it acts soften the workpiece by non-conductive coating 12 is present thicker than the abrasive particle diameter, the clogging tends to occur grindstone It is considered that clogging does not occur.

【0021】図2は、粗加工に好適な砥石を説明するた
めの砥石断面の概念図であり、図1と同じ作用をする部
分には、図1の場合と同じ参照番号を付してある。図2
に示した砥石は、母地11に保持されている砥粒13の
径が、不導体皮膜12の厚さよりも大きい場合のもの
で、砥粒13は、不導体皮膜12よりも硬度の大きい母
地11に保持されているので、粗加工時のように、高能
率な加工を実現するのに適している。この場合も不導体
皮膜12の役割は重要であり、この不導体皮膜12が存
在しないと被削材と砥石母地11が直接接触してしま
い、加工面が焼けて黒くなってしまうことが起こる。
FIG. 2 is a conceptual diagram of a grinding wheel cross section for explaining a grinding wheel suitable for rough machining. Parts having the same functions as those in FIG. 1 are denoted by the same reference numerals as in FIG. . FIG.
Is a case where the diameter of the abrasive grains 13 held on the matrix 11 is larger than the thickness of the non-conductive film 12, and the abrasive grains 13 have a larger hardness than the non-conductive film 12. Since it is held on the ground 11, it is suitable for realizing high-efficiency machining as in rough machining. Also in this case, the role of the non-conductive film 12 is important. If the non-conductive film 12 does not exist, the work material and the grindstone base 11 come into direct contact, and the work surface is burnt and blackened. .

【0022】また、本発明者の実験によると、加工中や
加工毎の不導体皮膜12の膜質のバラツキは、加工結果
に大きな影響を与えるので、このバラツキを小さく抑え
るために、研削液中のハロゲンイオンを管理することが
重要で、このハロゲンイオンが存在しないと、不導体皮
膜12が成長しにくく、また、ハロゲンイオンが多すぎ
ると、砥石の母地11との密着性が小さい不導体皮膜1
2が必要以上に厚く生成し、安定した加工が行えない。
さらに、不導体皮膜12の膜質を安定させるには、砥石
の母地11と電極との間隔を一定にして電解を安定させ
ることが大きな効果を及ぼすことが判明した。
Further, according to an experiment conducted by the present inventor, variations in the film quality of the non-conductive film 12 during and after processing greatly affect the processing results. It is important to control the halogen ions. If the halogen ions are not present, the non-conductive film 12 is difficult to grow, and if the halogen ions are too large, the non-conductive film has low adhesion to the base 11 of the grindstone. 1
2 is unnecessarily thick, and stable processing cannot be performed.
Further, it has been found that in order to stabilize the film quality of the non-conductive film 12, it is effective to stabilize the electrolysis by keeping the distance between the matrix 11 of the grindstone and the electrode constant.

【0023】図3は、本発明による電解ドレッシング研
削方法の実施の形態を説明するための実験に用いられた
電解ドレッシング研削装置であり、図中、1は砥石、2
は不導体皮膜、3は回転方向、4は光触針式変位計(レ
ーザ変位計)、5は渦電流式変位センサ、6はエアーガ
ン、7は電極、8は研削液供給ノズル、9は電源、10
はついたて(衝立)である。
FIG. 3 shows an electrolytic dressing grinding apparatus used in an experiment for explaining an embodiment of the electrolytic dressing grinding method according to the present invention.
Is a non-conductive film, 3 is a rotation direction, 4 is an optical stylus displacement meter (laser displacement meter), 5 is an eddy current displacement sensor, 6 is an air gun, 7 is an electrode, 8 is a grinding fluid supply nozzle, and 9 is a power supply. , 10
Is a screen.

【0024】図3に示した電解ドレッシング研削装置
は、砥石1は矢印3方向に回転駆動され、砥石1外側の
矢印3方向に下方から順次、渦電流式変位センサ5,研
削液供給ノズル8,電極7,エアーガン6,ついたて1
0,光触針式変位計4が配置されており、別置された直
流の電源9の正端子からはブラッシ(図示せず)等を介
して砥石1に接続され、電極7には負の端子が接続され
ている。
In the electrolytic dressing grinding apparatus shown in FIG. 3, the grinding wheel 1 is driven to rotate in the direction of arrow 3, and the eddy current displacement sensor 5, grinding fluid supply nozzle 8, Electrode 7, air gun 6, and 1
0, an optical stylus type displacement meter 4 is arranged, and a positive terminal of a separate DC power supply 9 is connected to the grindstone 1 through a brush (not shown) or the like, and a negative electrode is connected to the electrode 7. Terminal is connected.

【0025】砥石1と電極7とは、微小な間隙をもって
配置され、加工時には、この間隙に向けて研削液供給ノ
ズル8からハロゲンイオンを含む研削液が噴出され、電
解ドレッシング加工が施される。光触針式変位計4は、
砥石1の径変化を測定する変位計で、例えば、レーザ光
の干渉を利用したレーザ変位計である。ここで、砥石1
の径とは、不導体皮膜2を含む外側の径で、図1,2に
おける加工作用面14の径である。光触針式変位計4に
より、砥石径を測定する測定位置は乾燥していることが
必要であり、このために、光触針式変位計4の前方につ
いたて10とエアーガン6とが設けられている。なお、
図示の場合に対し、エアーガン6と、ついたて10の位
置を反対にしても測定部を乾燥することができる。
The grindstone 1 and the electrode 7 are arranged with a small gap, and at the time of machining, a grinding fluid containing halogen ions is jetted from the grinding fluid supply nozzle 8 toward this gap to perform electrolytic dressing. Optical stylus type displacement meter 4
This is a displacement gauge that measures a change in diameter of the grindstone 1, and is, for example, a laser displacement gauge that utilizes laser light interference. Here, whetstone 1
Is the diameter of the outside including the nonconductive film 2 and is the diameter of the working surface 14 in FIGS. It is necessary that the measuring position at which the grindstone diameter is measured by the optical stylus displacement meter 4 is dry. For this purpose, a front 10 of the optical stylus type displacement meter 4 and an air gun 6 are provided. ing. In addition,
In contrast to the case shown in the figure, the measurement unit can be dried even if the positions of the air gun 6 and the beam 10 are reversed.

【0026】一方、渦電流式の変位センサ5は、鉄系の
磁性ボンドの母地11の表面位置を渦電流の大きさで測
定する変位計で、電解作用が及んでいない導電性のある
部分の径を測定する。従って、光触針式変位計4の外径
測定値から渦電流式変位センサ5の母地径測定値を差し
引くと、不導体皮膜2の厚さを知ることができる。
On the other hand, the eddy current type displacement sensor 5 is a displacement meter for measuring the surface position of the base 11 of the iron-based magnetic bond by the magnitude of the eddy current, and has a conductive portion which is not affected by the electrolytic action. Measure the diameter of Therefore, the thickness of the non-conductive film 2 can be known by subtracting the measured value of the base diameter of the eddy current displacement sensor 5 from the measured value of the outer diameter of the optical stylus displacement meter 4.

【0027】次に、図3に示した電解ドレッシング研削
装置を用いて、鏡面加工を行う実施例について説明す
る。図3において、鏡面加工に使用する砥石1は、径が
10μm以下であるが、実験においては、6μm以下の砥
粒を使った鉄系ボンドのものとし、電解条件を60V,
20Aとし、初期ドレッシングにおいて、不導体皮膜2
の厚さを30μmとしてから、ステンレス鋼の加工を実
施する。電解により砥石1の母地が後退するので、渦電
流式変位センサ5の変位測定値が大きくなる。この変位
測定値に基づいて、母地の後退の大きさと等しい大きさ
だけ電極7の位置を砥石1側に前進して、母地と電極7
との間の距離を一定に保つ。
Next, an embodiment for performing mirror finishing using the electrolytic dressing grinding apparatus shown in FIG. 3 will be described. In FIG. 3, the grindstone 1 used for mirror finishing has a diameter of 10 μm or less, but in an experiment, an iron-based bond using abrasive grains of 6 μm or less was used.
20A, and in the initial dressing, the non-conductive film 2
After the thickness of the stainless steel is set to 30 μm, the stainless steel is processed. Since the base of the grinding wheel 1 retreats due to the electrolysis, the displacement measurement value of the eddy current displacement sensor 5 increases. Based on this displacement measurement value, the position of the electrode 7 is advanced toward the grindstone 1 by an amount equal to the amount of retreat of the base, and the base and the electrode 7 are moved forward.
And keep the distance between them constant.

【0028】また、研削液中のCl-(塩素イオン)の
濃度をモニタリングしてその濃度が30ppm以下になる
ように濃度を調整した研削液を補充、または、全体を交
換する。ここで、Cl- の濃度は急激に変わるものでは
ないので、必ずしも加工中に研削液を補充または交換す
る必要はない。しかし、このCl- の濃度は、加工を安
定させるために重要であり、試しにCl- 濃度を30pp
mから36ppmにCl-濃度が増加する方向に変化させた
時に、それまでと同じ加工条件,電解条件で加工をして
も、焼き付きが起こり、加工ができなかった。
Further, Cl grinding fluid - supplemented grinding fluid concentration by monitoring the concentration of (chlorine ions) and the concentration was adjusted so as to 30ppm or less, or to replace the entire. Here, Cl - since the concentration does not change rapidly, it is not always necessary to replenish or replace the grinding fluid during processing. However, this Cl - concentration is important for stabilizing the processing, Cl to try - 30Pp concentration
When the Cl - concentration was changed from m to 36 ppm in the direction in which the Cl - concentration increased, seizure occurred and processing could not be performed even when processing was performed under the same processing conditions and electrolytic conditions as before.

【0029】また、加工中に不導体皮膜2の厚さをモニ
タリングしているが、途中で切り込み深さが増加したた
めに、不導体皮膜2の厚さが小さくなった。このため、
電源9の電圧値をあげて不導体皮膜2の厚さを30μm
に保ち加工を続けた。加工後の結果として、表面粗さR
max=0.09μmが得られ、良好な鏡面の加工面が得ら
れた。
While the thickness of the nonconductive film 2 was monitored during processing, the thickness of the nonconductive film 2 was reduced due to an increase in the cutting depth on the way. For this reason,
Raise the voltage value of the power supply 9 and increase the thickness of the nonconductive film 2 to 30 μm.
And continued processing. As a result after processing, the surface roughness R
max = 0.09 μm was obtained, and a good mirror-finished surface was obtained.

【0030】次に、図3に示した電解ドレッシング研削
装置を用いて粗加工を行う実施例について説明する。図
3において、砥石1は、平均粒径100μm程度の砥粒
を使った鉄−ブロンズ系ボンドのもので、ジルコニアセ
ラミックスの粗加工を行う。電解条件は60V,10A
とする。切り込みは1mmとした。上述の鏡面加工の場合
と同じ方法で不導体皮膜2の厚さを測定する。不導体皮
膜2の厚さを20μmにして加工を行う。この不導体皮
膜2の厚さの値をパソコンで取り込み、不導体皮膜2の
厚さの値が20μmから変化したときに、パソコンから
の信号で電源9の電解条件を変えるようなシステムにし
ておく。また、加工中に砥石1の母地が後退するので、
砥石母地と電極7との間隔が平均砥粒径100μmより
も大きい一定の200μmとなるように電極7を移動さ
せながら加工を行った。目詰りのない安定な加工が実現
できた。
Next, an embodiment in which rough machining is performed using the electrolytic dressing grinding apparatus shown in FIG. 3 will be described. In FIG. 3, a grindstone 1 is an iron-bronze bond using abrasive grains having an average particle diameter of about 100 μm, and performs rough processing of zirconia ceramics. Electrolysis conditions are 60V, 10A
And The cut was 1 mm. The thickness of the nonconductive film 2 is measured by the same method as in the case of the above-mentioned mirror finishing. Processing is performed by setting the thickness of the nonconductive film 2 to 20 μm. The thickness value of the non-conductive film 2 is read by a personal computer, and when the thickness value of the non-conductive film 2 changes from 20 μm, a system for changing the electrolysis conditions of the power supply 9 by a signal from the personal computer is prepared. . Also, since the base of the whetstone 1 retreats during machining,
Processing was performed while moving the electrode 7 so that the distance between the grindstone base and the electrode 7 was a constant 200 μm, which was larger than the average abrasive particle diameter of 100 μm. Stable processing without clogging was realized.

【0031】[0031]

【発明の効果】請求項1に対応する効果:導電性研削液
の存在下で導電性砥石に電圧を印加し、該砥石を電解に
よりドレッシングしながら加工する電解ドレッシング研
削法において、前記電解により前記砥石の表面に形成さ
れる前記不導体皮膜の厚さを、該不導体皮膜中に保持さ
れている砥粒径以上に保ちながら鏡面仕上げ加工をした
ので、不導体皮膜の厚さが砥粒径以上に保たれ、十分な
不導体皮膜の厚さがあり、砥石母地が露出して加工物と
直接接触することを防ぎ、焼き付きも起こさず、安定し
た鏡面加工を継続することができる。
According to the first aspect of the present invention, there is provided an electrolytic dressing grinding method in which a voltage is applied to a conductive grindstone in the presence of a conductive grinding fluid, and the grindstone is processed while being dressed by electrolysis. Since the thickness of the non-conductive film formed on the surface of the grindstone was mirror-finished while maintaining the thickness of the non-conductive film equal to or more than the abrasive particle size held in the non-conductive film, the thickness of the non-conductive film was reduced to the abrasive particle size. With the thickness maintained above, the nonconductive film has a sufficient thickness, prevents the base of the grindstone from being exposed and directly comes in contact with the workpiece, does not cause seizure, and enables stable mirror-surface processing to be continued.

【0032】請求項2に対応する効果:請求項1の発明
において、前記砥石の表面に形成される不導体皮膜中に
保持されている砥粒の径を10μm以下とし、該10μm
以下の砥粒により鏡面仕上げ加工をしたので、砥石母地
よりも強度が小さい不導体皮膜に10μm以下の細かい
砥石が保持された状態で加工するため、加工物に対して
比較的柔らかく砥石が作用し、鏡面が得やすくなる。
According to the second aspect of the present invention, the diameter of the abrasive grains held in the non-conductive film formed on the surface of the grinding wheel is set to 10 μm or less.
Mirror finish processing with the following abrasive grains, so the processing is performed in a state where a fine grindstone of 10 μm or less is held on the non-conductive film with less strength than the base of the grindstone, and the grindstone acts relatively softly on the workpiece. And it becomes easy to obtain a mirror surface.

【0033】請求項3に対応する効果:導電性研削液の
存在下で導電性砥石に電圧を印加し、前記砥石を電解に
よりドレッシングしながら加工をする電解ドレッシング
研削法において、前記電解により前記導電性砥石の表面
に形成される前記不導体皮膜の厚さを、該不導体皮膜中
に保持されている砥粒径以下に保ちながら粗加工するよ
うにしたので、砥粒を突き出させることになり、砥粒が
加工物に作用し、削り残しのない、能率の高い粗加工が
できるようになる。
According to a third aspect of the present invention, there is provided an electrolytic dressing grinding method in which a voltage is applied to a conductive grindstone in the presence of a conductive grinding fluid to process the grindstone while dressing the grindstone by electrolysis. The thickness of the non- conductive film formed on the surface of the abrasive wheel ,
Roughing is performed while keeping the abrasive grain size equal to or less than that held in the abrasive grain, so that the abrasive grains are projected, the abrasive grains act on the workpiece, and there is no residual cutting, and highly efficient roughing can be performed Become like

【0034】請求項4に対応する効果:請求項3の発明
において、前記砥石の表面に形成された不導体皮膜の下
の電解作用が及んでいないボンド材の母地部分に保持さ
れている40μm以上の径の砥粒により粗加工するよう
にしたので、強度の大きい砥石母地にしっかりと保持さ
れた40μm以上の径の砥粒で加工するので、加工物に
対して確実に砥粒が作用し、高能率な加工が実現でき
る。
According to the fourth aspect of the present invention, in the invention of the third aspect, 40 μm is held at a base portion of a bond material that has not been subjected to electrolytic action under a nonconductive film formed on the surface of the grinding wheel. Roughing is performed with abrasive grains of the above diameter, so it is processed with abrasive grains of 40 μm or more that are firmly held on a strong grinding stone base, so that the abrasive grains work reliably on the workpiece And highly efficient processing can be realized.

【0035】請求項5に対応する効果:請求項1乃至4
の何れかに記載の発明において、前記導電性砥石の表面
に形成される前記不導体皮膜の厚さを常に一定になるよ
うに制御しながら加工するようにしたので、不導体皮膜
の厚さを加工中、常に一定にすることによって砥粒の加
工物に対する作用の仕方を安定させることで、加工も安
定して継続することができる。
Effects corresponding to claim 5: claims 1 to 4
In the invention according to any one of the above, the thickness of the non-conductive film is controlled while controlling the thickness of the non-conductive film formed on the surface of the conductive grindstone to be always constant. By stabilizing the manner in which the abrasive grains act on the workpiece by always keeping the same constant during the processing, the processing can be stably continued.

【0036】請求項6に対応する効果:請求項5の発明
において、前記導電性砥石の表面に形成される前記不導
体皮膜の厚さをモニタしながら電解の強さを制御して、
研削加工中における前記不導体皮膜の厚さを常に一定に
したので、不導体皮膜の厚さを加工中、常に一定にする
ことによって砥粒の加工物に対する作用の仕方を安定さ
せることで、加工も安定して継続することができる。
Effect corresponding to claim 6: In the invention of claim 5, by controlling the strength of electrolysis while monitoring the thickness of the nonconductive film formed on the surface of the conductive grindstone,
Since the thickness of the non-conductive film is always constant during the grinding process, the method of working the abrasive grains on the workpiece by stabilizing the thickness of the non-conductive film during the processing is stabilized. Can also continue stably.

【0037】請求項7に対応する効果:請求項1乃至6
の何れかに記載の発明において、前記導電性砥石の表面
に形成される不導体皮膜の下の母地の後退に合わせて、
前記電極を前記導電性砥石の方向に移動させ、電解用電
極と前記砥石母地の間隔を一定に保つようにしたので、
砥石母地と電極との間隔を一定に保つことによって、電
解を安定させ、不導体皮膜の厚さを一定に保ちやすくな
り、加工が安定する。
Effects corresponding to claim 7: claims 1 to 6
In the invention according to any one of, according to the retreat of the base under the non-conductive film formed on the surface of the conductive grindstone,
Since the electrode was moved in the direction of the conductive grindstone, so as to keep the distance between the electrode for electrolysis and the base of the grindstone constant,
By keeping the gap between the grinding wheel base and the electrode constant, the electrolysis is stabilized, the thickness of the non-conductive film is easily kept constant, and the processing is stabilized.

【0038】請求項8に対応する効果:請求項7の発明
において、前記導電性砥石の表面に形成される前記不導
体皮膜の下の母地の後退量を、渦電流式の変位センサで
測定したので、砥石母地と電極との間隔を一定に保つこ
とによって、電解を安定させ、不導体皮膜の厚さを一定
に保ちやすくなり、加工が安定する。
According to an eighth aspect of the present invention, in the invention of the seventh aspect, the amount of retreat of the base under the nonconductive film formed on the surface of the conductive grindstone is measured by an eddy current displacement sensor. Therefore, by keeping the distance between the grinding wheel base and the electrode constant, the electrolysis is stabilized, the thickness of the non-conductive film is easily kept constant, and the processing is stabilized.

【0039】請求項9に対応する効果:請求項1乃至8
の何れかに記載の発明において、前記電解ドレッシング
研削法に使用する導電性研削液中に含まれるハロゲンイ
オン濃度の変化をモニタリングしながら、研削加工を行
うようにしたので、不導体皮膜の膜質に大きく関わるハ
ロゲンイオン濃度,特に、Cl- イオンの濃度を管理す
ることで、量産においても長期間安定した電解現象を得
ることができ、安定した加工ができる。
Effects corresponding to claim 9: claims 1 to 8
In the invention according to any one of the above, while monitoring the change in the concentration of halogen ions contained in the conductive grinding fluid used in the electrolytic dressing grinding method, while performing the grinding process, the film quality of the non-conductive film By controlling the concentration of halogen ions, particularly the concentration of Cl - ions, which greatly affects the concentration, a stable electrolysis phenomenon can be obtained for a long time even in mass production, and stable processing can be performed.

【0040】請求項10に対応する効果:請求項9の発
明において、前記ハロゲンイオンをCl- イオンとし、
該Cl- イオン濃度を30ppm以下に保ちながら研削加
工したので、不導体皮膜の膜質に大きく関わるハロゲン
イオン濃度,特に、Cl- イオンの濃度を管理すること
で、量産においても長期間安定した電解現象を得ること
ができ、安定した加工ができる。
According to the tenth aspect, in the ninth aspect, the halogen ion is Cl - ion,
The Cl - since the grinding while maintaining the ion concentration 30ppm or less, the film quality largely involved the halogen ion concentration of a non-conductive coating, in particular, Cl - by managing the concentration of ions, long-term stable electrolysis phenomenon in mass production And stable processing can be performed.

【0041】請求項11に対応する効果:前記請求項1
乃至10のいずれかの電解ドレッシング研削法を使用す
る電解ドレッシング研削装置であって、前記導電性砥石
の表面に形成される不導体皮膜下の母地の後退量を測定
する渦電流式の変位センサと、該変位センサの測定値に
基づいて、電解用電極と前記砥石との間隔を一定
に保つように、前記電極を前記砥石の方向に移動させる
砥石駆動手段を有したので、砥石母地と電極との間隔を
一定に保つことによって、電解を安定させ、不導体皮膜
の厚さを一定に保ちやすくなり、加工が安定する。
Advantageous Effect Corresponding to Claim 11: Claim 1
An eddy current type displacement sensor for measuring an amount of retreat of a base under a non-conductive film formed on a surface of the conductive grindstone, which is an electrolytic dressing grinding device using any one of the electrolytic dressing grinding methods according to any one of claims 1 to 10. And, based on the measurement value of the displacement sensor, the grinding wheel drive means for moving the electrode in the direction of the grinding wheel so as to keep the distance between the electrode for electrolysis and the base of the grinding wheel constant. By keeping the distance between the base and the electrode constant, the electrolysis is stabilized, the thickness of the non-conductive film is easily kept constant, and the processing is stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 鏡面仕上げ加工に好適な砥石を説明するため
の砥石断面の概念図である。
FIG. 1 is a conceptual diagram of a grinding wheel cross section for describing a grinding wheel suitable for mirror finishing.

【図2】 粗加工に好適な砥石を説明するための砥石断
面の概念図である。
FIG. 2 is a conceptual diagram of a grindstone cross section for describing a grindstone suitable for rough machining.

【図3】 本発明による電解ドレッシング研削方法の実
施の形態を説明するための実験に用いられた電解ドレッ
シング研削装置である。
FIG. 3 is an electrolytic dressing grinding apparatus used in an experiment for explaining an embodiment of an electrolytic dressing grinding method according to the present invention.

【符号の説明】[Explanation of symbols]

1…砥石、2…不導体皮膜、3…回転方向、4…光触針
式変位計(レーザ変位計)、5…渦電流式変位センサ、
6…エアーガン、7…電極、8…研削液供給ノズル、9
…電源、10…ついたて(衝立)、11…母地、12…
不導体皮膜、13…砥粒、14…加工作用面。
DESCRIPTION OF SYMBOLS 1 ... Whetstone, 2 ... Non-conductive film, 3 ... Rotation direction, 4 ... Optical stylus type displacement meter (laser displacement meter), 5 ... Eddy current type displacement sensor,
6 air gun, 7 electrode, 8 grinding fluid supply nozzle, 9
... power supply, 10 ... appearance (partition), 11 ... home land, 12 ...
Non-conductive film, 13: abrasive grains, 14: working surface.

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性研削液の存在下で導電性砥石に電
圧を印加し、該砥石を電解によりドレッシングしながら
加工する電解ドレッシング研削法において、前記電解に
より前記砥石の表面に形成される前記不導体皮膜の厚さ
を、該不導体皮膜中に保持されている砥粒径以上に保ち
ながら鏡面仕上げ加工をすることを特徴とする電解ドレ
ッシング研削法。
1. An electrolytic dressing grinding method in which a voltage is applied to a conductive grindstone in the presence of a conductive grinding fluid to process the grindstone while dressing the grindstone by electrolysis, wherein the electrolysis is performed on the surface of the grindstone by the electrolysis. An electrolytic dressing grinding method, wherein mirror finishing is performed while maintaining the thickness of the non-conductive film at or above the abrasive grain size held in the non-conductive film.
【請求項2】 前記砥石の表面に形成される不導体皮膜
中に保持されている砥粒の径を10μm以下とし、該1
0μm以下の砥粒により鏡面仕上げ加工をすることを特
徴とする請求項1に記載の電解ドレッシング研削法。
2. The abrasive grains held in a non-conductive film formed on the surface of the grinding stone have a diameter of 10 μm or less.
2. The electrolytic dressing grinding method according to claim 1, wherein mirror finishing is performed using abrasive grains of 0 [mu] m or less.
【請求項3】 導電性研削液の存在下で導電性砥石に電
圧を印加し、前記砥石を電解によりドレッシングしなが
ら加工をする電解ドレッシング研削法において、前記電
解により前記導電性砥石の表面に形成される前記不導体
皮膜の厚さを、該不導体皮膜中に保持されている砥粒径
以下に保ちながら粗加工することを特徴とする電解ドレ
ッシング研削法。
3. An electrolytic dressing grinding method in which a voltage is applied to a conductive grindstone in the presence of a conductive grinding fluid to process the grindstone while dressing the grindstone by electrolysis. An electrolytic dressing grinding method characterized in that rough processing is performed while maintaining the thickness of the non- conductive film to be carried out to be equal to or less than the abrasive grain size held in the non-conductive film .
【請求項4】 前記砥石の表面に形成された不導体皮膜
の下の電解作用が及んでいないボンド材の母地部分に保
持されている40μm以上の径の砥粒により粗加工する
ことを特徴とする請求項3に記載の電解ドレッシング研
削法。
4. A rough working is carried out by using abrasive grains having a diameter of 40 μm or more held in a base portion of a bond material which has not been subjected to electrolytic action below a non-conductive film formed on a surface of the whetstone. The electrolytic dressing grinding method according to claim 3, wherein
【請求項5】 前記導電性砥石の表面に形成される前記
不導体皮膜の厚さを常に一定になるように制御しながら
加工することを特徴とする請求項1乃至4の何れかに記
載の電解ドレッシング研削法。
5. The processing according to claim 1, wherein the processing is performed while controlling the thickness of the non-conductive film formed on the surface of the conductive grindstone to be always constant. Electrolytic dressing grinding method.
【請求項6】 前記導電性砥石の表面に形成される前記
不導体皮膜の厚さをモニタしながら電解の強さを制御し
て、研削加工中における前記不導体皮膜の厚さを常に一
定にすることを特徴とする請求項5に記載の電解ドレッ
シング研削法。
6. A method for controlling the intensity of electrolysis while monitoring the thickness of the non-conductive film formed on the surface of the conductive grindstone to keep the thickness of the non-conductive film constant during grinding. The electrolytic dressing grinding method according to claim 5, wherein the grinding is performed.
【請求項7】 前記導電性砥石の表面に形成される不導
体皮膜の下の母地の後退に合わせて、前記電極を前記導
電性砥石の方向に移動させ、電解用電極と前記砥石母地
の間隔を一定に保つようにすることを特徴とする請求項
1乃至6の何れかに記載の電解ドレッシング研削法。
7. The electrode is moved in the direction of the conductive grindstone in accordance with the retreat of the matrix below the non-conductive film formed on the surface of the conductive grindstone, and the electrode for electrolysis and the grindstone matrix are formed. The electrolytic dressing grinding method according to any one of claims 1 to 6, wherein the distance between the electrodes is kept constant.
【請求項8】 前記導電性砥石の表面に形成される前記
不導体皮膜の下の母地の後退量を、渦電流式の変位セン
サで測定することを特徴とする請求項7に記載の電解ド
レッシング研削法。
8. The electrolytic method according to claim 7, wherein an amount of retreat of the base under the nonconductive film formed on the surface of the conductive grindstone is measured by an eddy current type displacement sensor. Dressing grinding method.
【請求項9】 前記電解ドレッシング研削法に使用する
導電性研削液中に含まれるハロゲンイオン濃度の変化を
モニタリングしながら、研削加工を行うことを特徴とす
る請求項1乃至8の何れかに記載の電解ドレッシング研
削法。
9. The grinding process according to claim 1, wherein the grinding process is performed while monitoring a change in the concentration of halogen ions contained in the conductive grinding fluid used in the electrolytic dressing grinding method. Electrolytic dressing grinding method.
【請求項10】 前記ハロゲンイオンをCl-イオンと
し、該Cl-イオン濃度を30ppm以下に保ちながら研削
加工をすることを特徴とする請求項9に記載の電解ドレ
ッシング研削法。
10. The electrolytic dressing grinding method according to claim 9, wherein the halogen ions are Cl ions, and the grinding is performed while maintaining the Cl ion concentration at 30 ppm or less.
【請求項11】 前記請求項1乃至10のいずれかの電
解ドレッシング研削法を使用する電解ドレッシング研削
装置であって、前記導電性砥石の表面に形成される不導
体皮膜下の母地の後退量を測定する渦電流式の変位セン
サと、該変位センサの測定値に基づいて、電解用電極と
前記砥石との間隔を一定に保つように、前記電極
を前記砥石の方向に移動させる砥石駆動手段を有するこ
とを特徴とする電解ドレッシング研削装置。
11. An electrolytic dressing grinding apparatus using the electrolytic dressing grinding method according to any one of claims 1 to 10, wherein a retreat amount of a base under a nonconductive film formed on a surface of the conductive grinding wheel. The eddy current type displacement sensor for measuring the displacement sensor, based on the measurement value of the displacement sensor, to move the electrode in the direction of the grinding wheel, so as to keep a constant distance between the electrode for electrolysis and the base of the grinding wheel An electrolytic dressing grinding device comprising a grinding wheel driving means.
JP33857895A 1995-12-26 1995-12-26 Electrolytic dressing grinding method and equipment Expired - Fee Related JP3345538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33857895A JP3345538B2 (en) 1995-12-26 1995-12-26 Electrolytic dressing grinding method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33857895A JP3345538B2 (en) 1995-12-26 1995-12-26 Electrolytic dressing grinding method and equipment

Publications (2)

Publication Number Publication Date
JPH09174431A JPH09174431A (en) 1997-07-08
JP3345538B2 true JP3345538B2 (en) 2002-11-18

Family

ID=18319499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33857895A Expired - Fee Related JP3345538B2 (en) 1995-12-26 1995-12-26 Electrolytic dressing grinding method and equipment

Country Status (1)

Country Link
JP (1) JP3345538B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465718B (en) * 2018-10-23 2020-02-21 重庆天泰铝业有限公司 Anode steel claw surface floating polishing device

Also Published As

Publication number Publication date
JPH09174431A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
KR100188400B1 (en) Method and apparatus for grinding with electrolytic dressing
US8070933B2 (en) Electrolytic microfinishing of metallic workpieces
US6117001A (en) Electrolytic in-process dressing method, electrolytic in-process dressing apparatus and grindstone
JP3345538B2 (en) Electrolytic dressing grinding method and equipment
JP3530562B2 (en) Lens grinding method
JPH11156713A (en) Dynamic pressure generating electrode
JP3274592B2 (en) Electrolytic in-process dressing grinding method and apparatus
JP2001062633A (en) Curved surface machining method and device
JPH0639644A (en) Grinding machine
JP3345532B2 (en) Electrolytic dressing grinding method and equipment
JPH11114820A (en) Electrolytic in-process dressing grinding method and device therefor
JP3106274B2 (en) Dressing equipment
JPH06254754A (en) Mirror grinding device and method
JPH06114733A (en) Grinding wheel shaping method by on-machine discharge truing method
JP2003089040A (en) Combined grinding device using free abrasive grain
JPS5921732B2 (en) Electric discharge machining method and device for roll-shaped workpieces
JP3169631B2 (en) Method and apparatus for electrolytic dressing with semiconductor contact electrode
JP3194624B2 (en) Grinding method and apparatus
JP2950064B2 (en) Electrolytic dressing type grinding machine
Yu et al. Experimental investigation on bronze-bonded CBN formed grinding wheel by means of electro-discharging dressing
KR20160109689A (en) Electro-discharge Truing Methode of Metal-bonded Grinding Wheel
JPS582779B2 (en) Denkai Kensaku Kakohouhou
JP2886203B2 (en) Electrolytic grinding method and apparatus
JPH0853777A (en) Electric discharge coating method
SU1087293A1 (en) Method of grinding ferromagnetic materials while keeping the cutting ability of the wheel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees