JP2004183206A - Sediment recovery system - Google Patents

Sediment recovery system Download PDF

Info

Publication number
JP2004183206A
JP2004183206A JP2002347628A JP2002347628A JP2004183206A JP 2004183206 A JP2004183206 A JP 2004183206A JP 2002347628 A JP2002347628 A JP 2002347628A JP 2002347628 A JP2002347628 A JP 2002347628A JP 2004183206 A JP2004183206 A JP 2004183206A
Authority
JP
Japan
Prior art keywords
water
sediment
guide cylinder
recovery
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347628A
Other languages
Japanese (ja)
Inventor
將士 ▲吉▼村
Masashi Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiko Kikai Ind Co Ltd
Original Assignee
Taiko Kikai Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko Kikai Ind Co Ltd filed Critical Taiko Kikai Ind Co Ltd
Priority to JP2002347628A priority Critical patent/JP2004183206A/en
Publication of JP2004183206A publication Critical patent/JP2004183206A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sediment recovery system in particular used for efficiently separating sediment from water and recovering the same by carrying and transferring sediment accumulated on the bottom of a power generation dam, drinking water dam or a lake with water using floating force of gas such as air. <P>SOLUTION: In this system set underwater such as the bottom of the dam, the exterior and the interior are partitioned, and in the lower part of the interior, a large-diameter partition cylinder 2 having an excavating mechanism part 7 in which an excavator 5 is driven to rotate by a motor M or the like to mix sediment 6 with water W and a small-diameter recovery guide cylinder 3 inserted in the partition cylinder and connected at its upper part to a vacuum pump 8 are provided to form a double-walled pipe structure. The system is provided with an air feed pipe 9, one end 9a of which is connected to the lower inside of the recovery guide cylinder, the other end 9b of which is connected to a compressor 10 to thereby feed compressed gas G' into the recovery guide cylinder, wherein with floating of gas G fed from the compressor through the air feed pipe to the inside of the recovery guide cylinder, the sediment 6 and the water W are recovered. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は土砂回収装置に関し、特に発電用ダム、飲料水用ダム、そのほか湖沼等の底に溜まる土砂を空気等の気体の浮上力を利用して水とともに水面上に運搬、移送することにより効率良く水と分離して土砂を回収するのに使用する。
【0002】
【従来の技術】
発電用ダム、飲料水用ダムは、永年使用していると、降雨等によりダム周囲の土砂が崩落したり、上流側から下流側への流水により湖底に土砂が溜まり、貯水量に影響が出るようになる。
そこで、この土砂を湖底から取り除こうとすると、湖底を撹拌することになるので、ダムに貯留されている水は汚濁される。もしも、このように汚濁された水を下流に流せば、下流域での水産資源に甚大な被害を与えることになり、その損失は大きい。もちろん、貯水池の水は、当然に飲み水等への使用は不可能になる。
【0003】
ところで、例えば海底等の深底に眠る鉱物等の貴重資源を空気等の気体の浮上力(エアリフト)を利用して水とともに地上に引き上げて移送回収する採取方法を採用した装置がある。
このように、空気等の気体の浮上力(エアリフト)を利用した揚水回収装置として、例えば、気体と液体を高圧化して深海に圧送する駆動源としてのポンプと、該ポンプに一端が接続されて深海底近くに気体と液体とを圧送する気液圧送パイプと、該気液圧送パイプの他端が接続され、サイフォン管を内部に備えた気液分離室と、該気液分離室内に配挿され、下方部が海底にまで伸び上方部はエアリフトパイプとして水面上まで伸びるた吸引パイプとを備えた構造の深底資源吸引揚装置である。
【0004】
そして、ポンプから圧送した気体と液体とは、気液圧送パイプを経て気液分離室内に圧送され、気体と液体とは上下に分離して水位を形成する。そして、液体は、気液分離室の下部から液体の増加により気泡押出口から気泡になりエアリフトパイプに入って上昇しながら気体の浮上力によりエアリフト機能を発揮するとともに吸引パイプの周側面に設けた気泡押出孔と吸引パイプの下端に設けた吸引口とに吸引力を起こさせ、気液分離室内に複数の異なる室内水位を形成するものであった。この結果、吸引口から液体または液体と共に海底の資源を吸引パイプ内に吸引し、エアリフトパイプ内をエアリフトを利用して深底資源を地上に引き揚げて回収するものがあった(例えば、引用文献1参照。)。
【0005】
【特許文献1】
特開2000−227100号公報(第1−6頁、図1、図2参照)
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の上記従来の深底資源吸引揚装置は、ポンプを駆動することにより気体と液体との異質な2種物質を気液圧送パイプを通じて高圧化して海底等の深底にまで圧送しなけばならないので、深底での資源を吸引パイプにより吸引してから気体の浮上力(エアリフト)を利用して水とともに資源を地上に引き上げる時に気体と液体とを分離しなければならないため、深底近くにまで運ばれ、サイフォン管を内部に備えた気液分離室を必要不可欠にする。この結果、特許文献1に記載の深底資源吸引揚装置は、構造が複雑になり、部品数も多くなり、製作および組立が容易には行えず、製作コストおよび設備費は高価になり、取扱い操作も容易には行えなかった。
しかも、気液分離室内に気体とともに圧送される液体は、増加される分、深底付近において気液分離室の外部に放出されるので、深底に乱流を生して水が汚濁される不都合があった。
従って、例えば発電用ダム、飲料水用ダム等において、湖底に溜まった土砂を湖底から取り除くために、例えば引用文献1に記載の発明を適用すると、気液分離室の外部に放出される液体に起因した乱流により湖底が撹拌されることにより水が汚濁されるので、不適格であった。
【0007】
本発明は上記従来の欠点を解決し、気液分離室を必要とすることなく、湖底の土砂を容易な取り扱いにて効率良く確実に移送、回収でき、また湖底が汚濁されずに済み、しかも構造簡単であり、部品数も少なく製作および組立が容易になり、製作コストおよび設備費が安価な土砂回収装置を提供しようとする。
【0008】
【課題を解決するための手段】
本発明は上記課題に鑑みなされ、請求項1に記載の発明は、ダム、湖沼等の水底に着底され、外部と内部を仕切るとともに内部下方にはモータ等の駆動源により掘削具が回転駆動されることにより水に対し土砂を混合可能に掘削する掘削機構部を設けた大径な隔壁筒体と該隔壁筒体内部に水面から所望高さまで挿入され上部は真空ポンプに接続された小径な回収案内筒体とにより内外二重管構造をなし、該回収案内筒体の下方内部に一端が接続され、他端は前記回収案内筒内部に圧縮気体を送出可能にコンプレッサーが接続された送気管を設け、該コンプレッサーから前記送気管を介して回収案内筒体内部に送気される気体の浮上に伴い土砂と水とを回収することを特徴としたという手段を採用した。
【0009】
また、本発明の請求項2に記載の発明は、請求項1において、前記回収案内筒体は、陸上または海上等に設けられる分離タンクに接続され、該分離タンクの後段に配した回収タンクに設けられる格子、金網、濾布の1種または2種以上よりなる濾過手段により土砂と水とは分離されることを特徴とするという手段を採用した。
【0010】
また、本発明の請求項3に記載の発明は、請求項1または2において、前記分離タンクは、真空ポンプに接続されることを特徴とするという手段を採用した。
【0011】
また、本発明の請求項4に記載の発明は、請求項1,2,または3において、前記分離タンクの排水口の後段に必要に応じて沈砂池または/および砂濾過機構部が設けられることを特徴とするという手段を採用した。
【0012】
また、本発明の請求項5に記載の発明は、請求項1,2,3,または4において、 前記掘削機構部に用いられるモータは、油圧式または空圧式により回転駆動されることを特徴とするという手段を採用した。
【0013】
【発明の実施の形態】
以下図面に従って本発明の実施の形態の具体例を説明する。
図1は本発明の土砂回収装置の一実施形態を示す説明用の断面図であり、図2は同じく本実施形態で使用するエアリフトを適用する二重管構造に組上げられた隔壁筒体と回収案内筒体とを示す拡大断面図、図3は同じく隔壁筒体の内部下方に設けられた掘削機構部を示す拡大断面図、図4は同じく分離タンクの後段に設けられる回収タンク、沈砂池、砂濾過機構部を示す断面図である。
【0014】
1は本実施形態の土砂回収装置であり、この土砂回収装置1は大径な隔壁筒体2と該隔壁筒体2内部に水面W.Lから所望高さHまで挿入され小径な回収案内筒体3とにより内外二重管構造をなす。
【0015】
前記隔壁筒体2は、ダム、湖沼等の水底4に着底され、外部と内部を仕切るとともに内部下方にはモータM等の駆動源により掘削具5が回転駆動されることにより水Wに対し土砂6を混合可能に掘削する掘削機構7を設けている。また、この隔壁筒体2は、例えば繊維強化プラスチックにより形成され、長さlが3〜4m程度、半径rが約1m程度の複数本の筒体素体2Aを土砂6を回収する水面W.Lから水底4までの深さに応じて全体の設置長さLだけ浚渫船18上で継ぎ足すようになっている。そして、この隔壁筒体2の全体的な設置長さLは、30〜40m程度にすることもできる。前記掘削具5としては、例えば図示するようなフォーク状のものが使用される。
8は小径な回収案内筒体3の上部が接続された真空ポンプである。
【0016】
9は送気管であり、この送気管9は回収案内筒体3の下方内部に一端9aが接続され、他端9bは前記回収案内筒体3内部に圧縮気体G′を送出可能にコンプレッサー10が接続されるように設けられる。この送気管9としては、鉄製のものが好適に使用される。そして、このコンプレッサー10は比較的低圧縮度を保証するものが用いられ、このコンプレッサー10から前記送気管9を介して回収案内筒体3内部に送気される気体Gの浮上に伴い土砂6と水Wとを回収するようになっている。この送気管9内に送られる気体Gの移送速度は、約20m/minである。
【0017】
また、前記回収案内筒体3は、例えば図1に示すように陸上または海上等に設けられる分離タンク11に接続され、該分離タンク11の後段に配した回収タンク12内に設けられる格子、金網、濾布の1種または2種以上よりなる濾過手段13により土砂6と水W1とは分離される。また、この前記分離タンク11は、真空ポンプ8に接続されることにより回収案内筒体3に吸引力を発揮させるようになっている。
【0018】
14は分離タンク11の排水口11aの後段に必要に応じて設けられる沈砂池であり、この沈砂池14は最深部14aに土砂6が沈降して滞留され、最深部14aから次第に遠ざかるのにつれて浅くなるように傾斜面14bが連設されることにより傾斜面14bの勾配に伴い土砂6が最深部14aに流落ちるようになっている。
【0019】
15は分離タンク11の排水口11aの後段に必要に応じて沈砂池14または/および沈砂池14と一緒に設けられる砂濾過機構部であり、この砂濾過機構部15には沈砂池14により沈殿濾過された水W2をさらにポンプ16により汲み上げられ、土砂6と水W3とが分離されることにより濾過された水が湖へと還元される。
【0020】
また、掘削機構部7の掘削具5を回転駆動するための駆動源としての前記モータMは、例えば油圧式または空圧式により回転駆動されるものが用いられが、本実施形態では図1に示すようにエアー・コンプレッサー17を用いた空圧式の駆動が採用されている。
【0021】
図1において、18は浚渫船である。また、19は送気管9の途中に設けられた安全弁である。
【0022】
本発明の一実施形態は以上の構成からなり、例えば発電用ダム、飲料水用ダム、そのほか湖沼等の水底4に溜まった土砂6を回収するには、浚渫船18上に用意され、強化プラスチックにて形成された長さlが3〜4m程度、半径rが約1m程度の複数本の筒体素体2Aを、土砂6を回収する水面W.Lから水底4までの深さに応じた全体の設置長さLに継ぎ足し、隔壁筒体2を組み上げる。
【0023】
そして、浚渫船18から隔壁筒体2をクレーン等の吊機を用いて水面W.L下に沈降して行き、隔壁筒体2の下部を砂6が溜まっている水底4に着底させる。次いで、隔壁筒体2の内部に水面W.Lから所望高さHまで小径な回収案内筒体3を挿入することにより大径な隔壁筒体2と小径な回収案内筒体3とにより内外二重管構造を組み上げる。
【0024】
この際、回収案内筒体3には、下方内部に一端9aが接続され、他端9bはこの回収案内筒体3内部に圧縮気体G1を送出可能にコンプレッサー10が接続された送気管9を接続しておく。また、回収案内筒体3は上端が土砂輸送管3′を介して陸上の分離タンク11に接続されている。この分離タンク11には真空ポンプ8が接続され、吸引力を働かせるようになっている。
【0025】
それから、隔壁筒体2の内部下方に設けた掘削機構部7の駆動源としてのモータMを駆動してフォーク状の掘削具5を回転させると、例えば発電用ダム、飲料水用ダム、そのほか湖沼等の水底4に溜まった土砂6は掘削具5により掘削されて撹拌されることにより水Wと混合される。
【0026】
この時、大径な隔壁筒体2の下部は、水底4に着底されることにより隔壁筒体2の内部と外部とは隔離されて土砂6の作業回収領域は囲まれるので、土砂6が掘削機構部7の掘削具5により水底4から掘削されて水Wと混合されてもその水は隔壁筒体2の外部に流出したり、漏れ出すことがないため、湖水の汚れはない。
【0027】
そして、回収案内筒体3の下方内部に一端9aが接続され、しかも他端9bに接続されたコンプレッサー10から送気管9を通じて回収案内筒体3の内部に圧縮気体G′が送出されるので、この圧縮気体G′は回収案内筒体3内の水中を泡になり浮上されて行く。この時、送気管9内に送られる気体Gの移送速度は、例えば約20m/minに設定される。
従って、前述のように掘削機構部7の掘削具5により掘削された水底4に溜まる土砂6は、回収案内筒体3内部を圧縮空気等の気体Gの浮上力(エアリフト)により水とともに水面W.L上に速やかに運搬、移送され、陸上に設けた分離タンク11内に回収される。
【0028】
この際、分離タンク11に回収される土砂水量は、回収案内筒体3内に送気管9を通じて送気されるエアリフト量に比例的に回収される。
また、分離タンク11には真空ポンプ8が接続されて吸引力が働くので、前述のように気体Gの浮上力と協同して掘削された土砂6は分離タンク11に迅速かつ確実に運搬、移送される。
【0029】
このように、土砂6が水Wとともに分離タンク11内に運搬、移送されると、分離タンク11では土砂6が沈降されて土砂水から分離されるので、ある程度、土砂水が浄化される。
それから、分離タンク11の下部に設けられた排出口11aのバルブを開弁することにより土砂水から土砂6を分離して各個に排出することができる。
【0030】
また、分離タンク11から排出される土砂水は、例えば図4に示すように分離タンク11の後段に配した回収タンク12内に設けられた格子、金網、濾布の1種または2種以上よりなる濾過手段13により土砂6と水W1とにさらに分離される。
また、回収案内筒体3内を送られて来る気体Gは、真空ポンプ8により吸引された後に大気に放出される。また、エアリフト用の気体Gは大気から前述のようにコンプレッサー10により採り入れられて送気管9を通じて回収案内筒体3内に送気される。
【0031】
しかも、分離タンク11から排出される土砂水は、例えば図4に示すように、分離タンク11の後段に必要に応じて設けられた沈砂池14により沈砂されて土砂6と水W2とがさらに分離されたり、この沈砂池14と一緒に設けられるか、または単独に設けられる砂濾過機構部15にて土砂6は沈殿濾過されて回収され、さらに浄化された水W3は湖へと還元される。
【0032】
【発明の効果】
本発明の請求項1に記載の発明は以上のように、ダム、湖沼等の水底に着底され、外部と内部を仕切るとともに内部下方にはモータ等の駆動源により掘削具が回転駆動されることにより水に対し土砂を混合可能に掘削する掘削機構部を設けた大径な隔壁筒体と該隔壁筒体内部に水面から所望高さまで挿入され上部は真空ポンプに接続された小径な回収案内筒体とにより内外二重管構造をなし、該回収案内筒体の下方内部に一端が接続され、他端は前記回収案内筒体内部に圧縮気体を送出可能にコンプレッサーが接続された送気管を設け、該コンプレッサーから前記送気管を介して回収案内筒体内部に送気される気体の浮上に伴い土砂と水とを回収することを特徴としたので、従来のように気液分離室を水底に近くまで沈めて用いる必要がなくなり、湖底に溜まる土砂を回収案内筒体内に圧送するだけの容易な取り扱い操作にて効率良く確実に地上または海上に移送、回収することができる。また、本発明の土砂回収装置は、前述のように、大径な隔壁筒体と、小径な回収案内筒体とにより内外二重管構造をなし、隔壁筒体により内部と外部とは隔離されて土砂の作業回収領域は囲まれるので、掘削機構部により掘削される土砂と混合される土砂水が外部に流出されて湖底が汚濁されずに済む。しかも、大径な隔壁筒体と、小径な回収案内筒体とにより内外二重管構造をなした構造簡単であるので、部品数も少なく製作および組立が容易になり、製作コストおよび設備費は安価になる。
【0033】
また、本発明の請求項2に記載の発明は、請求項1において、前記回収案内筒体は、陸上または海上等に設けられる分離タンクに接続され、該分離タンクの後段に配した回収タンク内に設けられる格子、金網、濾布の1種または2種以上よりなる濾過手段により土砂と水とは分離されることを特徴とするので、分離タンク内に回収される土砂水は後段の回収タンク内に設けられた格子、金網、濾布の1種または2種以上よりなる濾過手段によりさらに土砂と分離されて浄化された水になる。
【0034】
また、本発明の請求項3に記載の発明は、請求項1または2において、前記分離タンクは、真空ポンプに接続されることを特徴とするので、真空ポンプの吸引力が働くことにより気体の浮上力と協同して掘削された土砂は分離タンクに迅速かつ確実に運搬、移送される。
【0035】
また、本発明の請求項4に記載の発明は、請求項1,2,または3において、前記分離タンクの排水口の後段に必要に応じて沈砂池または/および砂濾過機構部が設けられることを特徴とするので、分離タンク内に回収される土砂水は後段の沈砂池または/および砂濾過機構部によりさらに土砂と分離されて浄化された水になる。
【0036】
また、本発明の請求項5に記載の発明は、請求項1,2,3,または4において、前記掘削機構に用いられるモータは、油圧式または空圧式により回転駆動されるので、水中においても掘削機構部は円滑かつ確実に動作する。
【図面の簡単な説明】
【図1】図1は本発明の土砂回収装置の一実施形態を示す説明用の断面図である。
【図2】図2は同じく本実施形態で使用するエアリフトを適用する二重管構造に組上げられた隔壁筒体と回収案内筒体とを示す拡大断面図である。
【図3】図3は同じく隔壁筒体の内部下方に設けられた掘削機構部を示す拡大断面図である。
【図4】図4は同じく分離タンクの後段に設けられる回収タンク、沈砂池、砂濾過機構部を示す断面図である。
【符号の説明】
1 土砂回収装置
2 隔壁筒体
3 回収案内筒体
4 水底
5 掘削具
6 土砂
7 掘削機構部
8 真空ポンプ
9 送気管
10 コンプレッサー
11 分離タンク
12 回収タンク
W.L 水面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sediment recovery apparatus, and more particularly to a power generation dam, a drinking water dam, and the like, in which the sediment collected at the bottom of a lake or the like is transported and transferred to the surface of water together with water by using the buoyancy of a gas such as air. Used to separate sediment well from water.
[0002]
[Prior art]
When a dam for power generation and a dam for drinking water are used for a long time, the sediment around the dam collapses due to rainfall, etc., and sediment accumulates at the bottom of the lake due to water flowing from upstream to downstream, affecting the water storage capacity. Become like
Therefore, if the sediment is to be removed from the lake bottom, the lake bottom will be agitated, and the water stored in the dam will be polluted. If such polluted water flows downstream, it will cause enormous damage to the marine resources in the downstream area, and the loss is large. Of course, the water in the reservoir cannot be used for drinking water or the like.
[0003]
By the way, there is an apparatus which adopts a sampling method in which a valuable resource such as a mineral lying deep in the ocean floor or the like is lifted to the ground together with water using a levitation force (air lift) of a gas such as air, and then transported and collected.
As described above, as a pumping recovery device utilizing the buoyancy (air lift) of a gas such as air, for example, a pump as a drive source for increasing the pressure of a gas and a liquid and sending it to the deep sea, and one end connected to the pump A gas-liquid pumping pipe for pumping gas and liquid near the deep sea floor, the other end of the gas-liquid pumping pipe is connected, and a gas-liquid separation chamber provided with a siphon pipe inside, and inserted into the gas-liquid separation chamber The deep bottom resource suction device has a structure in which a lower portion extends to the sea floor and an upper portion has a suction pipe extending to the surface of the water as an air lift pipe.
[0004]
Then, the gas and liquid pumped from the pump are pumped into the gas-liquid separation chamber via the gas-liquid pumping pipe, and the gas and liquid are separated vertically to form a water level. The liquid becomes bubbles from the bubble extruding port due to an increase in the liquid from the lower part of the gas-liquid separation chamber, enters the air lift pipe, exerts an air lift function by the floating force of the gas while rising, and is provided on the peripheral side surface of the suction pipe. A suction force is generated between the bubble extrusion hole and the suction port provided at the lower end of the suction pipe to form a plurality of different room water levels in the gas-liquid separation chamber. As a result, there is a device that sucks the liquid or the seabed resources together with the liquid into the suction pipe from the suction port, and pulls up the deep-bottom resources to the ground using an air lift in the air lift pipe and collects them (for example, Patent Document 1). reference.).
[0005]
[Patent Document 1]
JP-A-2000-227100 (see pages 1-6, FIGS. 1 and 2)
[0006]
[Problems to be solved by the invention]
However, the above-mentioned conventional deep-bottom resource suction and lifting device described in Patent Literature 1 drives a pump to increase the pressure of two different substances, a gas and a liquid, through a gas-liquid pressure-feeding pipe so that the two deep-substances reach a deep bottom such as the sea bottom. Since the resources must be pumped to the bottom, the resources at the deep bottom must be suctioned by a suction pipe and then the gas and liquid must be separated when the resources are lifted to the ground with water using the levitation force of the gas (air lift). Therefore, the gas-liquid separation chamber, which is transported to near the deep bottom and has a siphon tube inside, is indispensable. As a result, the deep-bottom resource suction and lifting device described in Patent Literature 1 has a complicated structure, a large number of parts, and cannot be easily manufactured and assembled. The operation was not easy.
In addition, the liquid that is pumped together with the gas into the gas-liquid separation chamber is discharged to the outside of the gas-liquid separation chamber near the deep bottom by the increased amount, so that turbulence is generated at the deep bottom and water is polluted. There was an inconvenience.
Therefore, for example, in a dam for power generation, a dam for drinking water, and the like, when the invention described in Patent Document 1 is applied in order to remove sediment accumulated on the lake bottom from the lake bottom, liquid discharged to the outside of the gas-liquid separation chamber is reduced. The water was polluted by stirring the bottom of the lake due to the turbulence caused by the turbulence.
[0007]
The present invention solves the above-mentioned conventional drawbacks, and can efficiently and reliably transfer and recover the sediment at the bottom of the lake with easy handling without the need for a gas-liquid separation chamber. An object of the present invention is to provide a sediment recovery apparatus that has a simple structure, has a small number of parts, is easy to manufacture and assemble, and has low manufacturing costs and equipment costs.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and the invention according to claim 1 is a method in which an excavator is settled on a water bottom of a dam, a lake, or the like, and separates the inside from the outside, and is driven by a driving source such as a motor below the inside. A large-diameter partition wall body provided with an excavation mechanism for excavating soil and sand so that it can be mixed with water, and a small-diameter portion inserted into the partition wall body to a desired height from the water surface and connected to a vacuum pump at an upper portion. An air supply pipe having an inner / outer double pipe structure formed by the collection guide cylinder, one end of which is connected to the lower inside of the collection guide cylinder, and the other end to which a compressor is connected so that compressed gas can be sent into the collection guide cylinder. And a means for collecting earth and sand and water as the gas sent from the compressor into the collection guide cylinder through the air supply pipe rises.
[0009]
According to a second aspect of the present invention, in the first aspect, the collection guide cylinder is connected to a separation tank provided on land or at sea or the like, and is provided in a collection tank disposed at a subsequent stage of the separation tank. A means is adopted in which sediment and water are separated from each other by a filtering means comprising one or more of a grid, a wire mesh, and a filter cloth provided.
[0010]
The invention according to claim 3 of the present invention employs means according to claim 1 or 2, wherein the separation tank is connected to a vacuum pump.
[0011]
According to a fourth aspect of the present invention, in the first, second, or third aspect, a sand basin and / or a sand filtration mechanism is provided as necessary at a stage subsequent to the drain port of the separation tank. The feature that was characterized by was adopted.
[0012]
The invention according to claim 5 of the present invention is characterized in that, in claim 1, 2, 3, or 4, the motor used for the excavation mechanism is rotationally driven by a hydraulic or pneumatic type. The means of doing was adopted.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
A specific example of an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view for explaining one embodiment of the earth and sand collecting apparatus of the present invention, and FIG. 2 is a sectional tube and a collecting pipe assembled in a double pipe structure to which an air lift used in the present embodiment is applied. FIG. 3 is an enlarged cross-sectional view showing an excavation mechanism provided below the inside of the partition cylindrical body, and FIG. 4 is a collection tank, a sand basin also provided at the latter stage of the separation tank. It is sectional drawing which shows a sand filtration mechanism part.
[0014]
Reference numeral 1 denotes a sediment recovery device of the present embodiment. The sediment recovery device 1 has a large-diameter partition wall cylinder 2 and a water surface W. An inner / outer double pipe structure is formed by the small-diameter recovery guide cylinder 3 inserted from L to a desired height H.
[0015]
The bulkhead cylinder 2 is settled on a water bottom 4 such as a dam, a lake, etc., and separates the inside from the outside. An excavation mechanism 7 is provided for excavating the earth and sand 6 so that they can be mixed. The partition cylindrical body 2 is formed of, for example, a fiber reinforced plastic, and has a length l of about 3 to 4 m and a radius r of about 1 m. The entire installation length L is added on the dredger 18 according to the depth from L to the water bottom 4. The overall installation length L of the partition wall cylinder 2 can be set to about 30 to 40 m. As the excavator 5, for example, a fork as shown in the figure is used.
Reference numeral 8 denotes a vacuum pump to which the upper portion of the small-diameter recovery guide cylinder 3 is connected.
[0016]
Reference numeral 9 denotes an air supply pipe. The air supply pipe 9 has one end 9a connected to the inside of the lower part of the recovery guide cylinder 3, and the other end 9b has a compressor 10 capable of sending compressed gas G 'into the recovery guide cylinder 3. It is provided to be connected. The air pipe 9 is preferably made of iron. The compressor 10 is used to ensure a relatively low degree of compression. The gas G sent from the compressor 10 to the inside of the recovery guide cylinder 3 through the air supply pipe 9 is lifted by the earth and sand 6. Water W is collected. The transfer speed of the gas G sent into the air supply pipe 9 is about 20 m 3 / min.
[0017]
The collection guide cylinder 3 is connected to a separation tank 11 provided on land or at sea, for example, as shown in FIG. The earth and sand 6 and the water W1 are separated by the filtering means 13 composed of one or two or more filter cloths. The separation tank 11 is connected to the vacuum pump 8 so that the recovery guide cylinder 3 exerts a suction force.
[0018]
Reference numeral 14 denotes a sand basin provided as necessary at a stage subsequent to the drainage port 11a of the separation tank 11. The sand basin 14 has the sediment 6 settled in the deepest portion 14a and accumulated therein, and becomes shallower as it gradually moves away from the deepest portion 14a. The inclined surface 14b is continuously provided so that the earth and sand 6 flows down to the deepest portion 14a with the inclination of the inclined surface 14b.
[0019]
Reference numeral 15 denotes a sand basin 14 and / or a sand filtration mechanism provided along with the sand basin 14 as necessary after the drain port 11 a of the separation tank 11. The filtered water W2 is further pumped up by the pump 16, and the soil 6 and the water W3 are separated to reduce the filtered water to the lake.
[0020]
The motor M as a drive source for rotationally driving the excavation tool 5 of the excavation mechanism unit 7 is, for example, a hydraulically or pneumatically driven rotary motor. In the present embodiment, the motor M is shown in FIG. As described above, the pneumatic drive using the air compressor 17 is employed.
[0021]
In FIG. 1, reference numeral 18 denotes a dredger. Reference numeral 19 denotes a safety valve provided in the middle of the air supply pipe 9.
[0022]
One embodiment of the present invention has the above configuration. For example, in order to collect sediment 6 accumulated on the water bottom 4 such as a power generation dam, a drinking water dam, and other lakes and marshes, it is prepared on a dredger 18 and made of reinforced plastic. A plurality of cylindrical element bodies 2A having a length 1 of about 3 to 4 m and a radius r of about 1 m formed on the water surface W. The entire installation length L corresponding to the depth from L to the water bottom 4 is added, and the partition wall cylinder 2 is assembled.
[0023]
Then, from the dredge 18, the bulkhead cylinder 2 is placed on the water surface W.P. Then, the lower part of the partition cylindrical body 2 is settled on the water bottom 4 where the sand 6 is stored. Next, the water surface W. By inserting a small-diameter collection guide cylinder 3 from L to a desired height H, an inner / outer double pipe structure is assembled by the large-diameter partition cylinder 2 and the small-diameter collection guide cylinder 3.
[0024]
At this time, one end 9a is connected to the inside of the recovery guide cylinder 3 in the lower part, and the other end 9b is connected to the air supply pipe 9 connected to the compressor 10 so as to be able to send out the compressed gas G1 to the inside of the recovery guide cylinder 3. Keep it. The upper end of the recovery guide cylinder 3 is connected to a separation tank 11 on land via a sediment transport pipe 3 '. A vacuum pump 8 is connected to the separation tank 11 so as to exert a suction force.
[0025]
Then, when the fork-shaped excavator 5 is rotated by driving the motor M as a drive source of the excavation mechanism 7 provided below the inside of the bulkhead cylinder 2, for example, a dam for power generation, a dam for drinking water, The earth and sand 6 accumulated in the water bottom 4 is mixed with the water W by being excavated by the excavation tool 5 and stirred.
[0026]
At this time, since the lower part of the large-diameter partition wall 2 is settled on the water bottom 4, the inside and the outside of the partition wall 2 are separated from each other, and the work collection area of the soil 6 is surrounded. Even if the water is excavated from the water bottom 4 by the excavation tool 5 of the excavation mechanism 7 and mixed with the water W, the water does not flow out or leaks out of the partition wall cylinder 2, so that there is no lake water contamination.
[0027]
One end 9a is connected to the lower inside of the recovery guide cylinder 3, and the compressed gas G 'is sent from the compressor 10 connected to the other end 9b to the interior of the recovery guide cylinder 3 through the air supply pipe 9. The compressed gas G 'floats in water in the recovery guide cylinder 3 as bubbles. At this time, the transfer speed of the gas G sent into the air supply pipe 9 is set to, for example, about 20 m 3 / min.
Accordingly, as described above, the earth and sand 6 accumulated on the water bottom 4 excavated by the excavation tool 5 of the excavation mechanism unit 7 causes the inside of the recovery guide cylinder 3 to rise along with the water surface W together with the water due to the floating force (air lift) of the gas G such as compressed air. . L is promptly transported and transferred to L, and collected in a separation tank 11 provided on land.
[0028]
At this time, the amount of sediment water collected in the separation tank 11 is collected in proportion to the amount of air lift sent into the collection guide cylinder 3 through the air supply pipe 9.
Further, since the vacuum pump 8 is connected to the separation tank 11 and a suction force acts thereon, the earth and sand 6 excavated in cooperation with the levitation force of the gas G as described above is quickly and reliably transported and transferred to the separation tank 11. Is done.
[0029]
When the soil 6 is transported and transferred together with the water W into the separation tank 11 as described above, the sediment 6 is settled and separated from the sediment water in the separation tank 11, so that the sediment water is purified to some extent.
Then, by opening the valve of the discharge port 11a provided in the lower part of the separation tank 11, the earth and sand 6 can be separated from the earth and sand water and discharged to each individual.
[0030]
The sediment water discharged from the separation tank 11 is, for example, from one or more of a grid, a wire mesh, and a filter cloth provided in a collection tank 12 disposed at a subsequent stage of the separation tank 11 as shown in FIG. Is further separated into earth and sand 6 and water W1.
Further, the gas G sent in the collection guide cylinder 3 is discharged to the atmosphere after being sucked by the vacuum pump 8. The gas G for air lift is taken in from the atmosphere by the compressor 10 as described above, and is sent into the collection guide cylinder 3 through the air supply pipe 9.
[0031]
Moreover, the sediment water discharged from the separation tank 11 is sedimented by a sedimentation basin 14 provided as necessary in the subsequent stage of the separation tank 11, as shown in FIG. 4, for example, so that the sediment 6 and the water W2 are further separated. The sediment 6 is settled and collected by a sand filtration mechanism 15 provided together with the sand basin 14 or provided alone, and the purified water W3 is returned to the lake.
[0032]
【The invention's effect】
As described above, the invention according to claim 1 of the present invention is settled on the bottom of a water such as a dam or a lake, and separates the inside from the outside, and the excavating tool is rotated below the inside by a driving source such as a motor. A large-diameter partition wall body provided with an excavation mechanism for excavating earth and sand so that it can be mixed with water, and a small-diameter collection guide inserted into the partition wall body to a desired height from the water surface and connected to a vacuum pump at an upper portion. A tubular body forms an inner / outer double pipe structure, one end of which is connected to the lower inside of the recovery guide cylinder, and the other end of which is connected to an air supply pipe to which a compressor is connected so as to be able to send compressed gas into the recovery guide cylinder. And the soil and water are collected as the gas supplied from the compressor to the inside of the recovery guide cylinder through the air supply pipe rises. There is no need to sink it close to Ri, transported to efficiently and reliably ground or sea at easy handling operation that only pumping the sediment accumulating in the bottom of the lake to the collecting guide cylinder body, may be recovered. Further, as described above, the earth and sand recovery device of the present invention has an inner / outer double pipe structure formed by the large-diameter partition wall cylinder and the small-diameter recovery guide cylinder, and the inside and the outside are separated by the partition wall cylinder. Since the work collection area of the earth and sand is enclosed, the sediment water mixed with the earth and sand excavated by the excavation mechanism part is discharged to the outside, and the lake bottom is not polluted. In addition, since the large-diameter partition wall cylinder and the small-diameter recovery guide cylinder have a simple inner / outer double-tube structure, the number of parts is small, production and assembly are easy, and production and equipment costs are reduced. Become cheap.
[0033]
According to a second aspect of the present invention, in the first aspect, the recovery guide cylinder is connected to a separation tank provided on land or at sea or the like, and is disposed in a recovery tank disposed at a subsequent stage of the separation tank. The sediment and water are separated by a filtration means comprising one or more of a grid, a wire mesh, and a filter cloth provided in the separation tank. The water is further separated from the earth and sand by a filtering means comprising one or more of a grid, a wire net, and a filter cloth provided therein, thereby obtaining purified water.
[0034]
Further, the invention according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the separation tank is connected to a vacuum pump. The excavated soil in cooperation with the levitation force is quickly and reliably transported and transferred to the separation tank.
[0035]
According to a fourth aspect of the present invention, in the first, second, or third aspect, a sand basin and / or a sand filtration mechanism is provided as necessary at a stage subsequent to the drain port of the separation tank. Therefore, the sediment water collected in the separation tank is further separated from the sediment by a later settling basin or / and a sand filtration mechanism to become purified water.
[0036]
In the invention according to claim 5 of the present invention, in claim 1, 2, 3, or 4, the motor used for the excavating mechanism is rotationally driven by a hydraulic or pneumatic type, so that it can be used underwater. The excavation mechanism operates smoothly and reliably.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining an embodiment of the earth and sand recovery apparatus of the present invention.
FIG. 2 is an enlarged sectional view showing a partition tubular body and a recovery guide tubular body assembled in a double pipe structure to which an air lift used in the present embodiment is applied.
FIG. 3 is an enlarged cross-sectional view showing an excavation mechanism provided below the inside of the partition wall cylinder.
FIG. 4 is a cross-sectional view showing a recovery tank, a sand basin, and a sand filtration mechanism provided at the subsequent stage of the separation tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sediment collection | recovery apparatus 2 Partition wall cylinder 3 Collection guide cylinder 4 Water bottom 5 Excavation tool 6 Sediment 7 Excavation mechanism part 8 Vacuum pump 9 Air supply pipe 10 Compressor 11 Separation tank 12 Collection tank W. L water surface

Claims (5)

ダム、湖沼等の水底に着底され、外部と内部を仕切るとともに内部下方にはモータ等の駆動源により掘削具が回転駆動されることにより水に対し土砂を混合可能に掘削する掘削機構部を設けた大径な隔壁筒体と該隔壁筒体内部に水面から所望高さまで挿入され上部は真空ポンプに接続された小径な回収案内筒体とにより内外二重管構造をなし、該回収案内筒体の下方内部に一端が接続され、他端は前記回収案内筒体内部に圧縮気体を送出可能にコンプレッサーが接続された送気管を設け、該コンプレッサーから前記送気管を介して回収案内筒体内部に送気される気体の浮上に伴い土砂と水とを回収することを特徴とした土砂回収装置。A digging mechanism that is settled on the bottom of the water of a dam, lake, etc., separates the inside from the outside, and has a digging mechanism below the inside where the digging tool is rotated by a driving source such as a motor so that the earth and sand can be mixed with the water. An inner / outer double pipe structure is provided by the provided large-diameter partition wall cylinder and a small-diameter recovery guide cylinder inserted into the partition cylinder body from the water surface to a desired height and connected to a vacuum pump at an upper portion. One end is connected to the inside of the lower part of the body, and the other end is provided with an air supply pipe to which a compressor is connected so as to be able to deliver compressed gas inside the recovery guide cylinder, and the inside of the recovery guide cylinder from the compressor via the air supply pipe. Sediment recovery device, which recovers sediment and water as the gas sent to the air rises. 前記回収案内筒体は、陸上または海上等に設けられる分離タンクに接続され、該分離タンクの後段に配した回収タンク内に設けられる格子、金網、濾布の1種または2種以上よりなる濾過手段により土砂と水とは分離されることを特徴とする請求項1に記載の土砂回収装置。The recovery guide cylinder is connected to a separation tank provided on land or at sea, and is provided with a filtration, which comprises one or more of a grid, a wire mesh, and a filter cloth provided in a recovery tank disposed at a stage subsequent to the separation tank. The earth and sand recovery device according to claim 1, wherein the soil and water are separated by the means. 前記分離タンクは、真空ポンプに接続されることを特徴とする請求項1または2に記載の土砂回収装置。The apparatus according to claim 1, wherein the separation tank is connected to a vacuum pump. 前記分離タンクの排水口の後段に必要に応じて沈砂池または/および砂濾過機構部が設けられることを特徴とする請求項1,2,または3に記載の土砂回収装置。The sediment recovery apparatus according to claim 1, 2, 3, or 3, further comprising a sand basin and / or a sand filtration mechanism, as necessary, at a stage subsequent to the drainage port of the separation tank. 前記掘削機構部に用いられるモータは、油圧式または空圧式により回転駆動されることを特徴とする請求項1,2,3,または4に記載の土砂回収装置。The earth and sand collection device according to claim 1, 2, 3, 3, or 4, wherein the motor used in the excavation mechanism is rotationally driven by a hydraulic or pneumatic type.
JP2002347628A 2002-11-29 2002-11-29 Sediment recovery system Pending JP2004183206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347628A JP2004183206A (en) 2002-11-29 2002-11-29 Sediment recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347628A JP2004183206A (en) 2002-11-29 2002-11-29 Sediment recovery system

Publications (1)

Publication Number Publication Date
JP2004183206A true JP2004183206A (en) 2004-07-02

Family

ID=32750759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347628A Pending JP2004183206A (en) 2002-11-29 2002-11-29 Sediment recovery system

Country Status (1)

Country Link
JP (1) JP2004183206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242542A (en) * 2009-04-02 2010-10-28 Maezawa Ind Inc Grit lifter and method of lifting
CN105887774A (en) * 2016-06-12 2016-08-24 华电郑州机械设计研究院有限公司 Loosening device for trash in front of dam
CN106592673A (en) * 2016-11-02 2017-04-26 浙江水利水电学院 Monitoring treatment device for riverway construction fracture surface bottom mud and construction method of monitoring treatment device
JP7404864B2 (en) 2019-12-25 2023-12-26 株式会社大林組 Power management method and power management system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242542A (en) * 2009-04-02 2010-10-28 Maezawa Ind Inc Grit lifter and method of lifting
CN105887774A (en) * 2016-06-12 2016-08-24 华电郑州机械设计研究院有限公司 Loosening device for trash in front of dam
CN106592673A (en) * 2016-11-02 2017-04-26 浙江水利水电学院 Monitoring treatment device for riverway construction fracture surface bottom mud and construction method of monitoring treatment device
CN106592673B (en) * 2016-11-02 2019-12-17 浙江水利水电学院 River channel construction section bottom mud monitoring and processing device and construction method thereof
JP7404864B2 (en) 2019-12-25 2023-12-26 株式会社大林組 Power management method and power management system

Similar Documents

Publication Publication Date Title
CN111362323B (en) High-efficiency pretreatment equipment for high-concentration chemical wastewater
CN1235652A (en) Dredging method and apparatus
JP6456007B1 (en) Stirring separation type suction device, stirring separation type suction system and stirring separation type suction method
JP2007002437A (en) Transportation system of dredged sediment
KR101089024B1 (en) Tidal current coast applied seawater intake system and its construction method
JP2004183206A (en) Sediment recovery system
KR100743392B1 (en) Cleaning apparatus of hole filled underground water
KR101303822B1 (en) Seawater intake pipe assembly
JP2005221382A (en) Benthos collection system
KR101303821B1 (en) Seawater intake system having submerged weir and its construction method
CN109183720B (en) A kind of irrigation canals and ditches anti-clogging recharge filter device
CN211922678U (en) Multi-through-hole dewatering device applied to foundation pit
KR101455367B1 (en) Suction apparatus for marine deposite
CN212388647U (en) Hydraulic engineering desilting device
CN113802639A (en) System and method for cleaning river silt for hydraulic engineering
CN114263200A (en) Civil construction foundation pit drainage structure and construction method thereof
JP2003328344A (en) High lift wellpoint apparatus
KR100625746B1 (en) Suspended Material Auto-draw Chamber
JP2005220598A (en) Equipment for cleaning accumulated sediment on bottom of river
JP2001323775A (en) High-depth mud-discharging system
CN220394689U (en) Environment is administered desilting device
CN115125976B (en) Civil engineering foundation pit drainage structure and construction method thereof
KR100655789B1 (en) Apparatus and method of deposit for differential water pressure
CN216108549U (en) Side slope drainage device
CN211230849U (en) Hydraulic engineering construction drainage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050721

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061214

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424