JP3341518B2 - Magnetic detector - Google Patents

Magnetic detector

Info

Publication number
JP3341518B2
JP3341518B2 JP04325595A JP4325595A JP3341518B2 JP 3341518 B2 JP3341518 B2 JP 3341518B2 JP 04325595 A JP04325595 A JP 04325595A JP 4325595 A JP4325595 A JP 4325595A JP 3341518 B2 JP3341518 B2 JP 3341518B2
Authority
JP
Japan
Prior art keywords
magnetic
bias magnet
bias
magnetized surface
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04325595A
Other languages
Japanese (ja)
Other versions
JPH07294540A (en
Inventor
正紀 青山
進 畔柳
一朗 伊澤
牧野  泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP04325595A priority Critical patent/JP3341518B2/en
Publication of JPH07294540A publication Critical patent/JPH07294540A/en
Application granted granted Critical
Publication of JP3341518B2 publication Critical patent/JP3341518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、磁気抵抗素子の抵抗
変化を利用して被検出対象の移動等の運動を検出する磁
気検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detection device for detecting a movement such as a movement of an object to be detected by utilizing a resistance change of a magnetoresistive element.

【0002】[0002]

【従来の技術】従来、磁気抵抗素子を利用したギヤ近接
方式の回転センサが特開平3−195970号公報にて
開示されている。このセンサは、抵抗変化波形の波形割
れ対策が施されている。この技術を、図20を用いて説
明する。基板20には磁気抵抗素子21が蒸着されてい
る。支持板22の一面にはバイアス磁石23が取り付け
られるとともに、支持板22の他の面には基板20がバ
イアス磁石23の着磁面23aに垂直に取り付けられて
いる。さらに、基板20上において磁気抵抗素子21が
バイアス磁石23から発生する磁気ベクトル(着磁面2
3aに垂直な方向の成分BY)に対し所定角度(図20
では45度)傾けて配置されている。そして、ギヤ24
の回転に伴う磁気ベクトルBYの向きの変化を磁気抵抗
素子21にて抵抗変化として検出するようになってい
た。
2. Description of the Related Art Conventionally, a gear proximity type rotation sensor using a magnetoresistive element has been disclosed in Japanese Patent Application Laid-Open No. 3-195970. This sensor is provided with a countermeasure against waveform breakage of the resistance change waveform. This technique will be described with reference to FIG. 20. A magnetoresistive element 21 is deposited on the substrate 20. A bias magnet 23 is mounted on one surface of the support plate 22, and a substrate 20 is mounted on the other surface of the support plate 22 perpendicularly to a magnetized surface 23 a of the bias magnet 23. Further, the magnetic vector (magnetized surface 2) generated by the magnetoresistive element 21 from the bias magnet 23 on the substrate 20.
A predetermined angle (FIG. 20 ) with respect to a component BY in a direction perpendicular to 3a.
(45 degrees). And the gear 24
The change in the direction of the magnetic vector BY due to the rotation of the element is detected by the magnetoresistive element 21 as a change in resistance.

【0003】[0003]

【発明が解決しようとする課題】ところが、基板20
(磁気抵抗素子21)をバイアス磁石23の着磁面23
aに垂直に配置するため、センサがバイアス磁石23の
着磁面23aに垂直な方向に大きくなってしまってい
た。
However, the substrate 20
(Magnetoresistive element 21) to the magnetized surface 23 of the bias magnet 23
a, the sensor becomes larger in the direction perpendicular to the magnetized surface 23a of the bias magnet 23.

【0004】そこで、この発明の目的は、小型化するこ
とができるとともに抵抗変化波形の波形割れを防止でき
る磁気検出装置を提供することにある。
An object of the present invention is to provide a magnetic detection device which can be reduced in size and can prevent the resistance change waveform from breaking.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、着磁面が磁性材料を有する被検出対象に対向し、当
該被検出対象に向けてバイアス磁界を発生するバイアス
磁石と、前記バイアス磁界中に配置された磁気抵抗素子
とを備え、前記磁気抵抗素子にて前記被検出対象の運動
に伴う前記バイアス磁石から前記被検出対象へのバイア
ス磁界の変化により抵抗変化を生じさせるようにした磁
気検出装置において、前記磁気抵抗素子を、前記バイア
ス磁石の着磁面に平行に配置するとともに、前記バイア
ス磁界における前記バイアス磁石の着磁面に平行であっ
て、かつ外周側へ向かう磁気ベクトルあるいは外周側か
ら内方へ向かう磁気ベクトルに対して所定角度傾けて
称的に配置し、さらには前記被検出対象の回転方向に対
し直角方向に配置し、前記磁気ベクトルの変化を検出す
るようにした磁気検出装置をその要旨とする。また、請
求項6に記載の発明は、着磁面が磁性材料を有する被検
出対象に対向し、当該被検出対象に向けてバイアス磁界
を発生するバイアス磁石と、前記バイアス磁界中に磁気
抵抗素子とを配置し、前記磁気抵抗素子を、前記バイア
ス磁石の着磁面に平行に配置するとともに、前記バイア
ス磁界における前記バイアス磁石の着磁面に平行であっ
て、かつ外周側へ向かう磁気ベクトルあるいは外周側か
ら内方へ向かう磁気ベクトルに対して所定角度傾けて
称的に配置し、さらには前記被検出対象の回転方向に対
し直角方向に配置し、前記磁気抵抗素子にて前記被検出
対象の運動に伴う前記バイアス磁石から前記被検出対象
への前記バイアス磁界の変化を検出することを特徴とす
る磁気抵抗素子を用いた対象物の運動の検出方法をその
要旨とする。
According to a first aspect of the present invention, there is provided a bias magnet having a magnetized surface facing a detection target having a magnetic material and generating a bias magnetic field toward the detection target. A magnetoresistive element disposed in a bias magnetic field, wherein the magnetoresistive element causes a change in resistance due to a change in a bias magnetic field from the bias magnet to the detection target accompanying the movement of the detection target. In the magnetic detection device, the magnetic resistance element is arranged in parallel with the magnetized surface of the bias magnet, and the magnetic vector in the bias magnetic field that is parallel to the magnetized surface of the bias magnet and goes to the outer peripheral side. Alternatively, they are arranged symmetrically at a predetermined angle with respect to the magnetic vector inward from the outer peripheral side, and furthermore, are arranged in a rotational direction of the detection target.
The gist of the present invention is a magnetism detecting device which is arranged at right angles to each other and detects a change in the magnetic vector. According to a sixth aspect of the present invention, there is provided a bias magnet having a magnetized surface facing a detection target having a magnetic material and generating a bias magnetic field toward the detection target, and a magnetoresistive element in the bias magnetic field. And the magnetoresistive element is arranged in parallel with the magnetized surface of the bias magnet, and the magnetic vector parallel to the magnetized surface of the bias magnet in the bias magnetic field and directed to the outer peripheral side or It is symmetrically arranged at a predetermined angle with respect to the magnetic vector inward from the outer peripheral side, and furthermore , the magnetic vector is inclined in the rotational direction of the detection target.
Disposed perpendicularly to each other, and a change in the bias magnetic field from the bias magnet to the object to be detected accompanying the movement of the object to be detected is detected by the magnetoresistive element. The gist is a method of detecting the motion of the object.

【0006】請求項2に記載の発明は、請求項1に記載
の発明における前記磁気抵抗素子を前記磁気ベクトルに
対して略45度傾けて配置した磁気検出装置をその要旨
とする。
According to a second aspect of the present invention, there is provided a magnetism detecting device according to the first aspect, wherein the magnetoresistive element is disposed at an angle of about 45 degrees with respect to the magnetic vector.

【0007】請求項3に記載の発明は、請求項1または
2に記載の発明における前記被検出対象の運動方向に対
し前記磁気抵抗素子を30〜150度あるいは210〜
330度回転した位置に配置した磁気検出装置をその要
旨とする。
According to a third aspect of the present invention, in the first or second aspect, the magnetoresistive element is set at 30 to 150 degrees or 210 to 150 with respect to the direction of movement of the detection target.
The gist is a magnetic detection device arranged at a position rotated by 330 degrees.

【0008】請求項4に記載の発明は、請求項1〜3の
いずれか1項に記載の発明における前記被検出対象の運
動方向に対し前記磁気抵抗素子を90度あるいは270
度回転した位置に配置した磁気検出装置をその要旨とす
る。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the magnetoresistive element is rotated by 90 degrees or 270 with respect to the movement direction of the object to be detected.
The gist is a magnetism detection device arranged at a position rotated by degrees.

【0009】請求項5に記載の発明は、請求項1〜4の
いずれか1項に記載の発明における前記磁気抵抗素子を
バイアス磁石の外周面付近に配置した磁気検出装置をそ
の要旨とする。
According to a fifth aspect of the present invention, there is provided a magnetism detecting device according to any one of the first to fourth aspects, wherein the magnetoresistive element is disposed near an outer peripheral surface of a bias magnet.

【0010】[0010]

【作用】請求項1に記載の発明によれば、被検出対象が
運動すると、バイアス磁界におけるバイアス磁石の着磁
面に平行であって、かつ外周側へ向かう磁気ベクトルあ
るいは外周側から内方へ向かう磁気ベクトルの向きが変
化する。このベクトルの向きの変化が、バイアス磁石の
着磁面に平行に配置された磁気抵抗素子にて抵抗変化と
して検出される。このとき、磁気抵抗素子がバイアス磁
石の着磁面に平行に配置されているので、磁気抵抗素子
をバイアス磁石の着磁面に垂直に配置した場合に比べ、
バイアス磁石の着磁面に垂直な方向に小さくなる。又、
バイアス磁界におけるバイアス磁石の着磁面に平行であ
って、かつ外周側へ向かう磁気ベクトルあるいは外周側
から内方へ向かう磁気ベクトルに対し、所定角度傾けて
対称的に磁気抵抗素子を配置し、さらには前記被検出対
象の回転方向に対し直角方向に配置し、前記磁気ベクト
ルの変化を検出するようにしているため、抵抗変化波形
の波形割れが防止される。また、請求項6に記載の発明
によれば、被検出対象が運動すると、それに伴いバイア
ス磁界が変化する。このとき、磁気抵抗素子をバイアス
磁石の着磁面に平行に配置し、かつ着磁面に平行な磁気
ベクトルに対して所定角度傾けて対称的に配置し、さら
には前記被検出対象の回転方向に対し直角方向に配置し
た状態で対象の運動を検出することになるため、よりよ
い検出方法を提供できる。
According to the first aspect of the present invention, when the object to be detected moves, a magnetic vector parallel to the magnetized surface of the bias magnet in the bias magnetic field and directed to the outer peripheral side or inward from the outer peripheral side. The direction of the heading magnetic vector changes. This change in the direction of the vector is detected as a resistance change by a magnetoresistive element arranged in parallel to the magnetized surface of the bias magnet. At this time, since the magnetoresistive element is arranged parallel to the magnetized surface of the bias magnet, compared with the case where the magnetoresistive element is arranged perpendicular to the magnetized surface of the bias magnet,
It becomes smaller in the direction perpendicular to the magnetized surface of the bias magnet. or,
The magnetic resistance element parallel to the magnetized surface of the bias magnet in the bias magnetic field and inclined at a predetermined angle with respect to the magnetic vector heading toward the outer periphery or the magnetic vector heading inward from the outer periphery is symmetrically tilted. And further, the detected pair
Since the elephant is arranged in a direction perpendicular to the rotation direction of the elephant and detects the change in the magnetic vector, the breakage of the resistance change waveform is prevented. According to the sixth aspect of the invention, when the detection target moves, the bias magnetic field changes accordingly. In this case, arranged in parallel to the magnetoresistive element to the magnetized surface of the bias magnet, and symmetrically arranged inclined at a predetermined angle with respect to the magnetic vector parallel to the magnetized surface, further
Since the motion of the object to be detected is detected in a state where the object is arranged in a direction perpendicular to the rotation direction of the object to be detected, a better detection method can be provided.

【0011】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加え、前記磁気ベクトルに対し、
略45度傾けて磁気抵抗素子を配置しているため、抵抗
変化率がベクトルの振れに対して最大値を示すこととな
る。
According to the invention described in claim 2, according to claim 1,
In addition to the effect of the invention described in the above, for the magnetic vector,
Since the magnetoresistive elements are arranged at an angle of about 45 degrees, the rate of change of resistance shows the maximum value with respect to the vector swing.

【0012】請求項3に記載の発明によれば、請求項1
または2に記載の発明の作用に加え、被検出対象の運動
方向に対し磁気抵抗素子が30〜150度あるいは21
0〜330度回転した位置に配置され、磁気抵抗素子の
抵抗変化率が大きくなる。
[0012] According to the third aspect of the present invention, the first aspect is provided.
Or in addition to the operation of the invention described in 2 above, the magnetoresistive element is 30 to 150 degrees or 21 degrees with respect to the movement direction of the detection target.
It is arranged at a position rotated by 0 to 330 degrees, and the rate of change in resistance of the magnetoresistive element increases.

【0013】請求項4に記載の発明によれば、請求項1
〜3のいずれか1項に記載の発明の作用に加え、被検出
対象の運動方向に対し磁気抵抗素子が90度あるいは2
70度回転した位置に配置され、さらに磁気抵抗素子の
抵抗変化率が大きくなる。
[0013] According to the invention described in claim 4, according to claim 1 of the present invention.
In addition to the effects of the invention described in any one of (1) to (3), the magnetic resistance element is 90 degrees or 2 degrees with respect to the movement direction of the detection target.
It is arranged at a position rotated by 70 degrees, and the resistance change rate of the magnetoresistive element further increases.

【0014】請求項5に記載の発明は、請求項1〜3の
いずれか1項に記載の発明の作用に加え、磁気抵抗素子
がバイアス磁石の外周面付近に配置され、十分な抵抗変
化率が得られる。
According to a fifth aspect of the present invention, in addition to the function of the first aspect of the present invention, the magnetoresistive element is arranged near the outer peripheral surface of the bias magnet, and a sufficient resistance change rate is obtained. Is obtained.

【0015】[0015]

【実施例】以下、この発明を具体化した一実施例を図面
に従って説明する。図1には、本実施例の磁気回転検出
装置の平面図を示す。又、図2には、図1のA矢視図を
示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a plan view of the magnetic rotation detecting device of the present embodiment. FIG. 2 is a view taken in the direction of arrow A in FIG.

【0016】支持板1は長方形をなしている。永久磁石
よりなるバイアス磁石2は円柱形状をなし、バイアス磁
石2の外径は7mmとなっている。バイアス磁石2はそ
の一面がN極に着磁されるとともに、他方の面がS極に
着磁されている。そして、支持板1の一面にバイアス磁
石2の一面(N極着磁面2a)が接着されている。
The support plate 1 has a rectangular shape. The bias magnet 2 made of a permanent magnet has a cylindrical shape, and the outer diameter of the bias magnet 2 is 7 mm. One surface of the bias magnet 2 is magnetized to the N pole, and the other surface is magnetized to the S pole. One surface of the bias magnet 2 (N-pole magnetized surface 2a) is bonded to one surface of the support plate 1.

【0017】図3には、バイアス磁石2のN極着磁面2
aからS極着磁面への磁力線の状態を示す。又、図4に
は、図3のB矢視図を示す。図3に示すように、バイア
ス磁石2のN極着磁面2aから僅かに離れた位置P1に
おいては、磁気ベクトルBは、バイアス磁石2のN極着
磁面2aに対し平行かつ外周側に向かうベクトルB
Xと、バイアス磁石2のN極着磁面2aに垂直な方向の
ベクトルBY とを合成したものとなる。以下、バイアス
磁石2のN極着磁面2aに平行かつ外周側に向かうベク
トルBX を「N極着磁面平行成分ベクトル」というとと
もに、バイアス磁石2のN極着磁面2aに垂直な方向の
ベクトルBY を「N極着磁面垂直成分ベクトル」とい
う。
FIG. 3 shows the N-pole magnetized surface 2 of the bias magnet 2.
The state of the line of magnetic force from a to the S-polarized surface is shown. FIG. 4 is a view taken in the direction of the arrow B in FIG. As shown in FIG. 3, at a position P1 slightly away from the N-pole magnetized surface 2a of the bias magnet 2, the magnetic vector B is parallel to the N-pole magnetized surface 2a of the bias magnet 2 and goes to the outer peripheral side. Vector B
X and a vector BY in a direction perpendicular to the N-pole magnetized surface 2a of the bias magnet 2 are synthesized. Hereinafter, the vector B X toward the parallel and the outer peripheral side to the N-pole magnetized surface 2a of the bias magnet 2 together referred to as "N-pole magnetized surface parallel component vector", a direction perpendicular to the N-pole magnetized surface 2a of the bias magnet 2 of the vector B Y as "N-pole magnetized surface vertical component vector".

【0018】又、図1に示すように、支持板1のもう一
方の面には、長方形の基板3の一面が接着されている。
基板3の表面には、図5に示すように、2つの磁気抵抗
素子4,5が蒸着にて形成されている。このように、磁
気抵抗素子4,5はバイアス磁石2のN極着磁面2aに
平行に配置されている。
As shown in FIG. 1, one surface of the rectangular substrate 3 is adhered to the other surface of the support plate 1.
As shown in FIG. 5, two magnetoresistive elements 4 and 5 are formed on the surface of the substrate 3 by vapor deposition. Thus, the magnetoresistive elements 4 and 5 are arranged in parallel with the N-pole magnetized surface 2a of the bias magnet 2.

【0019】磁気抵抗素子4,5は帯状をなし、直線的
に延びている。磁気抵抗素子4,5は、バイアス磁石2
から発生する磁気ベクトルBにおけるN極着磁面平行成
分ベクトルBX の方向(図5でWで示す)に対しそれぞ
れ略プラス・マイナス45度で一対配置されている。こ
の磁気抵抗素子4,5の幅は8μmであり、磁気抵抗素
子4,5の設置位置におけるN極着磁面平行成分ベクト
ルBX とN極着磁面垂直成分ベクトルBY が共に100
ガウス以上のとき磁気抵抗素子4,5が飽和磁界強度以
上となる。
The magnetoresistive elements 4 and 5 have a band shape and extend linearly. The magnetoresistive elements 4 and 5 include a bias magnet 2
Are a pair arranged in N-pole magnetized surface parallel component vector B X direction respectively approximately plus and minus 45 degrees relative to (indicated by W in FIG. 5) in the magnetic vector B generated from. The width of each of the magnetoresistive elements 4 and 5 is 8 μm, and both the N-pole magnetized surface parallel component vector B X and the N-pole magnetized surface vertical component vector BY at the installation position of the magnetoresistive elements 4 and 5 are 100 μm.
When the value is Gauss or more, the magnetoresistive elements 4 and 5 have a saturation magnetic field strength or more.

【0020】又、図5に示すように、基板3の表面に
は、波形処理回路6が形成されている。さらに、支持板
1には、図1,2に示すように、出力取出し用リード9
が3本設けられ、この出力取出し用リード9にて基板3
の波形処理回路6からの信号が取り出されるようになっ
ている。
As shown in FIG. 5, a waveform processing circuit 6 is formed on the surface of the substrate 3. In addition, as shown in FIGS.
Are provided, and the output take-out leads 9
The signal from the waveform processing circuit 6 is extracted.

【0021】一方、図1に示すように、ギヤ7は磁性材
料を有する被検出対象となっており、ギヤ7には多数の
歯8が形成されている。そして、ギヤ7の歯8に対向す
るように基板3が配置されている。又、図2に示すよう
に、バイアス磁石2の中心はギヤ7の厚さ方向の中心線
上に位置している。磁気抵抗素子4,5の配置位置は、
ギヤ回転方向に対し直角方向(ギヤ回転方向に対し反時
計回りに90°回転した方向)となっている。さらに、
磁気抵抗素子4,5の配置位置は、バイアス磁石2の中
心から0.25〜5.0mmとなっている。
On the other hand, as shown in FIG. 1, the gear 7 is a detection target having a magnetic material, and the gear 7 has a large number of teeth 8 formed thereon. The substrate 3 is arranged to face the teeth 8 of the gear 7. Further, as shown in FIG. 2, the center of the bias magnet 2 is located on the center line of the gear 7 in the thickness direction. The arrangement positions of the magnetoresistive elements 4 and 5 are as follows.
The direction is perpendicular to the gear rotation direction (a direction rotated 90 ° counterclockwise with respect to the gear rotation direction). further,
The arrangement position of the magnetoresistive elements 4 and 5 is 0.25 to 5.0 mm from the center of the bias magnet 2.

【0022】つまり、バイアス磁石2の中心から磁気抵
抗素子4,5までの距離は、ギヤ7の厚さtとバイアス
磁石2の径によって決定されるものであり、後述する磁
気ベクトルの振れが発生する範囲で、かつ、磁気抵抗素
子4,5の飽和磁界強度以上の範囲である。
In other words, the distance from the center of the bias magnet 2 to the magnetoresistive elements 4 and 5 is determined by the thickness t of the gear 7 and the diameter of the bias magnet 2, and the deflection of the magnetic vector described later occurs. And a range not lower than the saturation magnetic field strength of the magnetoresistive elements 4 and 5.

【0023】このように、バイアス磁石2〜ギヤ7にて
構成される磁気回路中に、その表面に磁気抵抗素子4,
5が蒸着された基板3が配置され、かつ、基板3は、ギ
ヤ面に対向するバイアス磁石2のN極着磁面2aに平行
に配置されている。そして、図5に示すように、磁気ベ
クトルBにおけるN極着磁面平行成分ベクトルBX に対
し磁気抵抗素子4,5がそれぞれ略45°になるように
磁気抵抗素子4,5のなす角は略90°に配置されてい
る。
As described above, in the magnetic circuit constituted by the bias magnet 2 to the gear 7, the surface of the magnetic resistance element 4,
The substrate 3 on which the vapor deposition 5 is deposited is arranged, and the substrate 3 is arranged in parallel with the N-pole magnetized surface 2a of the bias magnet 2 facing the gear surface. Then, as shown in FIG. 5, the angle of the magnetoresistive elements 4 and 5 so that the magnetic resistance elements 4 and 5 with respect to N-pole magnetized surface parallel component vector B X in the magnetic vector B is substantially 45 °, respectively They are arranged at approximately 90 °.

【0024】ここで、磁気の検出原理を説明する。本実
施例における磁気抵抗素子4,5が検出する磁気は、磁
気ベクトルBにおけるN極着磁面平行成分ベクトルBX
である。バイアス磁石2のN極着磁面2aに対向するギ
ヤ7がない場合、N極着磁面平行成分ベクトルBX は図
5に示している方向Wとなる。ギヤ7がある場合、ギヤ
7の回転によりギヤ7の歯8に引かれるN極着磁面平行
成分ベクトルBX の方向Wは、W1からW2の範囲で変
化し、バイアス磁石2の中心を基準としたN極着磁面平
行成分ベクトルBX の振れ角(磁気抵抗素子4,5の配
置位置での磁気ベクトルBX の方向変化)は、Δθとな
る。尚、振れ角Δθは、バイアス磁石2と磁気抵抗素子
4,5との距離、および磁気抵抗素子4,5とギヤ7と
の距離に依存する。
Here, the principle of magnetism detection will be described. The magnetism detected by the magnetoresistive elements 4 and 5 in this embodiment is the N-pole magnetized surface parallel component vector B X in the magnetic vector B.
It is. If no gear 7 opposed to the N-pole magnetized surface 2a of the bias magnet 2, N-pole magnetized surface parallel component vector B X is the direction W which is shown in FIG. If there is a gear 7, the direction W of the N-pole magnetized surface parallel component vector B X drawn on the teeth 8 of the gear 7 by the rotation of the gear 7 is varied in the range of W1 to W2, based on the center of the bias magnet 2 deflection angle between the N-pole magnetized surface parallel component vector B X (direction change of the magnetic vector B X of the arrangement position of the magnetic resistance elements 4 and 5) becomes [Delta] [theta]. The deflection angle Δθ depends on the distance between the bias magnet 2 and the magnetoresistive elements 4 and 5 and the distance between the magnetoresistive elements 4 and 5 and the gear 7.

【0025】90°の角度(Wに対し45°ずつ)に配
置された一対の磁気抵抗素子4,5は、図6に示すよう
に、磁気ベクトルBにおけるN極着磁面平行成分ベクト
ルB X の振れ角Δθを検知してそれぞれ逆相に抵抗変化
をする。この抵抗変化が同一基板上に設置された波形処
理回路6にて二値化され、ギヤ7の歯8に見合ったパル
スを出力する。
Arranged at 90 ° angle (45 ° to W)
The pair of placed magnetoresistive elements 4 and 5 are arranged as shown in FIG.
In addition, the N-pole magnetized surface parallel component vector in the magnetic vector B
Le B XAnd the resistance changes to opposite phases
do. This resistance change corresponds to the waveform processing installed on the same substrate.
Pallet that has been binarized by the logical circuit 6 and matches the teeth 8 of the gear 7
Output

【0026】このとき、実使用域でのギヤ7と磁気抵抗
素子4,5との距離においては抵抗変化波形に波形割れ
は発生しないことが確認できている。以下に、各種の実
験を行ったので、その結果について説明する。
At this time, it has been confirmed that the resistance change waveform does not have a waveform crack at the distance between the gear 7 and the magnetoresistive elements 4 and 5 in the actual use range. Hereinafter, various experiments were performed, and the results will be described.

【0027】図7に示すように、ギヤ7の回転方向と基
板3の磁気抵抗素子4,5とでなす反時計回りでの角度
をθとしたときに、このθを変えたときの磁気抵抗素子
4,5の抵抗変化率の測定を行った。その測定結果を、
図10,図11に示す。この測定条件としては、図9に
示すように、バイアス磁石2として希土類系のものを使
用し、径が7mm,厚さが4mmであり、又、バイアス
磁石2の外周面から0.5mm離れた位置に磁気抵抗素
子4,5を配置している。又、図10には、ギヤ7の径
を75mm、ギヤ7の歯8の数を「48」、ギヤ7の厚
さを10mmとした場合の測定結果を示す。又、図11
にはギヤ7の径を85mm、ギヤ7の歯8の数を「4
8」、ギヤ7の厚さを3mmとした場合の測定結果を示
す。さらに、図10,11においては、図1に示すよう
に、磁気抵抗素子4,5とギヤ7との距離Lを、0.5
mm,1.0mm,1.5mmと変えた実験結果を示
す。
As shown in FIG. 7, when the angle in the counterclockwise direction formed by the rotation direction of the gear 7 and the magnetoresistive elements 4 and 5 of the substrate 3 is θ, the magnetoresistance when the angle θ is changed The resistance change rates of the elements 4 and 5 were measured. The measurement result,
This is shown in FIGS. As the measurement conditions, as shown in FIG. 9, a rare-earth bias magnet was used, the diameter was 7 mm, the thickness was 4 mm, and the bias magnet 2 was 0.5 mm away from the outer peripheral surface of the bias magnet 2. The magnetoresistive elements 4 and 5 are arranged at the positions. FIG. 10 shows the measurement results when the diameter of the gear 7 is 75 mm, the number of teeth 8 of the gear 7 is “48”, and the thickness of the gear 7 is 10 mm. FIG.
The gear 7 has a diameter of 85 mm and the number of teeth 8 of the gear 7 is "4".
8 "shows the measurement results when the thickness of the gear 7 was 3 mm. 10 and 11, as shown in FIG. 1, the distance L between the magnetoresistive elements 4, 5 and the gear 7 is set to 0.5.
The experimental results are shown with the values changed to mm, 1.0 mm, and 1.5 mm.

【0028】この図10,11から、θ=0〜360°
において0,180°,360°以外であれば、抵抗変
化率が得られる。又、波形処理回路6の検出限界が抵抗
変化率で0.2%程度とすると、約30°<θ<150
°及び約210°<θ<330°にてギヤ検出に必要な
抵抗変化率が得られることが分かった。さらに、抵抗変
化率が最も大きな値をとるのは、θ=90及び270°
であることが確認できた。つまり、図8に示すように、
θ=90°とすれば、最大の抵抗変化率を得ることがで
きる。
From FIGS. 10 and 11, θ = 0 to 360 °
If the angle is other than 0, 180 ° and 360 °, the resistance change rate can be obtained. When the detection limit of the waveform processing circuit 6 is about 0.2% in terms of the resistance change rate, about 30 ° <θ <150
It has been found that the resistance change rate required for gear detection can be obtained at ° and about 210 ° <θ <330 °. Further, the maximum values of the rate of change in resistance are θ = 90 and 270 °.
It was confirmed that it was. That is, as shown in FIG.
If θ = 90 °, the maximum resistance change rate can be obtained.

【0029】このように、パッケージングや組み付け時
のエアギャップ(磁気抵抗素子4,5とギヤ7との距離
L)の取付け誤差を考慮すると、約30°<θ<150
°あるいは約210°<θ<330°となるように、ギ
ヤ7に対し支持板1(磁気抵抗素子4,5)を配置とす
ればよいことが分かった。
As described above, considering the mounting error of the air gap (the distance L between the magnetoresistive elements 4, 5 and the gear 7) at the time of packaging and assembling, about 30 ° <θ <150.
° or about 210 ° <θ <330 °, the support plate 1 (the magnetoresistive elements 4 and 5) should be arranged with respect to the gear 7.

【0030】従って、図2では、磁気抵抗素子4,5の
配置位置は、ギヤ回転方向に対し直角(θ=90°)と
しているが、30°<θ<150°あるいは210°<
θ<330°の範囲で実施してもよい。
Therefore, in FIG. 2, the arrangement positions of the magnetoresistive elements 4 and 5 are perpendicular to the gear rotation direction (θ = 90 °), but 30 ° <θ <150 ° or 210 ° <
It may be performed in the range of θ <330 °.

【0031】次に、図12に示すように、バイアス磁石
2のN極着磁面から1.2mm離れた位置P2でのN極
着磁面平行成分ベクトルBX とN極着磁面垂直成分ベク
トルBY の測定結果を、図14に示す。ここで、図12
に示すように、バイアス磁石2として、外径が7mm、
厚さが4mmのものを使用している。そして、バイアス
磁石2の中心を基準位置とし、バイアス磁石2の中心か
ら半径方向の距離を図14の横軸にとり、N極着磁面平
行成分ベクトルBX の磁力とN極着磁面垂直成分ベクト
ルBY の磁力とを縦軸にとっている。
Next, as shown in FIG. 12, N-pole magnetized surface parallel component vector B X and N-pole magnetized surface perpendicular component at the position P2 spaced 1.2mm from the N-pole magnetized surface of the bias magnet 2 FIG. 14 shows the measurement result of the vector BY . Here, FIG.
As shown in the figure, the outer diameter of the bias magnet 2 is 7 mm,
The one having a thickness of 4 mm is used. Then, the center of the bias magnet 2 as a reference position, the radial distance from the center of the bias magnet 2 the horizontal axis of FIG. 14, N-pole magnetized surface force and N-pole magnetized surface perpendicular component of the parallel component vector B X The vertical axis represents the magnetic force of the vector BY .

【0032】この図14から、N極着磁面平行成分ベク
トルBX の強さは、バイアス磁石2の中心で「0」とな
り最も弱く、中心から離れるにつれて強くなりバイアス
磁石2の外周面で最大値をとり、バイアス磁石2の外周
面よりも遠ざかると徐々に弱くなる。そして、N極着磁
面平行成分ベクトルBX の磁力が±100ガウスより小
さくなるのは、バイアス磁石2の中心から±0.25m
m以内の範囲である。換言すれば、バイアス磁石2の中
心から±0.25mm以内の範囲から外れれば、±10
0ガウス以上の磁力となる。
As shown in FIG. 14, the intensity of the N-pole magnetized surface parallel component vector B X is “0” at the center of the bias magnet 2 and is weakest, and becomes stronger as the distance from the center increases, and becomes maximum at the outer peripheral surface of the bias magnet 2. The value gradually decreases as the distance from the outer peripheral surface of the bias magnet 2 increases. Then, N-pole magnetized surface of the magnetic force of the parallel component vector B X is less than 100 gauss ± is, ± from the center of the bias magnet 2 0.25 m
m. In other words, if it is out of the range of ± 0.25 mm from the center of the bias magnet 2, ± 10
The magnetic force becomes 0 gauss or more.

【0033】一方、N極着磁面垂直成分ベクトルBY
磁力は、バイアス磁石2の中心で最大値をとり、中心か
ら離れるにつれて弱くなる。そして、バイアス磁石2の
中心から+5.0mm以上離れると+100ガウスより
小さくなる。
On the other hand, the magnetic force of the N-pole magnetized surface perpendicular component vector BY has its maximum value at the center of the bias magnet 2 and becomes weaker as the distance from the center increases. When the distance from the center of the bias magnet 2 is +5.0 mm or more, the value becomes smaller than +100 Gauss.

【0034】よって、N極着磁面平行成分ベクトルBX
とN極着磁面垂直成分ベクトルBYが共に100ガウス
以上となり、磁気抵抗素子4,5が飽和磁界強度以上と
なるためには、磁気抵抗素子4,5をバイアス磁石2の
中心から0.25mm以上離し、かつ、バイアス磁石2
の外周面から1.5mm以内にする必要がある。
Therefore, the N-pole magnetized surface parallel component vector B X
And the N-pole magnetized surface vertical component vector BY both become 100 gauss or more, and the magnetoresistive elements 4 and 5 become saturated magnetic field strength or more. 25mm or more and bias magnet 2
Needs to be within 1.5 mm from the outer peripheral surface of.

【0035】さらに、図15には、図13に示すように
バイアス磁石2の外周面を基準位置とし、ギヤ7の径を
85mm、ギヤ7の歯8の数を「48」、θ=0とした
場合において、バイアス磁石2のN極着磁面から距離
(エアギャップ)を横軸にとり、抵抗変化率を縦軸にと
り、磁気抵抗素子4,5を基準位置から半径方向に距離
を変えた場合の測定結果を示す。
Further, in FIG. 15, the outer peripheral surface of the bias magnet 2 is used as a reference position as shown in FIG. 13, the diameter of the gear 7 is 85 mm, the number of teeth 8 of the gear 7 is "48", and θ = 0. In this case, the distance (air gap) from the N-pole magnetized surface of the bias magnet 2 is plotted on the horizontal axis, the rate of change in resistance is plotted on the vertical axis, and the distances of the magnetoresistive elements 4 and 5 from the reference position are changed in the radial direction. 2 shows the measurement results.

【0036】この図15から、磁気抵抗素子4,5の取
付け位置としてバイアス磁石2の外周面付近(+0.5
mm〜−1.5mm)であれば十分に必要な抵抗変化率
を得ることができ、取付けの許容範囲が広いことがわか
った。
FIG. 15 shows that the mounting positions of the magnetoresistive elements 4 and 5 are near the outer peripheral surface of the bias magnet 2 (+0.5
mm to -1.5 mm), the necessary resistance change rate can be obtained sufficiently, and it has been found that the allowable range of attachment is wide.

【0037】従って、図2においては、磁気抵抗素子
4,5の設置位置はバイアス磁石2(直径7mm)の中
心から0.25〜5mmという範囲にしたが、バイアス
磁石2の中心から3.5mmのバイアス磁石2の外周面
付近に規定してもよい。この場合には、その位置が多少
ズレても必要とされる抵抗変化率を得ることができる。
Accordingly, in FIG. 2, the positions of the magnetoresistive elements 4 and 5 are set in the range of 0.25 to 5 mm from the center of the bias magnet 2 (7 mm in diameter), but are 3.5 mm from the center of the bias magnet 2. May be defined near the outer peripheral surface of the bias magnet 2. In this case, a required resistance change rate can be obtained even if the position is slightly shifted.

【0038】図16,17には、各種のバイアス磁石を
用いた場合におけるN極着磁面平行成分ベクトルB
X (図16)およびN極着磁面垂直成分ベクトルB
Y (図17)の磁力の測定結果を示す。尚、その測定条
件は、図14の測定結果を得る際の条件と同一であり、
図16,17における横軸にはバイアス磁石の中心から
の距離をとっている。
FIGS. 16 and 17 show the N-pole magnetized surface parallel component vector B when various bias magnets are used.
X (FIG. 16) and N-pole magnetized surface perpendicular component vector B
17 shows the measurement results of the magnetic force of Y (FIG. 17). Note that the measurement conditions are the same as the conditions for obtaining the measurement results in FIG.
The horizontal axis in FIGS. 16 and 17 indicates the distance from the center of the bias magnet.

【0039】このように本実施例によれば、磁気抵抗素
子4,5を、バイアス磁石2のN極着磁面に平行に配置
するとともに、バイアス磁界におけるバイアス磁石2の
N極着磁面に平行であって、かつ外周側へ向かう磁気ベ
クトルBXに対して所定角度(略90度)傾けて配置
し、磁気ベクトルBXの変化を検出するようにした。よ
って、基板3をバイアス磁石2のN極着磁面に垂直に配
置する場合には構造上センサが着磁面に垂直な方向に大
きくなってしまっていたが、磁気抵抗素子4,5をバイ
アス磁石2のN極着磁面に平行に配置したので、小型化
を図ることができる。つまり、基板3をN極着磁面に平
行に配置することにより基板3をN極着磁面に垂直に配
置するものよりも、構造上、着磁面に垂直な方向に小さ
くすることができる。又、図20に示した従来の装置に
おいては、基板20をバイアス磁石23の着磁面23a
に垂直に保持するための工夫が必要であったが、本実施
例ではバイアス磁石2と支持板1と基板3をそれぞれ平
行に配置するので接着剤などで容易に保持でき、組み付
けも簡単に精度もよくすることができる。
As described above, according to this embodiment, the magnetoresistive elements 4 and 5 are arranged in parallel with the N-pole magnetized surface of the bias magnet 2 and are arranged on the N-pole magnetized surface of the bias magnet 2 in the bias magnetic field. The magnetic vectors BX are arranged in parallel with each other and inclined at a predetermined angle (approximately 90 degrees) with respect to the magnetic vector BX toward the outer peripheral side to detect a change in the magnetic vector BX. Therefore, when the substrate 3 is arranged perpendicular to the N-pole magnetized surface of the bias magnet 2, the sensor is structurally large in the direction perpendicular to the magnetized surface. Since the magnet 2 is arranged parallel to the N-pole magnetized surface, the size can be reduced. In other words, by arranging the substrate 3 parallel to the N-pole magnetized surface, the substrate 3 can be structurally smaller in the direction perpendicular to the magnetized surface than when the substrate 3 is arranged perpendicular to the N-pole magnetized surface. . In the conventional apparatus shown in FIG. 20 , the substrate 20 is fixed to the magnetized surface 23a of the bias magnet 23.
However, in this embodiment, the bias magnet 2, the support plate 1, and the substrate 3 are arranged in parallel with each other, so that the bias magnet 2, the support plate 1, and the substrate 3 can be easily held with an adhesive or the like, and the assembly can be easily performed with high accuracy. Can also be better.

【0040】さらに、磁気抵抗素子4,5をバイアス磁
界におけるバイアス磁石2のN極着磁面に平行かつ外周
側へ向かう磁気ベクトルBX に対して所定角度(略90
度)傾けて配置したので、抵抗変化波形の波形割れが防
止される。特に、磁気抵抗素子4,5を磁気ベクトルB
X に対して略45度傾けて配置したので、抵抗変化率が
ベクトルの振れに対して最大値を示すこととなり、抵抗
変化率を大きくすることができる。
[0040] Further, a predetermined angle (approximately 90 with respect to the magnetic vector B X toward the magneto-resistive elements 4 and 5 to the parallel and the outer peripheral side of the N-pole magnetized surface bias magnet 2 in the bias magnetic field
Degree) The arrangement is inclined so that the resistance change waveform is prevented from being broken. In particular, when the magnetic resistance elements 4 and 5
Since it is arranged at an angle of about 45 degrees with respect to X , the rate of change of resistance shows the maximum value with respect to the deflection of the vector, and the rate of change of resistance can be increased.

【0041】又、ギヤ7の回転方向に対し磁気抵抗素子
4,5を30〜150度あるいは210〜330度回転
した位置に配置したので、抵抗変化率が大きくなり、確
実に抵抗変化率を確保することができる。
Further, since the magnetoresistive elements 4 and 5 are arranged at positions rotated by 30 to 150 degrees or 210 to 330 degrees with respect to the rotation direction of the gear 7, the rate of change in resistance increases, and the rate of change in resistance is ensured. can do.

【0042】さらに、ギヤ7の回転方向に対し磁気抵抗
素子4,5を90度あるいは270度回転した位置に配
置したので、さらに抵抗変化率が大きくなる。又、磁気
抵抗素子4,5の配置位置として、バイアス磁石2の中
心から必要なベクトルBX が得られるだけ離れて、かつ
バイアス磁石2の外周から必要なベクトルBY が得られ
るように離れすぎない範囲、即ち、バイアス磁石2の中
心から0.25mm以上離れて外周面から1.5mm以
上離れない範囲とした。よって、磁界強度が磁気抵抗素
子4,5の飽和磁界強度以上(BX ,BY とも100ガ
ウス以上)あり、ギヤ7の回転による磁気ベクトルBX
の変化が得られる。
Further, since the magnetoresistive elements 4 and 5 are disposed at positions rotated by 90 degrees or 270 degrees with respect to the rotation direction of the gear 7, the resistance change rate is further increased. Further, as the arrangement position of the magnetic resistance elements 4 and 5, separated by the required vector B X from the center of the bias magnet 2 can be obtained, and too far away as required vector B Y from the outer periphery of the bias magnet 2 can be obtained That is, the range was set to a range that was not more than 0.25 mm from the center of the bias magnet 2 and not more than 1.5 mm from the outer peripheral surface. Therefore, the magnetic field intensity is equal to or higher than the saturation magnetic field intensity of the magnetoresistive elements 4 and 5 (B X and B Y are equal to or more than 100 Gauss), and the magnetic vector B X due to the rotation of the gear 7
Is obtained.

【0043】特に、バイアス磁石2の外周面付近に磁気
抵抗素子4,5を配置することにより取付けの際に多少
の位置ズレがあっても十分な抵抗変化率が得られる。
又、図5に示すように、2つの磁気抵抗素子4,5を所
定の磁気ベクトルに対して近接配置して所定の磁気ベク
トルの変化を検出するようにしているので、磁気ベクト
ルの変化を安定して検出することができるとともに、一
つの基板上に磁気抵抗素子を形成する場合に基板面積を
小さくできる。
In particular, by arranging the magnetoresistive elements 4 and 5 near the outer peripheral surface of the bias magnet 2, a sufficient rate of change in resistance can be obtained even if there is a slight displacement during mounting.
Further, as shown in FIG. 5, since the two magnetoresistive elements 4 and 5 are arranged close to a predetermined magnetic vector to detect a change in the predetermined magnetic vector, the change in the magnetic vector is stabilized. And when the magnetoresistive element is formed on one substrate, the substrate area can be reduced.

【0044】この発明の他の態様を以下に説明する。上
記実施例では図5に示したように磁気抵抗素子4,5を
磁気ベクトルBXの方向(W)に対し略プラス・マイナ
ス45°の方向に延びるように配置したが、45°でな
くてもよく、例えば、図18に示すように、磁気ベクト
ルBXの方向(W)に対し磁気抵抗素子4,5をプラス
・マイナス60°の方向に延びるように配置したり、図
19に示すように、磁気ベクトルBXの方向(W)に対
し磁気抵抗素子4,5をプラス・マイナス135°の方
向に延びるように配置してもよい。尚、図19に示すよ
うに、磁気ベクトルBXの方向(W)に対し磁気抵抗素
子4,5をプラス・マイナス135°の方向に延びるよ
うに配置するということは、磁気ベクトルBXと磁気抵
抗素子4,5とでなす角度が45°となっていることを
意味し、磁気抵抗素子4,5を磁気ベクトルBXに対し
て45度傾けて配置したこととなる。
Another embodiment of the present invention will be described below. In the above embodiment, as shown in FIG. 5, the magnetoresistive elements 4 and 5 are arranged so as to extend in a direction of approximately plus or minus 45 ° with respect to the direction (W) of the magnetic vector BX. For example, as shown in FIG. 18, the magnetoresistive elements 4 and 5 are arranged so as to extend in the direction of plus or minus 60 ° with respect to the direction (W) of the magnetic vector BX, or as shown in FIG. The magnetoresistive elements 4 and 5 may be arranged to extend in the direction of plus or minus 135 ° with respect to the direction (W) of the magnetic vector BX . As shown in FIG. 19, arranging the magnetoresistive elements 4 and 5 so as to extend in the direction of plus or minus 135 ° with respect to the direction (W) of the magnetic vector BX means that the magnetic vector BX and the magnetoresistive element This means that the angle formed between the magnetic resistance elements 4 and 5 is 45 °, which means that the magnetoresistive elements 4 and 5 are arranged at an angle of 45 degrees with respect to the magnetic vector BX.

【0045】即ち、本発明は、特開平3−195970
号公報に示されている磁気検出装置と同等の思想を適用
したものであって、磁気抵抗素子の形成面に平行な面内
にて変化する磁気ベクトルを検出するようにすること
で、抵抗変化によって得られる検出信号を波形処理回路
6にて2値化するとき、被検出体と磁気検出素子との間
のエアギャップが狭まった際に出力パルスが倍になって
しまうという波形割れ現象を防止できるようにしたもの
である。従って、上記実施例において、磁気抵抗素子
4,5と磁気ベクトルBX の方向(同一径方向)との角
度が45°でなくてもよく、被検出体の動きに応じて変
化する磁気ベクトルとなす角度が異なるように、磁気抵
抗素子4と5を配置するようにすればよい。ただ、上記
公報にもあるように、図5に示すように方向Wを中心と
して磁気ベクトルBX がW1からW2の範囲で振れる場
合、前記角度を45°(あるいは135°)とすると、
磁気抵抗素子の抵抗変化率が最も大きいため、45°配
置にすることが最もよい。さらに、磁気抵抗素子4と5
とのなす角度が90°となるため、2つの磁気抵抗素子
の抵抗変化の方向が逆位相となり、出力電圧が最も大き
くとれるようになる。
That is, the present invention relates to Japanese Patent Application Laid-Open No. 3-195970.
No. 6,098,067, which applied a concept equivalent to that of the magnetic detection device shown in Japanese Patent Publication No. When the detection signal obtained by the above is binarized by the waveform processing circuit 6, the waveform break phenomenon that the output pulse is doubled when the air gap between the object to be detected and the magnetic detection element is narrowed is prevented. It is made possible. Therefore, in the above embodiment, the angle between the magnetoresistive elements 4 and 5 and the direction of the magnetic vector B X (the same radial direction) does not have to be 45 °. What is necessary is just to arrange the magnetoresistive elements 4 and 5 so that the angle formed may differ. However, as is also the above publication, if the swing range magnetic vector B X is from W1 W2 about the direction W as shown in FIG. 5, when the angle is 45 ° (or 135 °),
Since the rate of change in resistance of the magnetoresistive element is the largest, it is best to arrange it at 45 °. Further, the magnetoresistive elements 4 and 5
Is 90 °, the directions of the resistance changes of the two magnetoresistive elements are in opposite phases, and the output voltage can be maximized.

【0046】又、上記実施例ではバイアス磁石2のN極
着磁面をギヤ1に対向させ、バイアス磁石2の外周側へ
向かう磁気ベクトルBX を用いて磁気検出を行ったが、
バイアス磁石2のS極着磁面を被検出対象(ギヤ1)に
対向させ、バイアス磁石2の外周側から着磁面の中央へ
向かう磁気ベクトルを用いて磁気検出を行ってもよい。
即ち、磁気抵抗素子4,5を、バイアス磁石2の着磁面
に平行に配置するとともに、被検出対象に対向するバイ
アス磁石の着磁面に平行でかつ外周側から内方へ向かう
磁気ベクトルに対して所定角度傾けて配置し、前記磁気
ベクトルの変化を検出するようにしてもよい。
In the above-described embodiment, the magnetic detection is performed by using the magnetic vector B X directed to the outer peripheral side of the bias magnet 2 with the N-pole magnetized surface of the bias magnet 2 facing the gear 1.
The S-pole magnetized surface of the bias magnet 2 may be opposed to the detection target (gear 1), and the magnetic detection may be performed using a magnetic vector from the outer peripheral side of the bias magnet 2 toward the center of the magnetized surface.
That is, the magnetoresistive elements 4 and 5 are arranged in parallel to the magnetized surface of the bias magnet 2, and have a magnetic vector parallel to the magnetized surface of the bias magnet facing the detection target and moving inward from the outer peripheral side. The magnetic vector may be arranged to be inclined at a predetermined angle to detect a change in the magnetic vector.

【0047】又、上記実施例ではバイアス磁石として、
円柱形のものを用いたが、バイアス磁石の形状として他
の形状のものでもよく、磁石中心から外周側に磁気ベク
トルが発生しているものならばよい。
In the above embodiment, the bias magnet is
Although a cylindrical shape is used, the bias magnet may have another shape, as long as a magnetic vector is generated from the center of the magnet to the outer peripheral side.

【0048】[0048]

【発明の効果】以上詳述したように請求項1に記載の発
明によれば、小型化することができるとともに抵抗変化
波形の波形割れを防止できる。
As described above in detail, according to the first aspect of the present invention, it is possible to reduce the size and to prevent the resistance change waveform from being broken.

【0049】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、抵抗変化率を大きくするこ
とができる。請求項3に記載の発明によれば、請求項1
に記載の発明の効果に加え、抵抗変化率を大きくでき
る。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention described in (1), the rate of change in resistance can be increased. According to the invention set forth in claim 3, claim 1 is provided.
In addition to the effects of the invention described in (1), the rate of change in resistance can be increased.

【0050】請求項4に記載の発明によれば、請求項1
〜3のいずれか1項に記載の発明の効果に加え、さらに
抵抗変化率を大きくできる。請求項5に記載の発明によ
れば、請求項1〜4のいずれか1項に記載の発明の効果
に加え、磁気抵抗素子の設置位置が多少ズレても十分な
抵抗変化率が得られる。請求項6に記載の発明によれ
ば、よりよい検出方法を提供できる。
According to the fourth aspect of the present invention, the first aspect is provided.
In addition to the effects of the invention described in any one of Items 3 to 3, the resistance change rate can be further increased. According to the fifth aspect, in addition to the effects of the first aspect, a sufficient rate of change in resistance can be obtained even if the installation position of the magnetoresistive element is slightly shifted. According to the invention of claim 6
Thus, a better detection method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の磁気回転検出装置の平面図。FIG. 1 is a plan view of a magnetic rotation detecting device according to an embodiment.

【図2】図1のA矢視図。FIG. 2 is a view taken in the direction of the arrow A in FIG. 1;

【図3】バイアス磁石の磁力線を示す側面図。FIG. 3 is a side view showing magnetic lines of force of a bias magnet.

【図4】図3のB矢視図。FIG. 4 is a view taken in the direction of arrow B in FIG. 3;

【図5】基板の平面図。FIG. 5 is a plan view of a substrate.

【図6】作用を説明するための波形図。FIG. 6 is a waveform chart for explaining the operation.

【図7】ギヤと磁気抵抗素子との配置関係を説明するた
めの説明図。
FIG. 7 is an explanatory diagram for explaining an arrangement relationship between a gear and a magnetoresistive element.

【図8】ギヤと磁気抵抗素子との配置関係を説明するた
めの説明図。
FIG. 8 is an explanatory diagram for explaining an arrangement relationship between a gear and a magnetoresistive element.

【図9】バイアス磁石と磁気抵抗素子との配置を示す配
置図。
FIG. 9 is an arrangement diagram showing an arrangement of a bias magnet and a magnetoresistive element.

【図10】素子配置角θに対する抵抗変化率の測定結果
を示すグラフ。
FIG. 10 is a graph showing a measurement result of a resistance change rate with respect to an element arrangement angle θ.

【図11】素子配置角θに対する抵抗変化率の測定結果
を示すグラフ。
FIG. 11 is a graph showing a measurement result of a resistance change rate with respect to an element arrangement angle θ.

【図12】バイアス磁石の側面図。FIG. 12 is a side view of a bias magnet.

【図13】バイアス磁石の側面図。FIG. 13 is a side view of the bias magnet.

【図14】磁石中心からの距離に対する磁力の測定結果
を示すグラフ。
FIG. 14 is a graph showing a measurement result of a magnetic force with respect to a distance from a center of a magnet.

【図15】エアギャップに対する抵抗変化率の測定結果
を示すグラフ。
FIG. 15 is a graph showing a measurement result of a resistance change rate with respect to an air gap.

【図16】磁石中心からの距離に対するBX 磁力の測定
結果を示すグラフ。
Figure 16 is a graph showing the measurement results of B X force versus distance from the magnet center.

【図17】磁石中心からの距離に対するBY 磁力の測定
結果を示すグラフ。
FIG. 17 is a graph showing a measurement result of a BY magnetic force with respect to a distance from a magnet center.

【図18】別例の基板平面図。FIG. 18 is a plan view of another example of a substrate.

【図19】別例の基板平面図。FIG. 19 is a plan view of another example of a substrate.

【図20】従来の回転センサの平面図。 FIG. 20 is a plan view of a conventional rotation sensor.

【符号の説明】[Explanation of symbols]

2…バイアス磁石、3…基板、4,5…磁気抵抗素子、
7…被検出対象としてのギヤ
2 ... bias magnet, 3 ... substrate, 4, 5 ... magnetoresistive element,
7: Gears to be detected

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 泰明 愛知県刈谷市昭和町1丁目1番地 日本 電装 株式会社 内 (56)参考文献 特開 平3−48720(JP,A) 特開 平7−4988(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01P 3/488 G01D 5/245 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasuaki Makino 1-1-1 Showa-cho, Kariya-shi, Aichi Japan Denso Co., Ltd. (56) References JP-A-3-48720 (JP, A) JP-A-7- 4988 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01P 3/488 G01D 5/245

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 着磁面が磁性材料を有する被検出対象に
対向し、当該被検出対象に向けてバイアス磁界を発生す
るバイアス磁石と、 前記バイアス磁界中に配置された磁気抵抗素子とを備
え、 前記磁気抵抗素子にて前記被検出対象の運動に伴う前記
バイアス磁石から前記被検出対象へのバイアス磁界の変
化により抵抗変化を生じさせるようにした磁気検出装置
において、 前記磁気抵抗素子を、前記バイアス磁石の着磁面に平行
に配置するとともに、前記バイアス磁界における前記バ
イアス磁石の着磁面に平行であって、かつ外周側へ向か
う磁気ベクトルあるいは外周側から内方へ向かう磁気ベ
クトルに対して所定角度傾けて対称的に配置し、さらに
は前記被検出対象の回転方向に対し直角方向に配置し、
前記磁気ベクトルの変化を検出するようにしたことを特
徴とする磁気検出装置。
1. A bias magnet having a magnetized surface facing a detection target having a magnetic material and generating a bias magnetic field toward the detection target; and a magnetoresistive element disposed in the bias magnetic field. A magnetic detection device configured to cause a change in resistance due to a change in a bias magnetic field from the bias magnet to the object to be detected accompanying the movement of the object to be detected in the magnetoresistive element; Along with being arranged parallel to the magnetized surface of the bias magnet, the magnetic field parallel to the magnetized surface of the bias magnet in the bias magnetic field and with respect to the magnetic vector heading toward the outer peripheral side or the magnetic vector heading inward from the outer peripheral side. predetermined angle inclined symmetrically disposed, further
Are arranged at right angles to the rotation direction of the detection target,
A magnetic detection device, wherein a change in the magnetic vector is detected.
【請求項2】 前記磁気抵抗素子を前記磁気ベクトルに
対して略45度傾けて配置したことを特徴とする請求項
1に記載の磁気検出装置。
2. The magnetic detecting device according to claim 1, wherein the magnetoresistive element is disposed at an angle of about 45 degrees with respect to the magnetic vector.
【請求項3】 前記被検出対象の運動方向に対し前記磁
気抵抗素子を30〜150度あるいは210〜330度
回転した位置に配置したことを特徴とする請求項1また
は2に記載の磁気検出装置。
3. The magnetic detection device according to claim 1, wherein the magnetoresistive element is arranged at a position rotated by 30 to 150 degrees or 210 to 330 degrees with respect to the movement direction of the detection target. .
【請求項4】 前記被検出対象の運動方向に対し前記磁
気抵抗素子を90度あるいは270度回転した位置に配
置したことを特徴とする請求項1〜3のいずれか1項に
記載の磁気検出装置。
4. The magnetic detection device according to claim 1, wherein the magnetoresistive element is arranged at a position rotated by 90 degrees or 270 degrees with respect to the direction of movement of the detection target. apparatus.
【請求項5】 前記磁気抵抗素子をバイアス磁石の外周
面付近に配置したことを特徴とする請求項1〜4のいず
れか1項に記載の磁気検出装置。
5. The magnetic detection device according to claim 1, wherein the magnetoresistive element is arranged near an outer peripheral surface of the bias magnet.
【請求項6】 着磁面が磁性材料を有する被検出対象に
対向し、当該被検出対象に向けてバイアス磁界を発生す
るバイアス磁石と、 前記バイアス磁界中に磁気抵抗素子とを配置し、 前記磁気抵抗素子を、前記バイアス磁石の着磁面に平行
に配置するとともに、前記バイアス磁界における前記バ
イアス磁石の着磁面に平行であって、かつ外周側へ向か
う磁気ベクトルあるいは外周側から内方へ向かう磁気ベ
クトルに対して所定角度傾けて対称的に配置し、さらに
は前記被検出対象の回転方向に対し直角方向に配置し、
前記磁気抵抗素子にて前記被検出対象の運動に伴う前記
バイアス磁石から前記被検出対象への前記バイアス磁界
の変化を検出することを特徴とする磁気抵抗素子を用い
た対象物の運動の検出方法。
6. A bias magnet having a magnetized surface facing a detection target having a magnetic material and generating a bias magnetic field toward the detection target, and a magnetoresistive element disposed in the bias magnetic field, A magneto-resistive element is arranged in parallel with the magnetized surface of the bias magnet, and is parallel to the magnetized surface of the bias magnet in the bias magnetic field, and a magnetic vector directed to the outer peripheral side or inward from the outer peripheral side. It is arranged symmetrically at a predetermined angle with respect to the heading magnetic vector, and
Are arranged at right angles to the rotation direction of the detection target,
Detecting a change in the bias magnetic field from the bias magnet to the object to be detected due to the movement of the object to be detected by the magnetoresistive element; .
JP04325595A 1994-03-02 1995-03-02 Magnetic detector Expired - Lifetime JP3341518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04325595A JP3341518B2 (en) 1994-03-02 1995-03-02 Magnetic detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-32693 1994-03-02
JP3269394 1994-03-02
JP04325595A JP3341518B2 (en) 1994-03-02 1995-03-02 Magnetic detector

Publications (2)

Publication Number Publication Date
JPH07294540A JPH07294540A (en) 1995-11-10
JP3341518B2 true JP3341518B2 (en) 2002-11-05

Family

ID=26371273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04325595A Expired - Lifetime JP3341518B2 (en) 1994-03-02 1995-03-02 Magnetic detector

Country Status (1)

Country Link
JP (1) JP3341518B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523983B2 (en) * 2010-08-17 2014-06-18 浜松光電株式会社 Correction method for magnetic sensor and evaluation method of magnetic sensor
DE112015002254T5 (en) 2014-05-13 2017-03-02 Mitsubishi Electric Corporation MAGNETIC SENSOR DEVICE
CN106560005B (en) * 2014-06-11 2019-09-06 三菱电机株式会社 Magnetic sensor device
CN106537166B (en) 2014-07-25 2019-12-10 三菱电机株式会社 Magnetic sensor device
JP2016206070A (en) * 2015-04-24 2016-12-08 日本電産サンキョー株式会社 Magnetic sensor device

Also Published As

Publication number Publication date
JPH07294540A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
US5644226A (en) Magnetic detector having a bias magnet and magnetoresistive elements shifted away from the center of the magnet
KR100810784B1 (en) Sensor for the detection of the direction of a magnetic field
US7112957B2 (en) GMR sensor with flux concentrators
US5781005A (en) Hall-effect ferromagnetic-article-proximity sensor
WO2012157558A1 (en) Magnetic sensor device
US20100156400A1 (en) Magnetic sensor device, magnetic encoder device and magnetic scale manufacturing method
WO2013153986A1 (en) Magnetic sensor
EP1031038A1 (en) Magnetic position detector
JP2003215145A (en) Rotational frequency detector
US9170309B2 (en) Through bias pole for IGMR speed sensing
JP3341518B2 (en) Magnetic detector
JPH08178937A (en) Magnetism detecting device
JP3086563B2 (en) Rotation angle sensor
JP3102268B2 (en) Magnetic detector
US5422569A (en) Rotation detecting apparatus using magnetroresistive element with an arrangement of detection units
JPH11118517A (en) Sensor for body of rotation
JP2003139560A (en) Rotational position detector
JP3233129B2 (en) Magnetic detector
JP3186656B2 (en) Speed sensor
JP4737372B2 (en) Rotation angle detector
JPH09287911A (en) Apparatus for detecting rotational shift
JPH0480324B2 (en)
JP3049803B2 (en) Magnetic rotation angle detector
JP2002022487A (en) Magnetic-type rotation angle detecting device
JPH05203402A (en) Rotational displacement detecting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term