JP3337115B2 - Diagnosis method of gasket deterioration degree - Google Patents
Diagnosis method of gasket deterioration degreeInfo
- Publication number
- JP3337115B2 JP3337115B2 JP22228296A JP22228296A JP3337115B2 JP 3337115 B2 JP3337115 B2 JP 3337115B2 JP 22228296 A JP22228296 A JP 22228296A JP 22228296 A JP22228296 A JP 22228296A JP 3337115 B2 JP3337115 B2 JP 3337115B2
- Authority
- JP
- Japan
- Prior art keywords
- gasket
- deterioration
- degree
- compression
- compression set
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Closures For Containers (AREA)
- Housings And Mounting Of Transformers (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、絶縁油、絶縁ガ
スなどの絶縁媒体が充填された電気機器などの容器の接
合部を密閉するためのガスケットの経年的な劣化度を診
断する診断方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diagnostic method for diagnosing the aged deterioration of a gasket for sealing a joint of a container such as an electric appliance filled with an insulating medium such as an insulating oil or an insulating gas. Things.
【0002】[0002]
【従来の技術】変圧器、リアクトル、ガス絶縁開閉機器
などの電気機器は各部が着脱可能に構成されていおり、
この部分の接合部には合成ゴム系のガスケットを間挿し
て密閉する構造が採用されている。電気機器の運転温度
は、内部に使用されている絶縁材料によって限界温度が
決まり、絶縁油の充填された機器でのガスケット部分の
温度は、最高温度が90℃程度になるように設計されて
いる。この種の電気機器に使用されるガスケットの材質
はニトリルゴム、あるいはニトリルゴムとコルクを混合
したコルクニトリルが多く使用されている。このような
材質のガスケットが、絶縁油などの媒体にさらされて、
90℃近くの温度で長年月使用されると、膨潤による強
度の低下、可遡剤、老化防止剤などの媒体中への溶出に
よる劣化の促進、媒体中の残存酸素による酸化の促進に
より、弾性率が低下して密封性が低下する劣化が進行し
て、媒体漏れが発生する。2. Description of the Related Art Electrical devices such as transformers, reactors, gas insulated switchgear, etc. are configured such that each part is detachable.
A structure in which a synthetic rubber-based gasket is interposed and hermetically sealed is employed at the joint of this portion. The operating temperature of electrical equipment is limited by the insulating material used inside, and the temperature of the gasket part in equipment filled with insulating oil is designed so that the maximum temperature is about 90 ° C. . As a material of a gasket used for this type of electric equipment, nitrile rubber or cork nitrile obtained by mixing nitrile rubber and cork is often used. When a gasket of such a material is exposed to a medium such as insulating oil,
When used at temperatures near 90 ° C for many months, the elasticity is reduced due to a decrease in strength due to swelling, accelerated deterioration due to dissolution of the retrograde agent and antioxidant into the medium, and accelerated oxidation by residual oxygen in the medium. Deterioration in which the rate is reduced and the sealing property is reduced proceeds, and a medium leak occurs.
【0003】変圧器、リアクトルなどの電気機器が使用
される電力系統は、社会構造の重要な位置にあり、故障
等による停電は絶対に許されない設備であり、絶対的な
信頼性が要求される。このような状況にある電気機器の
密封構造が、経年的に劣化するガスケットで維持されて
いるので、定期的に点検して、常に良好な状態を維持す
る予防保全が重要である。A power system in which electric equipment such as a transformer and a reactor is used is located at an important position in the social structure, and is a facility in which a power failure due to a failure or the like is absolutely not allowed, and absolute reliability is required. . Since the hermetically sealed structure of the electric equipment in such a situation is maintained by a gasket that deteriorates over time, it is important to perform periodic inspections and preventive maintenance that always maintains a good state.
【0004】絶縁油が充填された変圧器のガスケットの
劣化判定法を含む予防保全技術については、電気学会に
おいて検討され、電気学会技術報告(II部)第344
号「変圧器の予防保全技術の現状とその動向」に報告さ
れている。その報告によれば、図3、(式1)に示す圧
縮永久ひずみ率を測定し、この圧縮永久ひずみ率によっ
て劣化度を診断する方法が提案されている。[0004] Preventive maintenance techniques including a method for determining deterioration of a gasket of a transformer filled with insulating oil have been studied by the Institute of Electrical Engineers of Japan, and have been reported by the Institute of Electrical Engineers of Japan (Part II) No. 344.
No. "Current status and trends of transformer preventive maintenance technology". According to the report, there is proposed a method of measuring the compression set shown in FIG. 3 (Equation 1) and diagnosing the degree of deterioration based on the compression set.
【0005】[0005]
【数1】 (Equation 1)
【0006】上記電気学会技術報告(II部)第344
号「変圧器の予防保全技術の現状とその動向」による
と、圧縮永久ひずみ率が90%以上のものには漏油が発
生していることが報告されている。The above-mentioned Technical Report of the Institute of Electrical Engineers of Japan (Part II), No. 344
According to the issue “Current Status and Trends of Preventive Maintenance Technology for Transformers”, it is reported that oil leakage occurs in those having a compression set of 90% or more.
【0007】ガスケットの構造は、例えば平ガスケット
の構造は上記資料、電気学会技術報告(II部)第34
4号「変圧器の予防保全技術の現状とその動向」に示さ
れた図4に示す種類があり、絶縁ガスが封入された機器
ではOリングを用いる場合も多くあり、圧縮永久ひずみ
率を求めるには、診断試料を採取するときに使用中のガ
スケットの厚さを正確に測定しておくことが必要であ
る。For the structure of a gasket, for example, the structure of a flat gasket is described in the above document, Technical Report of the Institute of Electrical Engineers of Japan (Part II), 34
There is a type shown in Fig. 4 shown in No. 4 "Present maintenance technology of transformers and its trend", and there are many cases where O-rings are used in equipment filled with insulating gas, and the compression set is calculated. It is necessary to accurately measure the thickness of the gasket in use when collecting a diagnostic sample.
【0008】[0008]
【発明が解決しようとする課題】ガスケットの圧縮永久
ひずみ率を求めるには、初期の厚さt0を知る必要があ
り、締付け後の厚さt1は、溝付フランジの場合は、溝
深さを測定することが必要であり、平面座フランジの場
合は、締め付けられた状態で測定する必要があり、実際
の機器で精度よく測定することは困難である。また締め
付け後の復元厚さt2は、ガスケットがフランジ面に接
着していることもあり、試料採取時に破損することもあ
り、精度良く測定することが困難な場合が多くある。こ
のような状態での圧縮永久ひずみ率の算出は、精度良く
算出することが困難な場合が多いという問題点がある。In order to determine the compression set of the gasket, it is necessary to know the initial thickness t 0, and the thickness t 1 after tightening is determined by the groove depth in the case of a grooved flange. In the case of a flat seat flange, it is necessary to measure it in a tightened state, and it is difficult to measure it accurately with an actual device. In addition, the restoration thickness t 2 after tightening may be difficult to measure with high accuracy because the gasket may be adhered to the flange surface and may be damaged at the time of sampling. There is a problem that it is often difficult to calculate the compression set in such a state with high accuracy.
【0009】この発明は、上記問題点を解消するために
なされたものであり、採取された試料のみから、圧縮永
久ひずみ率を求める方法を提案し、この圧縮永久ひずみ
率から劣化度を診断するガスケットの劣化度診断方法を
提供するものである。The present invention has been made to solve the above problems, and proposes a method for obtaining a compression set from only a collected sample, and diagnoses a degree of deterioration from the compression set. A method for diagnosing the degree of deterioration of a gasket is provided.
【0010】[0010]
【課題を解決するための手段】この発明の請求項1に係
るガスケットの劣化度診断方法は、採取した試料の圧縮
弾性率を測定し、予め把握された圧縮永久ひずみ率と圧
縮弾性率との関係から圧縮永久ひずみ率を求めてガスケ
ットの劣化度を診断するものである。According to a first aspect of the present invention, there is provided a method for diagnosing the degree of deterioration of a gasket, comprising measuring a compression elastic modulus of a sample taken, and determining a compression set and a compression elastic modulus which are grasped in advance. The compression set is determined from the relationship to determine the degree of deterioration of the gasket.
【0011】この発明の請求項2に係るガスケットの劣
化度診断方法は、対象機器の最高温度部分から診断試料
を採取して圧縮弾性率を測定して、劣化度を診断するも
のである。According to a second aspect of the present invention, there is provided a method of diagnosing a degree of deterioration of a gasket, wherein a diagnostic sample is collected from a highest temperature portion of a target device, and compression elastic modulus is measured to diagnose the degree of deterioration.
【0012】[0012]
実施の形態1.絶縁媒体が充填された電気機器の着脱可
能に構成された部分のガスケットの劣化は、弾性率の低
下によって密封性が損なわれてくるものであり、圧縮永
久ひずみ率は、圧縮弾性率と相関関係にあることに着目
し、診断試料の採取時に詳細寸法を測定することなく、
圧縮永久ひずみ率が求められるようにしたものである。
圧縮弾性率は、診断試料について、図1に示すように圧
縮荷重と厚さの変化を求め、次の(式2)により求めた
ものである。Embodiment 1 FIG. Deterioration of the gasket in the detachable part of the electrical equipment filled with the insulating medium impairs the sealing performance due to the decrease in the elastic modulus, and the compression set is correlated with the compression elastic modulus. And without measuring the detailed dimensions when collecting the diagnostic sample,
The compression set is determined.
The compression modulus is obtained by calculating the change in the compression load and the thickness of the diagnostic sample as shown in FIG.
【0013】[0013]
【数2】 (Equation 2)
【0014】図2は、劣化診断を行う対象機器につい
て、電気学会技術報告(II部)第344号「変圧器の
予防保全技術の現状とその動向」に示された要領によ
り、圧縮永久ひずみ率を求め、同一試料について圧縮弾
性率も求め、この圧縮弾性率と圧縮永久ひずみ率の相関
関係を示すものである。図2から明らかなように圧縮永
久ひずみ率と圧縮弾性率とは比例関係にある。この関係
はガスケットの材質、構造によって差異はあるが、あら
かじめガスケットの材質毎に圧縮永久ひずみ率と圧縮弾
性率との関係を把握しておけば、対象機器から採取した
ガスケットの試料のみから、圧縮弾性率を測定すること
によって、劣化度を判定するデータとなる圧縮永久ひず
み率が容易に得ることができる。FIG. 2 shows the compression set ratio of the target equipment for which the deterioration diagnosis is to be performed, according to the procedure described in the Technical Report of the Institute of Electrical Engineers of Japan (Part II) No. 344, “Current Status and Trends of Preventive Maintenance Technology for Transformers”. And the compression modulus of the same sample is also obtained, and shows the correlation between the compression modulus and the compression set. As is clear from FIG. 2, the compression set and the compression modulus are in a proportional relationship. Although this relationship varies depending on the material and structure of the gasket, if the relationship between the compression set and the compressive modulus of each gasket material is grasped in advance, the compression can be performed only from the gasket sample collected from the target device. By measuring the elastic modulus, it is possible to easily obtain a compression set rate which is data for judging the degree of deterioration.
【0015】圧縮弾性率は、採取した試料の厚さ方向に
圧縮荷重を加えて、厚さの変化を自動的に記録する圧縮
試験器を用いて簡単に測定することができる。したがっ
て、対象機器から試料を採取するとき、ガスケットの締
付け厚さを測定しておくことも必要でなく、初期の厚さ
も必要でないので、試料の採取が容易であり、ガスケッ
トの劣化度の診断が極めて容易に実施できる。The compressive modulus can be easily measured by applying a compressive load in the thickness direction of the collected sample and using a compression tester that automatically records the change in thickness. Therefore, when collecting a sample from the target device, it is not necessary to measure the tightening thickness of the gasket, and the initial thickness is not necessary, so that it is easy to collect the sample and to diagnose the degree of deterioration of the gasket. Can be implemented very easily.
【0016】[0016]
【発明の効果】この発明の請求項1に係るガスケットの
劣化度診断方法は、採取した試料の圧縮弾性率を測定
し、予め把握された圧縮永久ひずみ率と圧縮弾性率との
関係から圧縮永久ひずみ率を求めてガスケットの劣化度
を診断するようにしたので、対象機器から試料を採取す
るとき、寸法データを取る必要がないので簡単に採取で
き、圧縮試験器で簡単に圧縮弾性率の測定ができ、把握
された特性曲線から極めて容易にガスケットの劣化度が
診断できる。According to the first aspect of the present invention, there is provided a method for diagnosing a degree of deterioration of a gasket, comprising measuring a compression elastic modulus of a collected sample, and obtaining a compression elongation from a relationship between a compression set and a compression elasticity grasped in advance. Since the degree of deterioration of the gasket is diagnosed by calculating the strain rate, it is not necessary to collect dimensional data when collecting samples from the target equipment, so it is easy to collect, and the compression elastic modulus can be easily measured with a compression tester The degree of deterioration of the gasket can be extremely easily diagnosed from the grasped characteristic curve.
【0017】この発明の請求項2に係るガスケットの劣
化度診断方法は、対象機器の最高温度部分から診断試料
を採取して圧縮弾性率を測定して、劣化度を診断するよ
うにしたので、ガスケットの劣化度が精度良く容易に診
断できる。According to the method of diagnosing the degree of deterioration of a gasket according to the second aspect of the present invention, the degree of deterioration is diagnosed by collecting a diagnostic sample from the highest temperature portion of the target device and measuring the compression modulus. The degree of deterioration of the gasket can be easily and accurately diagnosed.
【図1】 診断試料の圧縮荷重と厚さの変化を示す図で
る。FIG. 1 is a diagram showing changes in compression load and thickness of a diagnostic sample.
【図2】 圧縮永久ひずみ率と圧縮弾性率の相関関係を
示す図である。FIG. 2 is a diagram showing a correlation between a compression set and a compression modulus.
【図3】 フランジ部のガスケット溝の形状を示す図で
ある。FIG. 3 is a view showing a shape of a gasket groove in a flange portion.
【図4】 平ガスケットの構造図である。FIG. 4 is a structural view of a flat gasket.
t0 試料の初期厚さ、t1 使用後の厚さ、t2 試料
の締付け厚さ、P1 軽荷重時の荷重、P2 重荷重時の
荷重、S 試料の面積。t 0 sample initial thickness of, t 1 after use thickness, t 2 samples of tightening thickness, P 1 load at light load, the load at the time of P 2 double load, area of S samples.
Claims (2)
に、圧縮方向に荷重を加え、圧縮荷重と厚さの変化の関
係を測定して圧縮弾性率を求め、予め把握された圧縮弾
性率と圧縮永久ひずみ率の関係から、ガスケット診断試
料の圧縮永久ひずみ率を算出して劣化度を診断するガス
ケットの劣化度診断方法。1. A load is applied in the compression direction to a gasket diagnostic sample collected from an apparatus, and a relationship between a compressive load and a change in thickness is measured to determine a compressive elastic modulus. A method for diagnosing the degree of deterioration of a gasket, wherein the degree of deterioration is diagnosed by calculating the compression set of the gasket diagnostic sample from the relationship of the strain rate.
の最高温度点から採取して圧縮弾性率を測定して劣化度
を診断することを特徴とする請求項1記載のガスケット
の劣化度診断方法。2. The degree of deterioration of a gasket according to claim 1, wherein the diagnostic sample for diagnosing the degree of deterioration is taken from the highest temperature point of the target device and the compression elastic modulus is measured to diagnose the degree of deterioration. Diagnostic method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22228296A JP3337115B2 (en) | 1996-08-23 | 1996-08-23 | Diagnosis method of gasket deterioration degree |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22228296A JP3337115B2 (en) | 1996-08-23 | 1996-08-23 | Diagnosis method of gasket deterioration degree |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1062410A JPH1062410A (en) | 1998-03-06 |
JP3337115B2 true JP3337115B2 (en) | 2002-10-21 |
Family
ID=16779936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22228296A Expired - Fee Related JP3337115B2 (en) | 1996-08-23 | 1996-08-23 | Diagnosis method of gasket deterioration degree |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3337115B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005140141A (en) * | 2003-11-04 | 2005-06-02 | Utsue Valve Service Kk | Measuring device for gasket clamping margin control |
CN108572069B (en) * | 2018-06-26 | 2023-06-16 | 中国航空综合技术研究所 | Testing device and testing method for aging life test of sealing ring |
JP7100215B1 (en) * | 2022-03-23 | 2022-07-12 | 一般財団法人電力中央研究所 | Life evaluation method for pole transformers |
CN116796652B (en) * | 2023-08-25 | 2023-12-26 | 国网浙江省电力有限公司电力科学研究院 | Prediction method for deterioration failure of sealing rubber gasket of distribution transformer in damp and hot area |
-
1996
- 1996-08-23 JP JP22228296A patent/JP3337115B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1062410A (en) | 1998-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Du et al. | Effect of surface smoothness on tracking mechanism in XLPE-Si-rubber interfaces | |
CN1681054A (en) | Transformer monitoring system | |
CN102998618B (en) | Transformer on-load tap-changer fault diagnosis method based on vibration characteristics | |
JP3337115B2 (en) | Diagnosis method of gasket deterioration degree | |
JPH04241407A (en) | Deterioration diagnosing method for insulating paper of oil-immersed electric apparatus | |
JPH0619323B2 (en) | Insulation deterioration diagnosis method | |
US20050212524A1 (en) | Electric power line on-line diagnostic method | |
JP4490597B2 (en) | Piping flange connection diagnostic device and method | |
JP2012173097A (en) | Seal material diagnostic method | |
JPH03179245A (en) | Diagnosis of aging of electric wire and cable | |
Sugarman | Condition monitoring of electrical equipment in nuclear power plants | |
JP5233021B2 (en) | Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of occurrence of abnormality | |
RU2666973C1 (en) | Method for diagnostics of sealing surfaces of shut-off valves | |
JPS6279375A (en) | Evaluation of insulation film | |
JP3011556B2 (en) | Aging deterioration diagnosis method for oil-filled electrical equipment | |
JP2002207059A (en) | Diagnostic method of insulation degradation for power cable | |
CN110083857B (en) | Austenite heat-resistant steel magnetic transformation and oxide scale service life assessment method | |
JPH0735367Y2 (en) | Oil-filled transformer | |
JPH0277664A (en) | Method for diagnosing insulation of winding of electric machine | |
Bandyopadhyay | A review on transformer diagnostics | |
JP2024012989A (en) | Gas pressure monitoring device for gas insulated switchgear, gas pressure monitoring method therefor, and identification method for gas leakage position | |
Lofaro et al. | An evaluation of condition monitoring techniques for low-voltage electric cables | |
JPH0472556A (en) | Method for diagnosing aged deterioration of oil-immersed electric equipment | |
JPH02136764A (en) | Insulation diagnosis device for electricity receiving/ transforming equipment | |
SU1541539A1 (en) | Method of assessing quality of mechanically attached contact connections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |