JP3341111B2 - Deep-bottom resource suction and lifting device - Google Patents

Deep-bottom resource suction and lifting device

Info

Publication number
JP3341111B2
JP3341111B2 JP17008499A JP17008499A JP3341111B2 JP 3341111 B2 JP3341111 B2 JP 3341111B2 JP 17008499 A JP17008499 A JP 17008499A JP 17008499 A JP17008499 A JP 17008499A JP 3341111 B2 JP3341111 B2 JP 3341111B2
Authority
JP
Japan
Prior art keywords
gas
liquid
pipe
suction
air lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17008499A
Other languages
Japanese (ja)
Other versions
JP2000227100A (en
Inventor
健 吉岡
Original Assignee
健 吉岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健 吉岡 filed Critical 健 吉岡
Priority to JP17008499A priority Critical patent/JP3341111B2/en
Publication of JP2000227100A publication Critical patent/JP2000227100A/en
Application granted granted Critical
Publication of JP3341111B2 publication Critical patent/JP3341111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、深浅を問わず海中、海
底に眠る鉱物、生物、バイオ、冷水、熱水、深層水等の
資源に留まらず、水底等の土砂等をも含めて効果的に地
上に引き上げる深底資源吸引揚装置に関するものであ
る。
The present invention is effective not only in minerals, organisms, bio, cold water, hot water, deep water, etc., which sleep on the sea floor, whether deep or shallow, but also on soils such as water bottoms. The present invention relates to a deep-bottom resource suction and lifting device that is selectively lifted to the ground.

【0002】[0002]

【従来の技術】深海底に眠る資源の採取方法としてエア
リフト効果を利用する方法が多く発表されているが、こ
の場合、エアリフト効果を起こさせるため、空気圧縮機
(コンプレッサー)により水中のエアリフトパイプ内に
送気して気泡を上昇させる方法が主体であった。このコ
ンプレッサーを使用する方法は、羽根、ピストン、スク
リュー等による高速回転や高速稼働が必要で、騒音や振
動を伴いエネルギーのロスであった、また、騒音、振動
の防止装置をも必要とし設備が複雑大型化し、コスト高
となり実用的とは言えない状況にあった。
2. Description of the Related Art Many methods have been disclosed which utilize the airlift effect as a method of collecting resources sleeping on the deep sea floor. In this case, in order to cause the airlift effect, an air compressor (compressor) is used to extract the underwater airlift pipe. The main method was to send air to the air to raise bubbles. The method using this compressor requires high-speed rotation and high-speed operation with blades, pistons, screws, etc., resulting in energy loss with noise and vibration.In addition, equipment that requires noise and vibration prevention equipment is required. The situation was complicated and large, the cost was high, and it was not practical.

【0003】また、マンガン団塊等のかさ比重より重い
比重を有する重液を、下降管と接続する海底U字管から
揚鉱管を経て、マンガン団塊原鉱を重液から生じる浮力
によって海上に排出する方法も発表されている。この方
法は、マンガン団塊を浮上させる効果的な重液のかさ比
重は大きくなり、水深2000m〜4000mの海底で
は海水との水圧差だけでも現在の深海の水圧を越えるこ
とが予想され、浮力で上昇させるまでの過程に困難性が
大きく実用的ではない欠点があった。
[0003] Further, heavy liquid having a specific gravity greater than the bulk specific gravity of manganese nodules and the like is discharged from the U-shaped pipe connected to the downcomer through the ore-pipe, and the manganese nodule ore is discharged to the sea by buoyancy generated from the heavy liquid. How to do that has also been announced. In this method, the bulk density of heavy liquid that is effective for floating manganese nodules is large, and it is expected that the water pressure difference from the seawater alone will exceed the current water pressure of the deep sea on the seabed at a depth of 2000m to 4000m, and will increase by buoyancy. There was a drawback that the process up to this was difficult and not practical.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
のコンプレッサーによる送気方法や重液から生じる浮力
による資源採取方法ではなく、また、送気方法として遠
心力や高速回転による機械を利用しない装置の開発にあ
る。
An object of the present invention is not to use a conventional compressor air supply method or a resource collection method based on buoyancy generated from heavy liquid, but also to use a machine using centrifugal force or high-speed rotation as an air supply method. Is in the development of equipment that does not.

【0005】本発明の他の目的は、深海への高圧送気状
態下で気体の圧送途上に故障等の不都合が起きない簡単
な装置の開発にある。
Another object of the present invention is to develop a simple apparatus which does not cause a trouble such as a failure during the gas pressure feeding under a high pressure air feeding state to the deep sea.

【0006】本発明の他の目的は、複雑多種な機械構成
や、騒音振動の原因となる装置を使用せず、維持管理が
簡単で騒音振動の小さい、コストも低く容易に使用でき
る装置の開発にある。
Another object of the present invention is to develop a device which is simple to maintain, has low noise and vibration, is low in cost, and can be used easily, without using complicated and various types of mechanical configurations and devices which cause noise and vibration. It is in.

【0007】本発明の他の目的は、深海等で自在かつ容
易に資源を監視し、効果的に採取ができる装置の開発に
ある。
Another object of the present invention is to develop a device which can monitor a resource freely and easily in the deep sea or the like and can effectively collect the resource.

【0008】[0008]

【課題を解決するための手段】本発明は、前述した従来
実用化が困難であった深海底に眠る鉱物資源を効果的に
引揚げるため、気体と液体を同一のパイプで共に深海へ
圧送するポンプ1から気液圧送パイプ2を水中に延伸し
て、水中の気液分離室3へ接続し、気液分離室3の上部
からサイフォン4を設けて下方に延伸し、他端を気液分
離室3の縦の長さの範囲内のエアリフトパイプ6下部に
接続して気泡押出口5とし、エアリフトパイプ6を上方
の水面方向に延伸して上端を資源放出口7とし、エアリ
フトパイプ6の下端に吸引パイプ8の上端を連通接続
し、吸引パイプ8を水中深部へ延伸して他端を吸引口9
とした装置であって、ポンプ1から圧送した気体と液体
は、気液圧送パイプ2を経て気液分離室3内に入り、気
体と液体は上下に分離して水位を形成し、液体は下部か
ら液体の増加で外部の水中に放出され、気体はサイフォ
ン4に入り気体のサイフォンを形成し、気体の増加で気
泡押出口5から気泡となってエアリフトパイプ6に入
り、上昇しながらエアリフト効果を発揮し、気泡押出口
5と吸引口9の両方に吸引力を起こさせ、気泡押出口5
での吸引力は気液分離室3内に室内水位A10−1また
は室内水位B10−2または室内水位C10−3を形成
させ、吸引口9から液体または液体と共に海底11の資
源12を吸引し、吸引物の最大サイズの沈降速度を越え
る効果的流速で吸引パイプ8を経てエアリフトパイプ6
内を気泡と共に上昇させて資源放出口7から外部の貯留
場所等に輸送することに特徴がある。
According to the present invention, in order to effectively withdraw the above-mentioned mineral resources lying on the deep sea floor, which have been difficult to put into practical use, gas and liquid are pumped together into the deep sea using the same pipe. A gas-liquid pressure feed pipe 2 is extended from water from a pump 1 into water, connected to a gas-liquid separation chamber 3 in water, a siphon 4 is provided from above the gas-liquid separation chamber 3 and extended downward, and the other end is subjected to gas-liquid separation. It is connected to the lower part of the air lift pipe 6 within the vertical length of the chamber 3 to form a bubble extrusion port 5, the air lift pipe 6 extends in the upper water surface direction, and the upper end becomes the resource discharge port 7, and the lower end of the air lift pipe 6 The suction pipe 8 is connected to the upper end of the suction pipe 8, the suction pipe 8 is extended to the deep part underwater, and the other end is connected to the suction port 9.
The gas and liquid pumped from the pump 1 enter the gas-liquid separation chamber 3 via the gas-liquid pumping pipe 2, the gas and liquid are separated vertically to form a water level, and the liquid The liquid is released into the external water by an increase in the liquid, and the gas enters the siphon 4 to form a siphon of the gas. The increase in the gas forms bubbles from the bubble extrusion port 5 into the air lift pipe 6, and the air lift effect is increased. It exerts a suction force on both the bubble extrusion port 5 and the suction port 9 to cause the bubble extrusion port 5
Causes the indoor water level A10-1 or the indoor water level B10-2 or the indoor water level C10-3 to be formed in the gas-liquid separation chamber 3, and sucks the liquid 12 or the resources 12 of the seabed 11 together with the liquid from the suction port 9, The air lift pipe 6 passes through the suction pipe 8 at an effective flow rate exceeding the maximum size sedimentation velocity of the suctioned material.
It is characterized in that the inside is raised together with air bubbles and transported from the resource discharge port 7 to an external storage location or the like.

【0009】また、本発明は、吸引パイプ8の吸引口9
の近辺に、遠隔監視操作機器13を付設し、遠隔操作で
資源12を監視すると共に適時自在に移動して資源の選
別、切削、収集、吸引、目詰まり処理等を行うことに特
徴がある。
The present invention also provides a suction port 9 of a suction pipe 8.
Is characterized in that a remote monitoring and operating device 13 is attached to the vicinity of, and the resource 12 is monitored by remote control, and is moved freely as needed to perform resource selection, cutting, collection, suction, clogging, and the like.

【0010】[0010]

【0011】[0011]

【実施の態様】本発明の深底資源吸引揚装置の一例を、
図1に従って説明すると、請求項1の場合を示し、前述
した従来実用化が困難とされた、設備の大型化、複雑化
やコストの壁を解決する技術を開発するため、気体と液
体(以下気液と言う)を同一のパイプで共に深海へ圧送
するポンプ1から気液圧送パイプ2を水中に延伸して、
水中の気液分離室3へ接続し、気液分離室3の上部から
サイフォン4を設けて下方に延伸し、他端を気液分離室
3の縦の長さの範囲内のエアリフトパイプ6下部に接続
して気泡押出口5とする、エアリフトパイプ6を上方の
水面方向に延伸して上端を資源放出口7とし、エアリフ
トパイプ6の下端に吸引パイプ8の上端を連通接続し、
吸引パイプ8を水中深部へ延伸して他端を吸引口9とし
た装置であって、ポンプ1から圧送した気液は、気液圧
送パイプ2を経て気液分離室3内に入り、気液は上下に
分離して水位を形成し、液体は下部から液体の増加で外
部の水中に放出され、気体はサイフォン4に入り気体の
サイフォンを形成し、気体の増加で気泡押出口5から気
泡となってエアリフトパイプ6に入り、上昇しながらエ
アリフト効果を発揮し、気泡押出口5と吸引口9の両方
に吸引力を起こさせ、気泡押出口5での吸引力は気液分
離室3内に室内水位A10−1または室内水位B10−
2または室内水位C10−3を形成させ、吸引口9から
液体または液体と共に海底11の資源12を吸引し、吸
引物の最大サイズの沈降速度を越える効果的流速で吸引
パイプ8を経てエアリフトパイプ6内を気泡と共に上昇
させて資源放出口7から外部の貯留場所等に輸送するも
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One example of the deep bottom resource suction and lifting device of the present invention is as follows.
Referring to FIG. 1, the case of claim 1 will be described. In order to develop a technology for solving the above-mentioned conventional problems that have been difficult to put to practical use, such as large-scale equipment, complexity, and cost barriers, gas and liquid (hereinafter, referred to as "gas" and "liquid") will be described. The gas-liquid pump pipe 2 is drawn into the water from a pump 1 that pumps the same into the deep sea with the same pipe.
It is connected to the underwater gas-liquid separation chamber 3, a siphon 4 is provided from the upper part of the gas-liquid separation chamber 3 and extends downward, and the other end is located below the air lift pipe 6 within the vertical length of the gas-liquid separation chamber 3. The upper end of the air lift pipe 6 is connected to the upper end of the suction pipe 8 by communicating with the lower end of the air lift pipe 6.
This is a device in which a suction pipe 8 is extended to a deep part in the water and the other end is a suction port 9. The gas-liquid pumped from the pump 1 enters the gas-liquid separation chamber 3 through the gas-liquid pressure pipe 2, Separates upward and downward to form a water level, the liquid is discharged from the bottom into the external water with an increase in the liquid, the gas enters the siphon 4 to form a gas siphon, and the gas increases from the bubble outlet 5 to form bubbles. As it rises, it enters the air lift pipe 6 and exerts an air lift effect while ascending, causing a suction force to be generated in both the bubble ejection port 5 and the suction port 9, and the suction force at the bubble ejection port 5 enters the gas-liquid separation chamber 3. Indoor water level A10-1 or indoor water level B10-
2 or the indoor water level C10-3, sucks the liquid or the resources 12 of the seabed 11 together with the liquid from the suction port 9, and the air lift pipe 6 through the suction pipe 8 at an effective flow rate exceeding the maximum size sedimentation velocity of the suctioned material. The inside is raised together with air bubbles and transported from the resource discharge port 7 to an external storage location or the like.

【0012】気液分離室3を設ける理由の1つは、気液
を分離すると共にサイフォン4から気体のみをエアリフ
トパイプに供給させるためである、もう1つは、気液分
離室3に縦長に構成して室内水位を形成させて室内水位
を上下移動できる縦長の幅を確保して、吸引途上やエア
リフト途上に異常が起きても室内水位の変化で対応さ
せ、ポンプ1に急激な変化を起こさせないためである。
One of the reasons for providing the gas-liquid separation chamber 3 is to separate the gas and liquid and to supply only the gas from the siphon 4 to the air lift pipe. By forming the indoor water level and securing a vertically long width that allows the indoor water level to move up and down, even if an abnormality occurs during the suction or air lift, the indoor water level changes to cope with the change, and the pump 1 suddenly changes. This is to prevent them from doing so.

【0013】図1に示す気液分離室3内の上部からサイ
フォン4を設ける理由は、気泡押出口5からエアリフト
パイプに給気するためである、また、『サイフォン4を
設けて下方に延伸して他端を気液分離室3の高さの範囲
内に気泡押出口5を設ける』理由は、気泡押出口5の位
置より上幅と下幅の両方が必要であるためである。実験
の観察によると、吸引パイプ8の途上や吸引口9に目詰
まり等に抵抗が起きると気液分離室3内の水位は気泡押
出口5よりa値に相当する高い室内水位C10−1を形
成する、エアリフトパイプの途上や資源放出口7に目詰
まり等の抵抗が起きると気液分離室3内の水位は気泡押
出口5よりb値に相当する低い室内水位C10−3を形
成する。
The reason for providing the siphon 4 from the upper part in the gas-liquid separation chamber 3 shown in FIG. 1 is to supply air to the air lift pipe from the bubble extrusion port 5. The other end is provided within the range of the height of the gas-liquid separation chamber 3 ". This is because both the upper width and the lower width from the position of the bubble extrusion port 5 are required. According to the observation of the experiment, when resistance occurs in the middle of the suction pipe 8 or in the suction port 9 due to clogging or the like, the water level in the gas-liquid separation chamber 3 becomes higher than the bubble extrusion port 5 by the indoor water level C10-1 corresponding to the a value. When resistance such as clogging occurs on the way of the air lift pipe or the resource discharge port 7 to be formed, the water level in the gas-liquid separation chamber 3 forms a lower indoor water level C10-3 corresponding to the b value than the bubble extrusion port 5.

【0014】気液分離室3を縦長にする理由は、前述の
通り、吸引パイプ8や吸引口9に抵抗が起きると吸引力
は気液分離室3に及ぶため気液分離室3内の室内水位A
10−1は上昇する、この場合、気液分離室3の室内水
位形成の水位形成の余裕幅aが必要で、もしaが小さい
場合は液体を吸引しエアリフト効果に負の影響を与え
る、また、エアリフトパイプ6や資源放出口7に抵抗が
起きると気泡押出口5から気泡の押出す力が小さくなり
気液分離室3内の気体が増加するため室内水位C10−
3は低下する、この場合、気液分離室3の室内水位形成
のための余裕幅bが必要で、もしbが小さい場合、エア
リフトパイプ6等に目詰まり等が起きると気体は気液分
離室3の下部から外部の海水中に漏気する。このよう
に、aとbとは余裕幅で確保すべき必要な長さであり、
このため気液分離室3を縦長にする必要がある。
The reason why the gas-liquid separation chamber 3 is made vertically long is that, as described above, if resistance occurs in the suction pipe 8 or the suction port 9, the suction force reaches the gas-liquid separation chamber 3. Water level A
10-1 rises. In this case, a margin a for forming the water level of the indoor water level of the gas-liquid separation chamber 3 is required. If a is small, the liquid is sucked to negatively affect the air lift effect. When resistance occurs in the air lift pipe 6 and the resource discharge port 7, the force for extruding bubbles from the bubble extrusion port 5 decreases and the gas in the gas-liquid separation chamber 3 increases.
3 decreases. In this case, a margin b for forming the indoor water level of the gas-liquid separation chamber 3 is required. If b is small, if the air lift pipe 6 or the like becomes clogged, the gas is removed from the gas-liquid separation chamber. 3 leaks into the outside seawater from the lower part. Thus, a and b are the necessary lengths to be secured with a margin,
Therefore, it is necessary to make the gas-liquid separation chamber 3 vertically long.

【0015】気液分離室3の設置方式は、大深度(10
00m単位)の場合は水面から懸垂式でよく、浅深度
(10〜100m単位)の場合は水底固定式でもよい。
The gas-liquid separation chamber 3 is installed at a large depth (10
(In the unit of 00 m), it may be of a suspended type from the water surface, and in the case of a shallow depth (in the unit of 10 to 100 m), it may be of the fixed bottom type.

【0016】気液圧送パイプ2は、パイプ及びホースの
両方を意味し、ゴム、金属、プラスチック等の気液を通
過させることができるすべてのパイプを含むものとす
る。
The gas-liquid pressure-feeding pipe 2 means both a pipe and a hose, and includes all pipes through which gas, liquid such as rubber, metal, and plastic can pass.

【0017】気泡押出口5の位置は、気液分離室3のほ
ぼ中間の高さでもよいが、作業上では吸引口9で吸引作
業中に目詰まりが起きる場合が多いと予想され、また強
い吸引力を持たせる必要から室内水位A10−1の形成
の余裕幅aをbよりも大きく横成しておくことが実用的
である。
The position of the bubble extrusion port 5 may be almost at the middle of the gas-liquid separation chamber 3, but it is expected that clogging will often occur during the suction operation at the suction port 9 in operation, and it is also strong. Since it is necessary to provide a suction force, it is practical to make the margin a for forming the indoor water level A10-1 larger than b.

【0018】エアリフトパイプ6が気液分離室3内を通
過させる場合、サイフォン4は図示1(ロ)の通り煙突
の形で気液分離室3内のエアリフトパイプに接続する、
また、エアリフトパイプ6が気液分離室3の外側を通過
させる場合、サイフォン4は図示1(イ)の通り気液分
離室3の上部から気液分離室3の外側を下がってエアリ
フトパイプに接続する。このようにエアリフトパイプ6
は気液分離室3内を通過させてもよく、また外側に設け
てもよい。
When the air lift pipe 6 passes through the gas-liquid separation chamber 3, the siphon 4 is connected to the air lift pipe in the gas-liquid separation chamber 3 in the form of a chimney as shown in FIG.
When the air lift pipe 6 passes outside the gas-liquid separation chamber 3, the siphon 4 is connected to the air lift pipe from the upper part of the gas-liquid separation chamber 3 down the outside of the gas-liquid separation chamber 3 as shown in FIG. I do. Thus, the air lift pipe 6
May pass through the gas-liquid separation chamber 3 or may be provided outside.

【0019】気液分離室3の縦の長さは、吸引口9の深
さ、気液分離室3の位置、エアリフトパイプ6の長さ、
吸引資源12の比重等の多くの要素によってきまるが、
吸引口9の深さが数千メートルの場合は、100m単位
に及ぶ場合もある。
The vertical length of the gas-liquid separation chamber 3 is determined by the depth of the suction port 9, the position of the gas-liquid separation chamber 3, the length of the air lift pipe 6,
It depends on many factors such as the specific gravity of the suction resource 12,
When the depth of the suction port 9 is several thousand meters, it may reach 100 m units.

【0020】遠隔監視作業機器13を設ける理由は、遠
隔地で深海中の資源12の吸引作業を適切に監視すると
共に適時かつ自在に移動して、切削、収集、吸引、目詰
まり処理を吸引作業を行うためである。
The reason why the remote monitoring work equipment 13 is provided is that the suction work of the resources 12 in the deep sea is appropriately monitored in a remote place, and the work is moved in a timely and freely manner to perform cutting, collection, suction, and clogging processing. It is for doing.

【0021】気液圧送パイプ2を通過する気液の割合
は、水底の深度、吸引パイプ8内の吸引速度、吸引する
資源12の大きさ、比重、量等によって、適宣決める
が、標準的には各々50%であるが、深度を大きくする
場合は液体を多くし、気体の量を多くする場合は気体を
多くする方法がある。
The ratio of gas-liquid passing through the gas-liquid pressure feed pipe 2 is appropriately determined according to the depth of the water bottom, the suction speed in the suction pipe 8, the size, specific gravity, amount, etc. of the resource 12 to be sucked, but it is standard. Are 50% each, but there is a method of increasing the amount of liquid when increasing the depth and increasing the amount of gas when increasing the amount of gas.

【0022】深底とは、深浅の両方の水底を意味し、海
底、淡水底を含み、水中深部をも含むもので、自然、人
工的な湖海の深底にも適用されるものである。資源12
とは、鉱物、生物、バイオ等を意味し、固形状、液状、
粒状、泥状のいずれも含むもので、資源12以外の土砂
等の引揚げにも利用するものとする。また、資源の中に
は、熱水、温水、冷水を含み、水中深部の資源水をも含
むものである。
The term "deep bottom" means both deep and shallow water bottoms, including the sea bottom and the freshwater bottom, and also includes the deep underwater part, and is also applied to the natural and artificial bottoms of lakes and seas. . Resources 12
Means minerals, organisms, bio, etc., solid, liquid,
It includes both granular and mud-like materials, and is also used for lifting sediment other than resources 12. In addition, resources include hot water, hot water, and cold water, and also include resource water deep in the water.

【0023】吸引パイプ8内の吸引流速及びエアリフト
パイプ6内の気体、液体、固体の混相流の流速は、吸引
物の最大サイズの沈降速度以上の速度を確保する必要が
あり、コバルトクラストやマンガン団塊の場合はかさ比
重が大きく沈降速度も大きいため、パイプ内の流速を高
める必要がある。すなわち、引揚げる対象物のかさ比重
に対応するパイプ内速度を決める必要があ、これは気液
押出口5からの気体量を多くする必要を意味する。
It is necessary that the suction flow rate in the suction pipe 8 and the flow rate of the multiphase flow of gas, liquid, and solid in the air lift pipe 6 be higher than the sedimentation rate of the maximum size of the suctioned material. In the case of baby boomers, the bulk specific gravity is large and the sedimentation velocity is large, so it is necessary to increase the flow velocity in the pipe. That is, it is necessary to determine the speed in the pipe corresponding to the bulk specific gravity of the object to be lifted, which means that the amount of gas from the gas-liquid extrusion port 5 needs to be increased.

【0024】[0024]

【0025】気液を共に深海へ圧送するポンプは、以下
総称して、気液ポンプ等と表現する。
A pump for pumping gas and liquid together into the deep sea is hereinafter generally referred to as a gas-liquid pump or the like.

【0026】ポンプ1に気液ポンプ等を使用する理由
は、気液を共に同じパイプで圧縮圧送するため、逆エア
リフト効果が起き、従来と同圧力でも従来より深く圧送
できるためである。
The reason why a gas-liquid pump or the like is used as the pump 1 is that gas and liquid are both compressed and fed by the same pipe, so that an inverse air lift effect occurs, and the pump can be pumped deeper at the same pressure as before.

【0027】ポンプ1に気液ポンプ等を使用するもう1
つの理由は、簡単な設備と操作にある。すなわち、羽
根、歯車、ピストン、スクリュー等を一切必要とせず、
簡単なな機器の構成で圧縮機能が発揮でき、故障の起き
る原因が少なくなるためである。
Another use of a gas-liquid pump or the like for the pump 1
One reason is simple equipment and operation. In other words, there is no need for blades, gears, pistons, screws, etc.
This is because the compression function can be exhibited with a simple device configuration, and the cause of the failure is reduced.

【0028】ポンプ1に気液ポンプ等を使用するもう1
つの理由は、遠心力を使用せず、低速回転(2〜30r
pm程度)で圧縮作業ができ、振動騒音が極めて小さい
ためである。
Another one using a gas-liquid pump or the like for the pump 1
One reason is that, without using centrifugal force, low-speed rotation (2 to 30 r
(approximately pm), and the compression work can be performed, and the vibration noise is extremely small.

【0029】ポンプ1に気液ポンプ等を使用するもう1
つの理由は、冷却施設が不要となるためである。すなわ
ち、気体を高圧化する場合に発生する高熱にも気体と液
体が混在しているため高熱に至らないため冷却施設は不
要となる。
Another one using a gas-liquid pump or the like for the pump 1
One reason is that a cooling facility is not required. That is, since the gas and the liquid are mixed even in the high heat generated when the pressure of the gas is increased, the heat does not reach the high heat, so that the cooling facility becomes unnecessary.

【0030】ポンプ1に気液ポンプ等を使用するもう1
つの理由は、低速回転にも拘わらず体積効率が100%
で稼働するためである。すなわち、従来はケーシングと
の間に漏気、漏水、戻水が起きたが、気液ポンプ等には
羽根、歯車、ピストン、スクリュー等がないため、終始
水密状態で送気送水と加圧し、気体も液体も、漏気、漏
水がなく体積効率が100%で稼働するためである。
Another one using a gas-liquid pump or the like for the pump 1
One reason is 100% volumetric efficiency despite low speed rotation
It is because it operates in. That is, in the past, air leakage, water leakage, and return water occurred between the casing, but since there are no blades, gears, pistons, screws, etc. in gas-liquid pumps, etc. This is because both gases and liquids operate at a volumetric efficiency of 100% without leakage or water leakage.

【0031】ポンプ1に気液ポンプ等を使用するもう1
つの理由は、汚濁物の混入は無論のこと、圧送パイプの
最小口径以下の固形物が多少混入しても影響なく圧送で
きるためである。すなわち、気液ポンプ等は呑口から吐
口まで空洞で障害物がないため固形物が混入してもその
まま圧送できるためである。
Another one using a gas-liquid pump or the like for the pump 1
One reason is that contaminants are naturally mixed, and even if solids smaller than the minimum diameter of the pumping pipe are slightly mixed, the pumping can be performed without any influence. That is, since a gas-liquid pump or the like is hollow from the mouth to the spout and has no obstacle, even if solid matter is mixed in, it can be pumped as it is.

【0032】ポンプ1に気液ポンプ等を使用するもう1
つの理由は、吸込行程がないためキャビテーションの心
配がなく、気液が混合で気体がクッションの役目をする
ためウォーターハンマーの危険性がないことにある。
Another one using a gas-liquid pump or the like for the pump 1
One reason is that there is no danger of cavitation because there is no suction stroke, and there is no danger of a water hammer because gas and liquid are mixed and gas acts as a cushion.

【0033】深底資源吸引揚装置の設置場所は、陸上で
もよいが、船上に設置して深海の近いことが効果的であ
る。海上浮上式にして採取場所に近い場所に設置する方
法は効果的である。
The location of the deep-bottom resource suction and lifting device may be on land, but it is effective to install it on a ship and be close to the deep sea. It is effective to use a floating surface and install it near the sampling site.

【0034】気体を水底方向にに圧送すると体積縮小
し、逆に深海中の気泡が水面近くに上昇すると体積膨張
を起こす。水深と気泡の体積の基本的な関係は、 エアリフト効果を利用する作業にはこの現象を理解した
上で対処する必要がある。数100m〜数1000m級
の大深度の場合、気泡は水面近くでは急激に体積変化を
する。
When the gas is pumped toward the bottom of the water, the volume is reduced, and conversely, when bubbles in the deep sea rise near the water surface, the volume expands. The basic relationship between water depth and bubble volume is It is necessary to understand this phenomenon and to deal with the work using the airlift effect. In the case of a large depth of several hundred meters to several thousand meters, the bubbles rapidly change in volume near the water surface.

【0035】前式から計算すると、大気中の体積を1と
した場合、水深10mで体積は1/2、水深30mで1
/4、50mで1/6、100mで1/11、1000
mで1/101となる。すなわち、気泡が深海から水面
近くに上昇して水深の約1/10に達すると急激な体積
膨張を起こすことが解る。このため、深度に応じて気体
の減容積に従って圧送パイプ2の口径は順次変更しても
よい。
Calculating from the above equation, assuming that the volume in the atmosphere is 1, the volume is 1/2 at a water depth of 10 m, and 1 at a water depth of 30 m.
/ 4, 1/6 at 50m, 1 / 11,100 at 100m
m is 1/101. That is, it is understood that when the bubble rises from the deep sea to near the water surface and reaches about 1/10 of the water depth, rapid volume expansion occurs. For this reason, the diameter of the pressure-feeding pipe 2 may be sequentially changed according to the gas volume reduction according to the depth.

【0036】気液圧送パイプ2内の気液の圧送速度は気
体(気泡)の最大上昇速度より大きくするのは当然で、
気体と液体の体積比によっても異なるが、できるだけ流
速を大きくするのが効果的である、それは、逆エアリフ
ト効果(仮称)を有効似利用するためでもあり、気体が
混入しているためベアリングの役目をして流れの抵抗が
小さいためで、2〜6m/secの範囲が効果的であ
る。過大な流速は投入したエネルギーの浪費となる。流
速は圧送力やパイプの口径によって調整が可能である。
It is natural that the gas-liquid pumping speed in the gas-liquid pumping pipe 2 is higher than the maximum rising speed of gas (bubbles).
Although it depends on the volume ratio of gas and liquid, it is effective to increase the flow velocity as much as possible. This is also to effectively use the reverse air lift effect (tentative name), and the role of the bearing because gas is mixed. The range of 2 to 6 m / sec is effective because the flow resistance is small. Excessive flow velocity wastes input energy. The flow velocity can be adjusted by the pumping force and the diameter of the pipe.

【0037】逆エアリフト効果(仮称)とは、揚水の場
合に起きる水単独の圧送に比べて気液の混入により揚程
が圧力以上に高所への圧送が可能となる現象の逆で、気
液を共に水中へ圧送した場合は気体単独の圧送に比べて
水中圧送深度圧力以上に深部への圧送が可能となる現
象を言う。
The reverse air lift effect (provisional name) is the reverse of the phenomenon in which the head can be pumped to a height higher than the pressure due to the incorporation of gas and liquid as compared with the pumping of water alone which occurs in the case of pumping. the If pumped both into water refers to a phenomenon in which water pumped depth compared to the pumping of gas alone becomes possible pumped into deep than pressure.

【0038】吸引パイプ内の吸引速度は、吸引物の最大
沈降速度を越える必要があり、4m/sec以下が望ま
しい。過大な吸引速度は摩擦損失が大きくなると共に摩
擦によるパイプの損傷が大きくなるため、必要最大限の
速度に止めることが望ましい。例えば、かさ比重の大き
いマンガン団塊の吸引に20cmのパイプを使用する場
合は資源の最大寸法をパイプ内径の1/2の10cm以
下としパイプ内流速は2.5〜4.5m/secが望ま
しく効果的と見られる、マンガン団塊の沈降速度を越え
る必要があり、過小な速度では上昇速度が小さくなり投
入したエネルギーの浪費となる。吸引速度は吸引力の調
整や吸引パイプの口径の大小の調整によって可能であ
る。
The suction speed in the suction pipe must exceed the maximum sedimentation speed of the suction object, and is desirably 4 m / sec or less. Excessive suction speed increases friction loss and damages the pipe due to friction. Therefore, it is desirable to limit the suction speed to the maximum necessary speed. For example, when a 20 cm pipe is used for sucking manganese nodules having a large specific gravity, the maximum size of the resource is set to 10 cm or less, which is の of the inner diameter of the pipe, and the flow velocity in the pipe is desirably 2.5 to 4.5 m / sec. It is necessary to exceed the sedimentation speed of the manganese nodules, which is considered to be the target. If the speed is too low, the ascent speed becomes low and the input energy is wasted. The suction speed can be adjusted by adjusting the suction force or adjusting the diameter of the suction pipe.

【0039】エアリフトパイプ6は通常は吸引パイプと
連続しており両方の口径は同一であるが、必要に応じて
変更してもよい。また、エアリフトパイプ6内の速度
は、気泡を伴うため上昇に従って体積膨張を起こし流速
が大きくなる、特に水面近くのエアリフトパイプ6長さ
の約1/10の範囲では爆発的な膨張現象を起こす。こ
のため速度調整のためエアリフトパイプ6の内径を変更
することも起きる。例えば、気液分離室3が水面下50
0mに設置した場合、水面近くの約1/10の深さで気
体の体積は約10以上にも膨張する、これは気体、液
体、固体の全体の平均体積を数倍に増加させるもので、
同様に管内流速も数倍に増加し障害を起こす危険性があ
る。これらから起きる障害を最小にするためパイプ内径
の変更やパイプ内壁の損傷保護のため処理対策をする場
合もある。
The air lift pipe 6 is usually continuous with the suction pipe and has the same diameter, but may be changed as required. Further, since the velocity in the air lift pipe 6 is accompanied by bubbles, the velocity of the air lift pipe 6 expands as the air velocity increases, and the flow velocity increases. In particular, an explosive expansion phenomenon occurs in a range of about 1/10 of the length of the air lift pipe 6 near the water surface. Therefore, the inner diameter of the air lift pipe 6 may be changed for speed adjustment. For example, if the gas-liquid separation chamber 3 is
When installed at 0 m, the gas volume expands to about 10 or more at a depth of about 1/10 near the water surface, which increases the total average volume of gas, liquid, and solid several times,
Similarly, the flow velocity in the pipe increases several times, and there is a danger of causing an obstacle. In order to minimize the obstacles caused by these, there are cases in which processing measures are taken to change the inner diameter of the pipe or to protect the inner wall of the pipe from damage.

【0040】深海や海底11等で資源12の周辺を監視
し、適時自在に移動しかつ容易に資源採取を行うため、
吸引パイプ8の吸引口9の近辺に、遠隔監視操作機器1
3を付設して遠隔操作システムで資源の選別、切削、収
集、吸引、目詰まり処理等を行い、効果的に吸引操作を
行うために付設するものである。
In order to monitor the vicinity of the resource 12 in the deep sea or the sea floor 11 and the like, to move freely and to collect the resource easily in a timely manner,
In the vicinity of the suction port 9 of the suction pipe 8, the remote monitoring operation device 1
The remote control system 3 is used to perform sorting, cutting, collection, suction, clogging, and the like of the resources, and to perform a suction operation effectively.

【0041】気液分離室3、サイフォン4、気泡押出口
5、エアリフトパイプ6、吸引パイプ8の各々の構成す
る気体を供給する重要部分を、気体供給施設カバー14
を付設して、不慮の外力からの故障の発生を防止する方
法もある。
The gas-liquid separation chamber 3, siphon 4, bubble extrusion port 5, air lift pipe 6, and suction pipe 8, which are important parts for supplying gas, are covered by a gas supply facility cover 14.
There is also a method of preventing the occurrence of a failure due to an accidental external force by attaching a key.

【0042】[0042]

【発明の効果】本発明によると、気液ポンプ等の使用
で、従来の圧縮機械を必要とせず、簡単な設備と操作で
気体の圧送ができ、故障の起きる原因が少なくなった、
すなわち、気液ポンプは圧送途上に羽根、歯車、ピスト
ン、スクリュー等を必要とせず簡単な構成となってお
り、故障の原因がなくなるメリットがある。
According to the present invention, the use of a gas-liquid pump or the like does not require a conventional compression machine, the gas can be pumped with simple equipment and operation, and the cause of failure is reduced.
That is, the gas-liquid pump has a simple configuration without the need for blades, gears, pistons, screws, etc. during the pressure feeding, and has the advantage of eliminating the cause of failure.

【0043】本発明によると、気液ポンプ等の使用で逆
のエアリフト効果(仮称)が起きるため、従来と同圧力
でも気体を従来よりも深く圧送できるメリットがある。
According to the present invention, the use of a gas-liquid pump or the like causes an opposite air lift effect (tentative name), so that there is an advantage that gas can be pumped deeper than before even at the same pressure as before.

【0044】本発明によると、気液ポンプ等を使用する
ため、圧縮から圧送する過程で、低速回転でも従来起き
た戻り気体、戻り水がなく体積効率100%で圧送でき
る利点がある。
According to the present invention, since a gas-liquid pump or the like is used, there is an advantage that in the process from the compression to the pressure feed, even at a low speed rotation, there is no return gas and return water which occur conventionally, and the pressure feed can be performed at a volume efficiency of 100%.

【0045】本発明によると、気液ポンプ等の使用でブ
ロワやコンプレッサーを使用しないため、従来の圧縮作
業に必要とした冷却装置が不要となり、設備、維持管理
の費用が節約となる。
According to the present invention, since a blower or a compressor is not used by using a gas-liquid pump or the like, a cooling device required for the conventional compression work is not required, and the cost of equipment and maintenance is saved.

【0046】本発明によると、気液ポンプ等の使用で、
圧縮には遠心力や高速回転を必要とせず低速回転でよい
ため、騒音、振動が小さいため、エネルギーのロスが小
さく騒音、振動に要する設備、維持管理の費用が節約と
なる。
According to the present invention, by using a gas-liquid pump or the like,
Since compression does not require centrifugal force or high-speed rotation and requires low-speed rotation, noise and vibration are small, so energy loss is small and equipment required for noise and vibration, and maintenance and management costs can be saved.

【0047】本発明によると、既述のように気液ポンプ
等の使用でウォーターハンマーやキャビテーションの起
きる心配がない利点がある。
According to the present invention, there is an advantage that the use of a gas-liquid pump or the like does not cause water hammer or cavitation as described above.

【0048】本発明によると、気液ポンプ等は気液の流
入口から吐口まで羽根、歯車、ピストン、スクリュー等
がないため、液体と機器の摩擦損失がないと言う利点が
ある。また、気液圧送パイプ2内に汚濁物や固形物がパ
イプ内に混入しても目詰まりの心配がないと言う利点が
ある。
According to the present invention, a gas-liquid pump or the like has no blades, gears, pistons, screws, and the like from the gas-liquid inlet to the gas outlet, and thus has the advantage that there is no friction loss between the liquid and the device. In addition, there is an advantage that there is no fear of clogging even if contaminants or solids are mixed in the gas-liquid pressure feeding pipe 2.

【0049】本発明によると、気液ポンプ等の使用で圧
縮は装置と操作が簡単なため、維持管理が容易で低いコ
ストで運転が可能である。
According to the present invention, since the compression and the operation are simple with the use of a gas-liquid pump or the like, the maintenance is easy and the operation can be performed at low cost.

【0050】本発明によると、気液分離室を縦長に設置
することで、突然の目詰まり等の異常発生にも気液分離
室内の水位の変化で吸収して、気体量や圧力の急激な変
化を緩和する役目を果たし装置全体を保護する役目を果
たす利点がある。
According to the present invention, by installing the gas-liquid separation chamber vertically, even when an abnormality such as sudden clogging occurs, it is absorbed by a change in the water level in the gas-liquid separation chamber, so that the gas amount and pressure suddenly increase. There is the advantage that it serves to mitigate the change and to protect the entire device.

【0051】本発明によると、数十メートルから数千メ
ートルに至る、巾広い水深範囲の水底に眠る資源を、地
上に引き揚げる効果がある。
According to the present invention, there is an effect that resources lying on the bottom of a wide water depth ranging from several tens of meters to several thousand meters can be pulled up to the ground.

【0052】本発明によると、海水中だけでなく、淡水
中にも同様に適用が可能であり、池沼、人工湖等で水中
水底の浚渫への活用できるメリットがある。
According to the present invention, the present invention can be applied not only to seawater but also to freshwater, and there is an advantage that it can be used for dredging of underwater water bottoms in ponds, marshes, artificial lakes and the like.

【0053】本発明によると、鉱物資源のうち、マンガ
ン団塊、コバルトクラスト、熱水鉱床等からの貴重金属
資源の採取が可能となった。
According to the present invention, it is possible to collect valuable metal resources from manganese nodules, cobalt crusts, hydrothermal deposits, etc. among mineral resources.

【0054】本発明によると、熱水鉱床等の熱水を吸引
し引き揚げて熱水発電への活用も可能とする効果があ
る。
According to the present invention, there is an effect that hot water from a hydrothermal deposit or the like is sucked and pulled up, and can be utilized for hydrothermal power generation.

【0055】本発明によると、資源として鉱物、生物、
バイオに限定せず、温水、熱水、冷水等の吸引引き揚げ
が可能となった。
According to the present invention, minerals, organisms,
It is possible to suction and pull hot water, hot water, cold water, etc. without being limited to bio.

【0056】本発明によると、水底等の固形物、土砂等
の引き揚げに利用しても、水底の汚濁を最小に留める効
果がある。
According to the present invention, there is an effect of minimizing the pollution of the water bottom even when used for lifting solids such as the water bottom and earth and sand.

【0057】本発明によると、深層海水を吸引し引き揚
げて、断熱膨張による冷却効果を加えて、温度差発電、
冷房、医療やバイオ等に利用できるメリットがある。
According to the present invention, the deep seawater is sucked and drawn up, and the cooling effect by the adiabatic expansion is added.
There are merits that can be used for cooling, medical care, biotechnology, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】深底資源吸引揚装置の構造の側断面図を示し、
エアリフト効果の発生原理の説明図を示し、(イ)は吸
引パイプ8とエアリフトパイプ6を気液分離室3の外側
へ設け、気液分離室3を水中に懸垂式にして海底11に
設けた1例図を示し、(ロ)は吸引パイプ8とエアリフ
トパイプ6を気液分離室3内を通過させて、気液分離室
3を海底11に設けた1例図を示し、(ハ)は吸引口9
の近くに遠隔監視操作機器13を付設した1例図を示
す。
FIG. 1 shows a side sectional view of the structure of a deep-bottom resource suction and lifting device,
An explanatory view of the principle of generation of the air lift effect is shown in (a), in which a suction pipe 8 and an air lift pipe 6 are provided outside the gas-liquid separation chamber 3, and the gas-liquid separation chamber 3 is suspended in water and provided on the seabed 11. (B) shows an example in which the suction pipe 8 and the air lift pipe 6 are passed through the gas-liquid separation chamber 3 and the gas-liquid separation chamber 3 is provided on the sea floor 11; Suction port 9
FIG. 1 shows an example in which a remote monitoring and operating device 13 is provided near the device.

【図2】深底資源吸引揚装置の概念側断面を示し、
(イ)気液分離室3を懸垂式に設けた例図を示し、
(ロ)気液分離室3を水底に設けた例図を示す(気体供
給施設カバー14内の気液分離室3等の詳細を省略した
例図)。
FIG. 2 is a conceptual side sectional view of a deep-bottom resource suction / lift apparatus,
(A) shows an example in which the gas-liquid separation chamber 3 is provided in a suspended manner,
(B) An example in which the gas-liquid separation chamber 3 is provided at the bottom of the water is shown (an example in which details of the gas-liquid separation chamber 3 and the like in the gas supply facility cover 14 are omitted).

【符号の説明】[Explanation of symbols]

1 ポンプ 2 気液圧送パイプ 3 気液分離室 4 サイフォン 5 気泡押出口 6 エアリフトパイプ 7 資源放出口 8 吸引パイプ 9 吸引口 10−1 室内水位A 10−2 室内水位B 10−3 室内水位C 11 海底 12 資源 13 遠隔監視作業機器 14 気体供給施設カバー DESCRIPTION OF SYMBOLS 1 Pump 2 Gas-liquid pressure feeding pipe 3 Gas-liquid separation chamber 4 Siphon 5 Bubble extrusion port 6 Air lift pipe 7 Resource discharge port 8 Suction pipe 9 Suction port 10-1 Indoor water level A 10-2 Indoor water level B 10-3 Indoor water level C11 Ocean floor 12 Resources 13 Remote monitoring work equipment 14 Gas supply facility cover

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気体と液体を同一のパイプで共に深海へ圧
送するポンプ1から気液圧送パイプ2を水中に延伸し
て、水中の気液分離室3へ接続し、気液分離室3の上部
からサイフォン4を設けて下方に延伸し、他端を気液分
離室3の縦の長さの範囲内のエアリフトパイプ6下部に
接続して気泡押出口5とし、エアリフトパイプ6を上方
の水面方向に延伸して上端を資源放出口7とし、エアリ
フトパイプ6の下端に吸引パイプ8の上端を連通接続
し、吸引パイプ8を水中深部へ延伸して他端を吸引口9
とした装置であって、ポンプ1から圧送した気体と液体
は、気液圧送パイプ2を経て気液分離室3内に入り、気
体と液体は上下に分離して水位を形成し、液体は下部か
ら液体の増加で外部の水中に放出され、気体はサイフォ
ン4に入り気体のサイフォンを形成し、気体の増加で気
泡押出口5から気泡となってエアリフトパイプ6に入
り、上昇しながらエアリフト効果を発揮し、気泡押出口
5と吸引口9の両方に吸引力を起こさせ、気泡押出口5
での吸引力は気液分離室3内に室内水位A10−1また
は室内水位B10−2または室内水位C10−3を形成
させ、吸引口9から液体または液体と共に海底11の資
源12を吸引し、吸引物の最大サイズの沈降速度を越え
る効果的流速で吸引パイプ8を経てエアリフトパイプ6
内を気泡と共に上昇させて資源放出口7から外部の貯留
場所等に輸送する深底資源吸引揚装置。
1. A gas-liquid pressure feed pipe 2 is extended into water from a pump 1 for pumping both gas and liquid to the deep sea through the same pipe and connected to a gas-liquid separation chamber 3 in water. A siphon 4 is provided from the upper portion and extends downward, and the other end is connected to a lower portion of an air lift pipe 6 within a vertical length of the gas-liquid separation chamber 3 to form a bubble extrusion port 5. The upper end of the suction pipe 8 is connected to the lower end of the air lift pipe 6 to communicate with the lower end of the air lift pipe 6.
The gas and liquid pumped from the pump 1 enter the gas-liquid separation chamber 3 via the gas-liquid pumping pipe 2, the gas and liquid are separated vertically to form a water level, and the liquid The liquid is released into the external water by an increase in the liquid, and the gas enters the siphon 4 to form a gas siphon. The increase in the gas forms bubbles from the bubble extrusion port 5 into the air lift pipe 6 to increase the air lift effect. It exerts a suction force on both the bubble extrusion port 5 and the suction port 9 to cause the bubble extrusion port 5
Causes the indoor water level A10-1 or the indoor water level B10-2 or the indoor water level C10-3 to be formed in the gas-liquid separation chamber 3, and sucks the liquid 12 or the resources 12 of the seabed 11 together with the liquid from the suction port 9, The air lift pipe 6 passes through the suction pipe 8 at an effective flow rate exceeding the maximum size sedimentation velocity of the suctioned material.
A deep-bottom resource suction and lift device that raises the inside with bubbles and transports it from the resource discharge port 7 to an external storage location or the like.
【請求項2】吸引パイプ8の吸引口9の近辺に、遠隔監
視操作機器13を付設し、遠隔操作で資源12を監視す
ると共に適時自在に移動して切削、収集、吸引、目詰ま
り処理等を行う請求項1記載の深底資源吸引揚装置。
2. A remote monitoring and operating device 13 is provided in the vicinity of the suction port 9 of the suction pipe 8 to monitor the resources 12 by remote control and to move freely as needed to perform cutting, collection, suction, clogging, etc. The deep-bottom resource suction and lifting device according to claim 1, wherein
JP17008499A 1998-12-02 1999-05-14 Deep-bottom resource suction and lifting device Expired - Fee Related JP3341111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17008499A JP3341111B2 (en) 1998-12-02 1999-05-14 Deep-bottom resource suction and lifting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37606098 1998-12-02
JP10-376060 1998-12-02
JP17008499A JP3341111B2 (en) 1998-12-02 1999-05-14 Deep-bottom resource suction and lifting device

Publications (2)

Publication Number Publication Date
JP2000227100A JP2000227100A (en) 2000-08-15
JP3341111B2 true JP3341111B2 (en) 2002-11-05

Family

ID=26493199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17008499A Expired - Fee Related JP3341111B2 (en) 1998-12-02 1999-05-14 Deep-bottom resource suction and lifting device

Country Status (1)

Country Link
JP (1) JP3341111B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8001784B2 (en) * 2007-07-13 2011-08-23 Bruce Marshall Hydrothermal energy and deep sea resource recovery system
KR101391636B1 (en) * 2013-10-16 2014-05-12 한국해양과학기술원 Hopper having calm settling and sediment seperating mechanism of deep-sea mineral resources
CN106837336A (en) * 2017-02-17 2017-06-13 宋桂霞 For metal nodule exploitation ore lifting system, raise ore control method and mining system

Also Published As

Publication number Publication date
JP2000227100A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
CN108194085A (en) A kind of deep-sea ores lifting System relays storehouse
WO2007032616A1 (en) Sludge treatment system for dam
KR20140056266A (en) Gas lift system and gas lift method
US8585893B2 (en) Particle collector with weight measuring
US5199767A (en) Method of lifting deepsea mineral resources with heavy media
CN1277999C (en) Method for hydraulic subsea dredging
JP2002160693A (en) Method and device for recovering floating slick on liquid surface
JP2020002627A (en) Integrated blade portion for submarine resource recovery device
JP3341111B2 (en) Deep-bottom resource suction and lifting device
KR20150035294A (en) Apparatus and method for discharging soil slurry of excavation hole in underground water geothermy
CN207330439U (en) A kind of oily-water seperating equipment for oil slick recycling
ZA200201662B (en) Apparatus and method for sea bed excavation.
RU117535U1 (en) PUMP UNIT FOR CLEANING WELLS
CN207776867U (en) A kind of deep-sea ores lifting System relays storehouse
CN102076929B (en) liquid rod pump
JP3460053B2 (en) Underwater bubble rig
CN214577967U (en) Impeller-free high-suction-lift gas-liquid lift pump
CN103864174A (en) Oily sewage oil eliminator
JP3839035B2 (en) Suction and collection method of bottom sediment using low temperature air and low temperature air lift pump device
CN1966868A (en) Multi-screw oil skimmer
CN116282772B (en) High-efficient recycling system that handles of oily waste water of thermal power plant
Cashman et al. Pumps for Groundwater Lowering Duties
CN113027390B (en) Hydrate mining method and device
JP2004183206A (en) Sediment recovery system
CN111097219B (en) Ore pulp separating device of submarine mining equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees