JP3336663B2 - Visual devices such as fruit harvesting robots - Google Patents
Visual devices such as fruit harvesting robotsInfo
- Publication number
- JP3336663B2 JP3336663B2 JP04903593A JP4903593A JP3336663B2 JP 3336663 B2 JP3336663 B2 JP 3336663B2 JP 04903593 A JP04903593 A JP 04903593A JP 4903593 A JP4903593 A JP 4903593A JP 3336663 B2 JP3336663 B2 JP 3336663B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- fruit
- wavelength
- luminance
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 235000013399 edible fruits Nutrition 0.000 title claims description 31
- 238000003306 harvesting Methods 0.000 title claims description 13
- 230000000007 visual effect Effects 0.000 title claims description 13
- 235000013311 vegetables Nutrition 0.000 claims 1
- 240000008067 Cucumis sativus Species 0.000 description 6
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 6
- 235000012055 fruits and vegetables Nutrition 0.000 description 5
- 240000003293 Magnolia grandiflora Species 0.000 description 3
- 235000008512 Magnolia grandiflora Nutrition 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 240000007320 Pinus strobus Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
Landscapes
- Closed-Circuit Television Systems (AREA)
- Color Television Image Signal Generators (AREA)
- Harvesting Machines For Specific Crops (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、果菜収穫ロボットに設
けられる収穫物探索用の視覚装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a visual search device provided in a fruit and vegetable harvesting robot for searching for crops.
【0002】[0002]
【従来の技術】果菜の栽培された植条に素って自走しな
がら、成熟した果菜を判別して自動収穫する果菜収穫ロ
ボットが開発されており、この視覚装置のうち、果菜類
の果実・葉・茎等植物体の各部位によって光の波長の変
化に体する反射率の変化に特定の傾向を有する点を利用
して、果実を判別する如く、2板式イメージセンサカメ
ラ(CCDカメラ)を備え、相異なる2種類の波長が画
素に与える各々の波長の輝度を演算処理し、該演算処理
値の値の一定以上の画素と、値の一定以下の画素とで2
値化された画像を用いて果実を選定し、その形状を判別
する技術が開発されている。2. Description of the Related Art Fruit and vegetable harvesting robots have been developed which identify mature fruits and automatically harvest while self-propelled under the vegetation where fruits have been cultivated.・ Two-panel image sensor camera (CCD camera) to distinguish fruits by using a point that has a specific tendency in the change in reflectance corresponding to the change in light wavelength depending on each part of the plant such as leaves and stems And calculates the luminance of each wavelength given to the pixel by the two different wavelengths, and calculates a pixel having a value of the processing value equal to or greater than a certain value and a pixel having a value equal to or less than a certain value.
Techniques have been developed for selecting a fruit using a digitized image and determining its shape.
【0003】[0003]
【発明が解決しようとする課題】このようにして果実の
形状を抽出した時、果実の鏡面反射部分は2種類の波長
による輝度が共に大きく同等の輝度レベルを示すので、
果実の特徴を示す演算値を得ることができないため画像
中の欠落部分となり、果実形状を正確に把握することが
できない。When the shape of the fruit is extracted in this way, the brightness of the specular reflection portion of the fruit at the two wavelengths is both large and shows the same brightness level.
Since a calculation value indicating the feature of the fruit cannot be obtained, it becomes a missing portion in the image, and the shape of the fruit cannot be accurately grasped.
【0004】[0004]
【課題を解決するための手段】この発明は、対象物を波
長の異なる複数の光で撮影するカメラを備え、該カメラ
に撮影された画像が各画素に与える複数の波長の輝度か
ら、画素毎に所定の演算式を用いて各波長の輝度の比を
算出し、この算出した値を一定以上の部分と一定未満の
部分とに2値化した画像として対象物の選定を行いなが
らその形状を検出する視覚装置において、この画像に欠
落を生ずる対象物の鏡面反射部分を、この鏡面反射部分
を特に強く検出する波長の画像の輝度が一定以上の部分
と輝度が一定未満の部分とに2値化した画像で補うこと
を特徴とする果菜収穫ロボット等の視覚装置の構成とす
る。According to the present invention, there is provided a camera for photographing an object with a plurality of lights having different wavelengths. The brightness ratio of each wavelength is calculated using a predetermined arithmetic expression, and the shape is determined while selecting an object as an image obtained by binarizing the calculated value into a portion equal to or more than a certain value and a portion less than a certain value. In the visual device for detecting, the specular reflection part of the object which causes the loss in the image is divided into two parts: a part where the luminance of the image of the wavelength at which the specular reflection part is detected particularly strongly, and a part where the luminance is less than the constant. A visual device, such as a fruit and vegetable harvesting robot, characterized in that the visual device is supplemented with a converted image.
【0005】[0005]
【作用、及び発明の効果】演算画像において欠落部分と
なった果実の鏡面反射部分は、複数の波長で撮影した画
像の鏡面反射部を特に強く感じる波長の画像において、
輝度の高いレベルにしきい値を設けて当該波長の2値化
画像を作れば、この画像は鏡面反射部分のみを示す画像
となるので、この画像を演算画像に重ね合わせれば果体
の完全な画像を得ることができ、形状・寸法等を正確に
検出することができる。[Operation and Effect of the Invention] The specular reflection part of the fruit, which has become a missing part in the calculation image, is used in an image of a wavelength which particularly strongly senses the specular reflection part of an image taken at a plurality of wavelengths.
If a binarized image of the wavelength is created by setting a threshold value at a high luminance level, this image will be an image showing only the specular reflection portion, and if this image is superimposed on the calculated image, a complete image of the fruit body will be obtained. Can be obtained, and the shape, dimensions, and the like can be accurately detected.
【0006】[0006]
【実施例】本発明の実施例であるキュウリ用収穫ロボッ
トを示す図1〜図4において、この果菜収穫ロボット1
は移動用手段として電動式の走行部2を備え、該走行部
の上に果菜収穫用のマニピュレータ3収穫物探索用の視
覚装置5等を備える。この果菜収穫ロボット1を使用す
る栽培場では、斜めに設けた支持体7にキュウリの樹体
8を支持させて生育させる。マニピュレータ3は、対面
する樹体8の傾斜とほゞ平行となるよう傾斜させた傾斜
枠10と、該傾斜枠のガイドレール11に沿って昇降自
在に取り付けた基台12と、該基台の上に水平面内で回
動自在に設けた本体13と、該本体に設けた関節型を成
すアーム14と、該アームの先端に設けた摘果用のハン
ド部15とからなる。傾斜枠10は、ヒンジ16を用い
て走行部2に枢支され、背面側を支持リンク17で支え
られている。支持リンク17の下端部は長穴18の任意
の位置に止着され、止着位置を調節して傾斜枠10の傾
斜角度を任意に調節することができる。マニピュレータ
3の各部を作動させることによって、ハンド部15を対
象とする果実19を把持してその果柄を切断するように
構成されている。視覚装置5は、図2に示す如く、多板
式CCDカメラ6と、該カメラの視野内を水平および垂
直に走査して、対象物までの距離を測定する距離センサ
(PSD)20と、これらからの入力信号を分析処理す
るCPU21と、データを記憶するメモリ4とを備えて
構成される。1 to 4 show a cucumber harvesting robot according to an embodiment of the present invention.
Is provided with an electric traveling unit 2 as a moving means, and a manipulator 3 for harvesting fruits and vegetables, a visual device 5 for searching for a crop, and the like on the traveling unit. In a cultivation field using the fruit and vegetable harvesting robot 1, the cucumber tree 8 is supported on the support 7 provided diagonally and grown. The manipulator 3 includes an inclined frame 10 inclined so as to be substantially parallel to the inclination of the facing tree body 8, a base 12 mounted to be able to move up and down along a guide rail 11 of the inclined frame, and The body comprises a main body 13 rotatably provided in a horizontal plane, an articulated arm 14 provided on the main body, and a thinning hand unit 15 provided at the tip of the arm. The inclined frame 10 is pivotally supported by the traveling section 2 using a hinge 16, and the back side is supported by a support link 17. The lower end of the support link 17 is fixed to an arbitrary position of the long hole 18, and the angle of inclination of the inclined frame 10 can be arbitrarily adjusted by adjusting the fixing position. By operating each part of the manipulator 3, the hand 19 is configured to hold the fruit 19 as a target and cut the fruit handle. As shown in FIG. 2, the visual device 5 includes a multi-plate CCD camera 6, a distance sensor (PSD) 20 that scans the field of view of the camera horizontally and vertically to measure a distance to an object, and And a memory 4 for storing data.
【0007】多板式CCDカメラ6(図3、図4)およ
びPSD20からなる視覚装置5はマニピュレータの本
体13の上部に設置される。レンズ22で集光された光
はプリズム23を通過し、方向を90°屈折された後フ
ィルタ27で濾過され所定の波長の単色光で受光素子板
28上に映像を結ぶ構成をなす。A visual device 5 comprising a multi-plate CCD camera 6 (FIGS. 3 and 4) and a PSD 20 is installed above the main body 13 of the manipulator. The light condensed by the lens 22 passes through the prism 23, is refracted by 90 ° in the direction, is filtered by the filter 27, and forms an image on the light receiving element plate 28 with monochromatic light of a predetermined wavelength.
【0008】濾過する波長帯の異なるフィルタ27,2
9等および受光素子板28,30によって構成される受
光部35,36は、レンズ22の光軸Yに直角な平面X
上においてこの光軸Yより等距離に配置され、プリズム
23はプリズム枠24と共に軸26を介してモーター2
5で光軸Yを中心として回転し、各受光部35,36に
光を送り受光素子板28,30上に画像を結ぶ。Filters 27 and 2 having different wavelength bands to be filtered
9 and the light receiving element plates 28 and 30 form a light receiving section 35, 36 on a plane X perpendicular to the optical axis Y of the lens 22.
The prism 23 is disposed at an equal distance from the optical axis Y on the
At 5, rotation is made about the optical axis Y, and light is sent to each of the light receiving portions 35 and 36 to form an image on the light receiving element plates 28 and 30.
【0009】受光部35,36に結ぶ画像は、回転する
プリズム23の回転位置より受光部35,36のいずれ
の画像であるかを判別することができる。なお、上記と
同様にして、フィルタ33及び受光素子板34を有する
受光部37を平面X上に配設するもよい。このような構
成を持つ果実収穫ロボット1の視覚装置5の果実判別方
法について、キュウリの果実の判別を例として説明す
る。The image connected to the light receiving portions 35 and 36 can be identified by the rotation position of the rotating prism 23 as to which image the light receiving portions 35 and 36 are. In the same manner as described above, the light receiving section 37 having the filter 33 and the light receiving element plate 34 may be arranged on the plane X. A fruit discriminating method of the visual device 5 of the fruit harvesting robot 1 having such a configuration will be described by taking discrimination of cucumber fruit as an example.
【0010】図5は、キュウリの樹体8を構成する果実
19、花、葉、茎に当る光の波長による反射率を示し、
波長550nm(ナノメーター)と850nmの波長に
おいて、果実とその他部位の反射率の傾向が異なること
を示す。即ち、キュウリの果実19の反射率は、波長8
50nmにおいて他の部位に比して最も高く、波長55
0nmにおいて最も低い傾向を有する。FIG. 5 shows the reflectance according to the wavelength of light that strikes the fruits 19, flowers, leaves and stems of the cucumber tree 8,
It shows that at the wavelengths of 550 nm (nanometers) and 850 nm, the reflectance tendencies of fruits and other parts are different. That is, the reflectance of the cucumber fruit 19 has a wavelength of 8
It is the highest at 50 nm compared to other parts, and has a wavelength of 55 nm.
It has the lowest tendency at 0 nm.
【0011】今二板式CCDカメラ6を用いて、受光部
35のフィルタ37を波長850nmの近辺の光のみを
通すものとし、受光部36のフィルタ29を波長550
nmの近辺の光のみを通すものとすれば、受光素子を碁
盤目状に配置し、各受光素子に投影される光の強さを検
知して投影される画像を検出するように構成された受光
素子板28上に投影されるキュウリの果実像は、茎・葉
など他の部分より輝度が高く、受光素子板30上に投影
されるキュウリの果実像は、他の部分より輝度が低くな
る。Now, using the two-chip CCD camera 6, the filter 37 of the light receiving unit 35 is made to pass only light near the wavelength of 850 nm, and the filter 29 of the light receiving unit 36 is set to the wavelength 550.
If only light in the vicinity of nm is allowed to pass, the light receiving elements are arranged in a grid pattern, and the intensity of light projected on each light receiving element is detected to detect the projected image. The cucumber fruit image projected on the light receiving element plate 28 has higher luminance than other parts such as stems and leaves, and the cucumber fruit image projected on the light receiving element plate 30 has lower luminance than other parts. .
【0012】この特性を用いて、画像の同一点について
波長850nmの単色光が受光素子板28上の素子に与
える光の強さN850とし、受光素子板30上の対応す
る素子に与える光の強さをN550として、特性を助長
すべく定めた算定式(算定式の例λ=N850/N85
0+N550)を用いて、両波長による光の強さの比λ
を算出する。Using this characteristic, the intensity N850 of monochromatic light having a wavelength of 850 nm given to the element on the light receiving element plate 28 at the same point of the image is given, and the light intensity given to the corresponding element on the light receiving element plate 30 is obtained. Assuming that N550 is N550, a calculation formula (example of calculation formula λ = N850 / N85) determined to promote the characteristics
0 + N550), the ratio λ of the light intensity at both wavelengths
Is calculated.
【0013】取込んだ画面のすべての点について光の強
さの比λを算出して、その値をしきい値を用いて2値化
した演算画像を作れば、果実19の演算画像を構成する
画素の数は、他の部分に比べ例式においてλの値が大き
いため、茎・葉等、他の部分に比し多点が取込まれるの
で明確な画像を得ることができる。しかしながら、キュ
ウリ果実19の画像D1を構成する画素のうち、鏡面の
光沢部分D2は、すべての波長に対し鏡面外の部分より
反射率が高く、N850とN550の値がほゞ同等とな
り、λの値が例式において小さくなるのでしきい値で削
除されこの部分の画像D2が欠落する(図7−A)。[0013] The light intensity ratio λ is calculated for all points on the captured screen, and the calculated value is binarized using a threshold value to form a calculated image of the fruit 19. Since the value of λ in the example formula is larger in the number of pixels to be performed than in other parts, a clearer image can be obtained because more points are taken in than in other parts such as stems and leaves. However, among the pixels constituting the image D1 of the cucumber fruit 19, the glossy portion D2 of the mirror surface has a higher reflectance for all wavelengths than the portion outside the mirror surface, and the values of N850 and N550 are almost equal, and Since the value becomes smaller in the example formula, it is deleted by the threshold value, and the image D2 of this portion is lost (FIG. 7-A).
【0014】上述の鏡面反射部分D2は、N850の画
像データのうちでも特に高い値を示すので、N850の
画像データを、しきい値の高い値で仕切り、2値化画像
を作れば鏡面反射部分の画像D3を得ることができる
(図7−B)。今前述の演算画像D2(図7−A)の上
に、上述のN850の輝度の高い部分の画像D3(図7
−B)を重ね合わせると、果実19の形状Dを欠落部分
なく正確に描出することができ(図7−C)、ロボット
の視覚装置5は果実19の形状・寸法を明確に把握する
ことができる。なお、E,E1,E2,E3は葉の部分
の画像である。図8の別実施例におけるフローチャート
では、鏡面反射部分を描出するに当り、N850の2値
化に際して、認識画素数の内、その1/n(n>2)の
数だけ輝度レベルの高い方から選びこれを2値化するこ
とによって、鏡面反射部分の画像を損うことなく処理時
間の短縮を図るもので、鏡面反射部分が他の部分に比べ
高い反射率を示す点に着目してCPU処理負荷を低減さ
せるものである。Since the above-described specular reflection portion D2 shows a particularly high value among the N850 image data, the N850 image data is partitioned by a high threshold value, and if a binarized image is formed, the specular reflection portion D2 is formed. Image D3 can be obtained (FIG. 7-B). Now, on the above-mentioned computed image D2 (FIG. 7-A), an image D3 (FIG.
-B), the shape D of the fruit 19 can be accurately drawn without any missing parts (FIG. 7-C), and the visual device 5 of the robot can clearly grasp the shape and size of the fruit 19. it can. E, E1, E2, and E3 are images of leaves. In the flowchart of another embodiment shown in FIG. 8, in rendering the specular reflection portion, when binarizing N850, the number of recognition pixels, from the higher luminance level by 1 / n (n> 2) of the number of recognized pixels By selecting and binarizing this, the processing time is shortened without damaging the image of the specular reflection part. The CPU processing pays attention to the fact that the specular reflection part shows a higher reflectance than other parts. This is to reduce the load.
【0015】図9は別実施例において、波長850nm
の光を照射するストロボ発光器31と、波長550nm
の光を照射するストロボ発光器32と、2板式CCDカ
メラ6を備え、天候による日照量、昼夜による明暗にか
かわらず明瞭な各単色光画像を、各々波長の光の照射タ
イミングに同期させて得ることによって、果実19と茎
・葉などの採取光量のレベル差を大きくし、演算値のし
きい値を照明条件に合わせて細かく変える必要がなく、
しきい値を概略値とし、演算処理を簡略化する如く構成
したものである。FIG. 9 shows another embodiment in which the wavelength is 850 nm.
Light emitting device 31 for irradiating light of wavelength 550 nm
A strobe light emitting device 32 for irradiating light of the same color and a two-chip CCD camera 6 are provided to obtain clear monochromatic light images irrespective of the amount of sunlight due to the weather and the brightness of day and night in synchronization with the irradiation timing of light of each wavelength. By doing so, it is not necessary to increase the level difference between the amount of light collected from the fruit 19 and the stem / leaf, etc., and to finely change the threshold value of the calculated value according to the lighting conditions.
The threshold value is set to an approximate value, and the arithmetic processing is simplified.
【0016】図10にストロボ31,32によって発光
する光の発光エネルギーの波長毎のエネルギーの分布を
示す。FIG. 10 shows the energy distribution of light emitted by the strobes 31 and 32 for each wavelength.
【図1】果実栽培圃場における果実収穫ロボットの正面
図。FIG. 1 is a front view of a fruit harvesting robot in a fruit growing field.
【図2】果実収穫ロボットのブロック図。FIG. 2 is a block diagram of a fruit harvesting robot.
【図3】多板式CCDカメラの平面断面図。FIG. 3 is a plan sectional view of a multi-plate CCD camera.
【図4】その正面一部断面図。FIG. 4 is a partial front sectional view thereof.
【図5】キュウリ樹体各部の光の波長に対する反射率を
示すグラフ。FIG. 5 is a graph showing the reflectance of each part of the cucumber tree with respect to the wavelength of light.
【図6】画像処理のフローチャート。FIG. 6 is a flowchart of image processing.
【図7】処理画像。FIG. 7 is a processed image.
【図8】その他実施例のフローチャート。FIG. 8 is a flowchart of another embodiment.
【図9】その他実施例の発光装置を備えたカメラの斜視
図。FIG. 9 is a perspective view of a camera provided with a light emitting device of another embodiment.
【図10】その発光装置の発光エネルギーの波長分布
図。FIG. 10 is a wavelength distribution diagram of light emission energy of the light emitting device.
1 果実収穫ロボット 5 視覚装置 6 多板式CCDカメラ 21 CPU 27 フィルタ 28 受光素子板 29 フィルタ 30 受光素子板 35 受光部 36 受光部 Reference Signs List 1 fruit harvesting robot 5 visual device 6 multi-plate CCD camera 21 CPU 27 filter 28 light receiving element plate 29 filter 30 light receiving element plate 35 light receiving unit 36 light receiving unit
Claims (1)
るカメラを備え、該カメラに撮影された画像が各画素に
与える複数の波長の輝度から、画素毎に所定の演算式を
用いて各波長の輝度の比を算出し、この算出した値を一
定以上の部分と一定未満の部分とに2値化した画像とし
て対象物の選定を行いながらその形状を検出する視覚装
置において、この画像に欠落を生ずる対象物の鏡面反射
部分を、この鏡面反射部分を特に強く検出する波長の画
像の輝度が一定以上の部分と輝度が一定未満の部分とに
2値化した画像で補うことを特徴とする果菜収穫ロボッ
ト等の視覚装置。1. A camera for photographing an object with a plurality of lights having different wavelengths, wherein a predetermined arithmetic expression is used for each pixel based on the luminance of a plurality of wavelengths given to each pixel by an image photographed by the camera. A visual device that calculates the ratio of the luminance of each wavelength and binarizes the calculated value into a portion equal to or greater than a certain value and a portion less than a certain value as an image while detecting the shape of an object while selecting the object. The specular reflection portion of the object causing the missing portion is supplemented by a binarized image of a portion where the luminance of an image having a wavelength at which the specular reflection portion is detected particularly strongly is a portion where the luminance is equal to or higher than a certain value and a portion where the luminance is lower than a predetermined value. A visual device such as a fruit vegetable harvesting robot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04903593A JP3336663B2 (en) | 1993-03-10 | 1993-03-10 | Visual devices such as fruit harvesting robots |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04903593A JP3336663B2 (en) | 1993-03-10 | 1993-03-10 | Visual devices such as fruit harvesting robots |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06261622A JPH06261622A (en) | 1994-09-20 |
JP3336663B2 true JP3336663B2 (en) | 2002-10-21 |
Family
ID=12819836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04903593A Expired - Fee Related JP3336663B2 (en) | 1993-03-10 | 1993-03-10 | Visual devices such as fruit harvesting robots |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3336663B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08190623A (en) * | 1995-01-10 | 1996-07-23 | Mitsubishi Agricult Mach Co Ltd | Image processing and measuring method for farm product |
FR2752940A1 (en) * | 1996-08-30 | 1998-03-06 | Cemagref | METHOD AND DEVICE FOR DETERMINING A PROPORTION BETWEEN FRUITS AND FOREIGN BODIES AND METHOD AND MACHINE FOR HARVESTING FRUITS |
NL1013780C2 (en) * | 1999-12-07 | 2001-06-08 | Inst Voor Milieu En Agritechni | Method for detection of objects in abundant water conditions, involves first spectral reflection survey of area to be investigated of frequencies around water absorption band |
CN103512494B (en) * | 2013-07-16 | 2017-02-08 | 宁波职业技术学院 | Visual inspection system and method for scale micro changes of plant fruits |
CN108718685A (en) * | 2018-08-01 | 2018-11-02 | 榆林学院 | A kind of visualization motorized adjustment picking fruit collection device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62184583A (en) * | 1986-02-10 | 1987-08-12 | Kubota Ltd | Image pickup type object extracting device |
JP3139074B2 (en) * | 1991-08-21 | 2001-02-26 | 井関農機株式会社 | Visual devices such as fruit harvesting robots |
-
1993
- 1993-03-10 JP JP04903593A patent/JP3336663B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06261622A (en) | 1994-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jimenez et al. | A survey of computer vision methods for locating fruit on trees | |
US4532757A (en) | Robotic fruit harvester | |
JP2010207118A (en) | End effector for harvesting fruit | |
US11816874B2 (en) | Plant identification using heterogenous multi-spectral stereo imaging | |
JP2008022737A (en) | Harvesting robot | |
WO2015121809A1 (en) | Portable device for selective harvest with identification of the fruit by colour | |
WO2016004026A1 (en) | Methods and system for detecting curved fruit with flash and camera and automated image analysis with invariance to scale and partial occlusions | |
AU2021204034B2 (en) | Information processing device, information processing method and program | |
Tejada et al. | Proof-of-concept robot platform for exploring automated harvesting of sugar snap peas | |
EP4154214A1 (en) | Systems and methods for automatically grading cannabis plants and adjusting control parameters | |
Steward et al. | Machine-vision weed density estimation for real-time, outdoor lighting conditions | |
JP3336663B2 (en) | Visual devices such as fruit harvesting robots | |
JP3277529B2 (en) | Fruit harvesting robot | |
JP3139074B2 (en) | Visual devices such as fruit harvesting robots | |
JP2003000031A (en) | Method for detecting fruit | |
Silwal | Machine vision system for robotic apple harvesting in fruiting wall orchards | |
JP3443865B2 (en) | Fruit harvester | |
JPH04184573A (en) | Visual device, such as fruit collecting machine or the like | |
JP3239280B2 (en) | Fruit Vegetable Harvester Center Line Detection Method | |
JP3546477B2 (en) | Image recognition device of harvest robot | |
Arima et al. | Development of robotic system for cucumber harvesting | |
Shropshire et al. | Spectral band selection for color machine vision used for plant identification | |
RU2796270C1 (en) | Device for automated picking of tomatoes | |
JP3277530B2 (en) | Vision system for fruit harvesting robots | |
JP7541733B2 (en) | Measurement system, measurement method, measurement program, and measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110809 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |