JP3336439B2 - Chlorella microalgae that fix high concentration CO2 - Google Patents

Chlorella microalgae that fix high concentration CO2

Info

Publication number
JP3336439B2
JP3336439B2 JP24586092A JP24586092A JP3336439B2 JP 3336439 B2 JP3336439 B2 JP 3336439B2 JP 24586092 A JP24586092 A JP 24586092A JP 24586092 A JP24586092 A JP 24586092A JP 3336439 B2 JP3336439 B2 JP 3336439B2
Authority
JP
Japan
Prior art keywords
strain
chlorella
microalgae
concentration
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24586092A
Other languages
Japanese (ja)
Other versions
JPH05304945A (en
Inventor
良朋 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP24586092A priority Critical patent/JP3336439B2/en
Publication of JPH05304945A publication Critical patent/JPH05304945A/en
Application granted granted Critical
Publication of JP3336439B2 publication Critical patent/JP3336439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高CO2 濃度条件下でC
2 を固定するクロレラ属の微細藻に関し、より詳しく
は火力発電所などにおける化石燃料燃焼排ガス中の高濃
度CO2 を固定するために使用でき、人間活動に由来す
る温室効果ガスの放出削減に寄与し得るクロレラ属の微
細藻に関するものである。
The present invention relates to a method for producing C under high CO 2 concentration conditions.
Chlorella microalgae that fix O 2 can be used to fix high-concentration CO 2 in fossil fuel combustion exhaust gas at thermal power plants, etc., and reduce greenhouse gas emissions from human activities. It relates to microalgae of the genus Chlorella that can contribute.

【0002】[0002]

【従来の技術】藻類は、主に水中に生育し光合成を行な
う下等植物の総称である。その中で、主に単細胞からな
る微小な藻類が微細藻類と呼ばれているが、その種類は
非常に多い。微細藻類のうち、現在、クロレラやセネデ
スムス、スピルリナについて健康食品としての利用およ
び産業化が行なわれているが、その培養の炭素源として
は主に酢酸や無機炭酸塩を用いており、微細藻類に固有
のCO2 固定能を積極的に利用する試みはあまりなされ
ていない。このように、工業用のCO2 や火力発電所排
ガスなどの化石燃料燃焼排ガス中のCO2 を固定するた
めに、微細藻類が用いられている例はない。また、排ガ
ス中のCO2 を固定化したCO2 固定産物を飼料や工業
用SCP(Single Cell Protein ,微生物タンパク質)
として利用する産業は現在皆無の状態である。過去、徳
川生物研究所が都市ガスを燃焼した排ガスで微細藻を培
養した研究例はあるが、固定されるCO2 量が少なく、
しかも燃料費が嵩みすぎ、産業化には至っていない。
BACKGROUND OF THE INVENTION Algae is a general term for lower plants that mainly grow in water and perform photosynthesis. Among them, microalgae mainly composed of single cells are called microalgae, but the types are extremely large. Among microalgae, Chlorella, Senedesmus, and Spirulina are currently used and industrialized as health foods.However, acetic acid and inorganic carbonates are mainly used as carbon sources for their cultivation. There have been few attempts to actively utilize the inherent CO 2 fixation ability. Thus, in order to secure the CO 2 fossil fuel combustion exhaust gas such as CO 2 and thermal power plants exhaust gases of an industrial, example microalgae is used no. Further, the CO 2 fixation product was immobilized CO 2 in the flue gas feed and industrial SCP (Single Cell Protein, microbial proteins)
There are currently no industries to use. In the past, Tokugawa Biological Research Institute has cultivated microalgae with the exhaust gas burning city gas, but the amount of fixed CO 2 is small,
In addition, the fuel cost is too high and it has not been industrialized.

【0003】火力発電所などから多量に排出される化石
燃料燃焼ガス由来のCO2 を、微細藻類のCO2 固定能
を利用して産業的に固定化するためには、排ガスを培養
槽に直接導入した条件でも効率的に機能する微細藻類を
用いることが重要な鍵となる。しかしながら、従来知ら
れていた微細藻類の株では、培養槽に吹き込む空気に富
化できるCO2 の濃度は1ないし5容量%(以下、特記
しない限り%は容量%を意味する)程度であった。化石
燃料を燃焼させた際の排ガスは、燃焼条件によって大き
く異なるものの、現在日本国内の火力発電所排ガス中の
CO2 濃度の平均的な値が、石炭火力で16%前後、石
油火力で15%前後、LNG火力で11%前後(いずれ
も乾燥ガスベース)である。このように、火力発電所排
ガス中のCO2 濃度はおおよそ10ないし15%前後で
ある。これらの排ガスを直接培養槽に吹き込んだ場合、
CO2 濃度が高くて普通の微細藻では生育できない条件
となってしまう。また、最適なCO2 条件にするために
空気で希釈して用いる場合は、排ガスの希釈システムの
コストがCO2 固定コストを引きあげる大きな要因とな
る。以上のことから、排ガスを直接培養槽に導入して微
細藻類を培養しCO2 を固定するためには、高濃度のC
2 条件下でも機能する微細藻類の株を検索し用いるこ
とが必要である。比較的高いCO2 条件下でも生育する
ものには、海産微細藻類としてナンノクロリス(Nannoch
loris)属NANNO2株〔M. Negro等,Appl. Biochem.
Biotechnol., 28/29, 877-886 (1991), N. Nishikawa
等,Energy conversion and management, Vol. 33, 553
-560 (1992) 〕、淡水産微細藻類としてクラミドモナス
(Chlamydomonas) 属MGA−131株〔山田等,日本農
芸化学会誌,第164巻,第3号,第 659頁 (1990)
〕、クロレラ・ブルガリス(Chlorella vulgaris)21
1/8k株〔H. J. Silva 等, J. Gen. Microbiol., 13
0, 2833-2838 (1984) 〕等が報告されている。なお、排
ガス中のCO2 固定に用いる微細藻類については、株式
会社海洋バイオテクノロジー研究所が発見した、10%
のCO2 濃度でも生育できる海洋性微細藻クロロコッカ
ム・リットラーレ(Chlorococcum littorale)が知られて
いるにすぎない(平成2年8月31日,日本経済新
聞)。
[0003] The CO 2 from fossil fuel combustion gas-fired power plants and the like in a large amount discharged, in order to industrially immobilized utilizing CO 2 fixation ability of microalgae, directly exhaust gas to the culture tank The key is to use microalgae that function efficiently even under the introduced conditions. However, in the conventionally known microalgae strain, the concentration of CO 2 that can be enriched in the air blown into the culture tank was about 1 to 5% by volume (hereinafter, unless otherwise specified,% means volume%). . Exhaust gas from burning fossil fuels varies greatly depending on the combustion conditions, but the average value of the CO 2 concentration in the exhaust gas from thermal power plants in Japan is currently around 16% for coal-fired power and 15% for oil-fired power. Before and after, about 11% by LNG thermal power (all based on dry gas). Thus, the CO 2 concentration in the exhaust gas from a thermal power plant is about 10 to 15%. When these exhaust gases are directly blown into the culture tank,
Because of the high concentration of CO 2, the condition is such that ordinary microalgae cannot grow. In addition, in the case of diluting with air to obtain the optimal CO 2 condition, the cost of the exhaust gas dilution system is a major factor in raising the CO 2 fixing cost. In view of the above, in order to cultivate microalgae and fix CO 2 by introducing exhaust gas directly into the culture tank, high concentration of C
It is necessary to search for and use microalgal strains that function even under O 2 conditions. Those that grow even under relatively high CO 2 conditions include nannochloris as a marine microalgae.
loris) NANNO2 strain [M. Negro et al., Appl. Biochem.
Biotechnol., 28/29, 877-886 (1991), N. Nishikawa
Et al., Energy conversion and management, Vol. 33, 553
-560 (1992)], Chlamydomonas as a freshwater microalgae
(Chlamydomonas) genus MGA-131 [Yamada et al., Journal of the Japanese Society of Agricultural Chemistry, Vol. 164, No. 3, p. 659 (1990)
], Chlorella vulgaris 21
1 / 8k strain [HJ Silva et al., J. Gen. Microbiol., 13
0, 2833-2838 (1984)]. The microalgae used for fixing CO 2 in the exhaust gas were 10% discovered by Marine Biotechnology Institute, Inc.
The only known marine microalga Chlorococcum littorale that can grow at a CO 2 concentration of 0.1 kg (August 31, 1990, Nikkei Inc.).

【0004】また、微細藻類はその体を構成する物質の
約半分がタンパク質であり、工業用タンパク質もしくは
その原料として利用できる可能性があり、また高栄養の
飼料として利用できる。大気中の温室効果ガスの増加に
よる地球温暖化を防止するためには、温室効果ガスの放
出を抑制することが大事であるが、微細藻類のCO2
定産物を飼料や工業用タンパク質として用いれば、以下
に記述する、間接的な温室効果ガス放出低減効果が認め
られる。すなわち、現在、世界で家畜飼料として用いら
れる飼料穀物は穀物総生産量の40数%にものぼるが、
その飼料穀物生産に際しては、穀物作物の残さの堆肥化
に伴うメタン発生や、肥料の分解に伴う亜酸化窒素など
の強力な温室効果ガスが放出される。1990年のIP
CC(気候変動に関する政府間パネル)会議報告書によ
ると、今後20年のスケールで考えると、単位重量当り
の温室効果はメタンがCO2 の約60倍、亜酸化窒素が
約270倍と、はるかに強力である。しかし、微細藻類
の培養でSCP生産を行えば、これらの温室効果ガスが
ほとんど発生しない。今後の飼料穀物の増産をSCP飼
料の生産で代替えしてゆくと、飼料を生産する場合に発
生する温室効果ガスを大幅に低減するのに貢献できる。
また、世界的に見ると、飼料穀物増産のために森林の耕
地化が大規模に行なわれ、森林に蓄積された炭素がCO
2 として大気中に放出されているが、微細藻類SCPの
生産は森林の耕地化を伴わず、森林の耕地化を押さえる
効果が見込まれる。以上のように、排ガス中のCO2
固定して微細藻類を培養すれば、森林破壊に起因する温
室効果ガスの放出を間接的に抑制する効果も期待でき
る。
[0004] Microalgae are proteins that make up about half of the substances that make up their bodies, and can be used as industrial proteins or their raw materials, and can also be used as highly nutritious feeds. To prevent global warming due to an increase in greenhouse gas in the atmosphere, although it is important to suppress the release of greenhouse gases, the use of CO 2 fixation product of microalgae as feed and industrial proteins An indirect greenhouse gas emission reduction effect described below is observed. That is, at present, feed grains used as livestock feed in the world account for over 40% of the total grain production,
During feed grain production, strong greenhouse gases such as nitrous oxide are emitted as methane is generated from composting cereal crop residues and nitrous oxide is caused from fertilizer decomposition. 1990 IP
According to the report of the CC (Intergovernmental Panel on Climate Change) meeting, on a 20-year scale, the greenhouse effect per unit weight of methane is about 60 times that of CO 2 and that of nitrous oxide is about 270 times that of CO 2. Be powerful. However, if SCP production is performed by culturing microalgae, these greenhouse gases are hardly generated. Substituting SCP feed production for future increases in feed grain production can contribute to significantly reducing greenhouse gases generated when producing feed.
In addition, globally, forests are cultivated on a large scale in order to increase the production of feed grains, and carbon accumulated in forests is
Although released as 2 in the atmosphere, production of microalgae SCP does not accompany the cultivation of forests, and is expected to have the effect of suppressing the cultivation of forests. As described above, if microalgae are cultured while fixing CO 2 in exhaust gas, an effect of indirectly suppressing the emission of greenhouse gases due to deforestation can also be expected.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況を考慮してなされたものであり、上記の高濃度にC
2 を含有する排ガスを利用した培養が可能となるよう
な微細藻、該微細藻による排ガス等を利用したCO2
定方法、および前記微細藻のCO2 固定産物からなる飼
料または工業用タンパク質を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and has a high concentration of C.
O 2 can using cultured exhaust gas containing become such microalgae, CO 2 fixation method using the exhaust gas or the like by the fine Hosomo, and the feed or industrial proteins consisting CO 2 fixation product of the microalgae The task is to provide.

【0006】[0006]

【課題を解決するための手段】本発明者は、種々研究を
重ねた結果、高いCO2 濃度の大気を通気した培養にお
いてCO2 を固定し生育する特定の微細藻を分離・純化
し、前記排ガスを模擬したガスを通気した培養が、該微
細藻の増殖を促進するか、またはCO2 固定能の低下を
もたらさないことを見いだし、さらに、該微細藻のCO
2 固定産物中のタンパク質含量が40重量%以上と高い
ことを知得して、本発明を完成した。
As a result of various studies, the present inventors have separated and purified specific microalgae that fix and grow CO 2 in a culture ventilated with air having a high CO 2 concentration. It has been found that cultivation in which a gas simulating exhaust gas has been aerated does not promote the growth of the microalga or cause a decrease in the ability to fix CO 2 , and further, the CO of the microalga is reduced.
(2) The present invention was completed by knowing that the protein content in the immobilized product was as high as 40% by weight or more.

【0007】本発明者は、排ガス中のCO2 固定に適用
できる菌株を検索するために以下の点に着目した。排ガ
ス中のCO2 濃度は、大気中の濃度に比べて3けた高い
が、自然界の藻類が生息する場所の中でも、土壌のよう
に時期や条件によってCO2濃度が高くなる場所が存在
する。従って、自然界からの検索サンプルは、湖沼など
の水の他に、そのような高CO2 濃度となる水田の田面
水や土壌などから採取した。
The present inventor paid attention to the following points in order to search for strains applicable to fix CO 2 in exhaust gas. Although the CO 2 concentration in the exhaust gas is three orders of magnitude higher than the concentration in the atmosphere, there are places such as soil where the CO 2 concentration becomes higher depending on the time and conditions, such as soil, among the places where natural algae inhabit. Therefore, a search sample from the natural world was collected from paddy field water or soil having such a high CO 2 concentration in addition to water from lakes and marshes.

【0008】すなわち、本発明は、5ないし20容量%
のCO2 濃度で安定に生育可能であるクロレラ(Chlorel
la) 属の微細藻に関する。本発明において「安定に生育
可能である」とは通常の大気通気条件下での生育と同等
か、またはそれ以上に生育することを意味する。
[0008] That is, the present invention provides 5 to 20% by volume.
The CO 2 concentration is stable viable Chlorella (Chlorel
la) Genus microalgae. In the present invention, “stable growth” means that the growth is equal to or higher than the growth under normal air ventilation conditions.

【0009】本発明者はさまざまな採取地からの湖沼
水、田面水および土壌などを分離源とし、弱光下での前
培養後、特定の混合ガス(CO2 =15%,O2 =2
%,N2=83%)を通気して集積培養し、さらに平板
寒天培地を用いた分離・純化方法により、クローン化お
よび無菌化して微細藻の6つの新規純粋分離株を得、こ
れらをHA−1株、HA−2株、HC−1株、HC−2
株、HT−1株およびHT−2株と命名した。これらは
火力発電所排ガスのような高いCO2 濃度のガスを通気
して培養しても生育できる株である。これらの分離株に
ついて光学顕微鏡を用いて、その形態や生活環を観察
し、属レベルの分類を行ったところ、いずれも形態は類
似しており、体制分化は単細胞、細胞形態は球形、大き
さは約2〜7μmであり、体内に自生胞子を形成する無
性生殖により増殖を行い、そして細胞内の葉緑体数は1
個で鞭毛を有せず運動性はなかった。以上の特徴から、
6つの新規分離株は全てクロレラ属に属すると判断され
た。なお、現在、工業技術院微生物工業技術研究所では
藻類は受託していないため、本発明の上記分離株はいず
れも寄託されていない。
The present inventor uses lake water, paddy water, soil and the like from various collection sites as a separation source, and after pre-culture under low light, a specific mixed gas (CO 2 = 15%, O 2 = 2).
%, N 2 = 83%), aerated and cultured, and further cloned and sterilized by a separation / purification method using a plate agar medium to obtain 6 new pure isolates of microalgae, which were then HA -1 strain, HA-2 strain, HC-1 strain, HC-2
Strains, HT-1 strain and HT-2 strain. These are strains that can grow even when cultured with aeration of a gas having a high CO 2 concentration such as the exhaust gas from a thermal power plant. The morphology and life cycle of these isolates were observed using an optical microscope, and the genus levels were classified.The morphologies were all similar, the systematic differentiation was unicellular, the cell morphology was spherical, and the size was Is about 2-7 μm, grows by asexual reproduction forming autologous spores in the body, and the number of chloroplasts in the cell is 1
The individual had no flagella and no motility. From the above features,
All six new isolates were determined to belong to the genus Chlorella. At this time, no algae have been deposited at the Institute of Microbial Industry and Technology, and none of the above-mentioned isolates of the present invention has been deposited.

【0010】また、本発明の上記微細藻はCO2 以外に
酢酸や炭酸塩などの特別な炭素源なしで生育可能である
ことから、CO2 を固定・資化し得るものである。従っ
て、本発明は、本発明に係る微細藻を用いるCO2 の固
定方法に関する。この方法において、CO2 濃度5ない
し20%の気体を培養液に曝気することが好ましい。こ
のような気体としては、例えば化石燃料を燃焼させた場
合に発生する種々の排ガスなどでよく、特に火力発電所
排ガスなどがある。具体例を示すと、上記微細藻クロレ
ラ属HA−1株は、10%のCO2 濃度の空気を通気し
た培養で増殖が最大となり、CO2 の富化による生育促
進効果が認められる。CO2 15%では、10%に比べ
てCO2 濃度の増加による阻害が見られるが、増殖能力
は高いレベルを保持している。この特性は、排ガスを直
接培養槽に導いて通気培養すれば、HA−1株の増殖を
促進するか、またはCO2 固定能の低下をもたらさない
で培養できることを示すものである。
[0010] The microalgae of the present invention can grow without any special carbon source such as acetic acid or carbonate other than CO 2 , and therefore can fix and assimilate CO 2 . Therefore, the present invention relates to a method for fixing CO 2 using the microalgae according to the present invention. In this method, it is preferable to aerate the culture solution with a gas having a CO 2 concentration of 5 to 20%. Such gases may be, for example, various exhaust gases generated when fossil fuels are burned, and particularly include thermal power station exhaust gases. As a specific example, the microalga Chlorella HA-1 strain has a maximum growth in a culture in which air having a CO 2 concentration of 10% is aerated, and a growth promoting effect by enrichment of CO 2 is recognized. In the case of 15% CO 2 , inhibition was observed due to an increase in the concentration of CO 2 as compared with 10%, but the growth ability was maintained at a high level. This property indicates that if the exhaust gas is directly introduced into the culture tank and subjected to aeration culture, the growth of the HA-1 strain can be promoted or the culture can be performed without reducing the CO 2 fixation ability.

【0011】CO2 固定産物である微細藻体に含まれる
タンパク質含量は乾物重の42〜44%であり、各CO
2 条件下で培養した藻体間に大差はない。HA−1株等
を包含する本発明の微細藻の藻体の約半分がタンパク質
であることは、高栄養の飼料または工業用タンパク質
(またはその原料)として使用し得ることを示してい
る。従って、本発明は本発明に係る微細藻のCO2 固定
産物からなる飼料または工業用タンパク質に関する。
The protein content contained in the microalgae, which is a CO 2 fixed product, is 42 to 44% of the dry weight.
There is no great difference between the alga bodies cultured under the two conditions. The fact that about half of the algal bodies of the microalgae of the present invention including the HA-1 strain and the like are proteins indicates that they can be used as highly nutrient feeds or industrial proteins (or raw materials thereof). Accordingly, the present invention relates to a feed or industrial protein comprising the CO 2 fixed product of the microalgae according to the present invention.

【0012】[0012]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0013】実施例1 微細藻の分離,純化,分類 さまざまな採取地からの湖沼水、田面水または土壌(全
部で38種類)のうち分離試料として水の場合は1m
l、土壌の場合は湿重量で1gをMBM液体培地(表
1)20mlを入れた大型試験管に加え、蛍光灯下(照
度2500ルクス)、25℃で3週間静置培養した。光
照射サイクルは明条件(光照射)12時間、暗条件(光
未照射)12時間とした。
Example 1 Separation, Purification and Classification of Microalgae Lake water, paddy water or soil from various sampling sites (38 kinds in total).
1 In the case of soil, 1 g by wet weight was added to a large test tube containing 20 ml of MBM liquid medium (Table 1), and the mixture was incubated at 25 ° C. for 3 weeks under a fluorescent lamp (illuminance: 2500 lux). The light irradiation cycle was 12 hours under bright conditions (light irradiation) and 12 hours under dark conditions (no light irradiation).

【表1】 (脚注) *A−5溶液の組成は以下のとおりである: H3 BO3 286mg MnSO4 ・7H2 O 250mg ZnSO4 ・7H2 O 22.2mg CuSO4 ・5H2 O 7.9mg Na2 MoO4 2.1mg 蒸留水 1リットル 次に、混合ガス(CO2 =15%,O2 =2%,N2
83%)を通気量60ml/分以上で試験管に流し、こ
の条件で生育する微細藻類を集積培養した。写真撮影用
白熱燈を用いて光を照射した(照度約11000ルク
ス)。温度25℃、明条件10時間、暗条件14時間で
5日間培養した。培養液は、OD=660nmで吸光度
が0.03〜0.05程度になるようにMBM培地に植
え継ぎ、上記条件でさらに3日集積培養した。植え継ぎ
と集積培養をさらに繰り返した結果、CO2 濃度15%
の条件下でも生育する微細藻を含む集積培養試料が得ら
れた。得られた集積培養試料から、以下の方法で微細藻
を分離した。集積培養試料を滅菌水で順次希釈した後、
希釈液をDetmer平板寒天培地(表2)に塗布し、
蛍光灯下(照度2500ルクス)、25℃で2週間静置
培養した。光照射サイクルは明条件12時間、暗条件1
2時間とした。生育したコロニーをMBM寒天培地(表
1のMBM液体培地に1.5%寒天を加えたもの)およ
びMBM液体培地で植え継いだ。
[Table 1] (Footnote) * Composition of A-5 solution is as follows: H 3 BO 3 286mg MnSO 4 · 7H 2 O 250mg ZnSO 4 · 7H 2 O 22.2mg CuSO 4 · 5H 2 O 7.9mg Na 2 MoO 4 2.1 mg distilled water 1 liter Next, a mixed gas (CO 2 = 15%, O 2 = 2%, N 2 =
83%) was passed through a test tube at an aeration rate of 60 ml / min or more, and microalgae grown under these conditions were accumulated and cultured. Light was irradiated using an incandescent lamp for photography (illuminance: about 11,000 lux). The cells were cultured at a temperature of 25 ° C. for 10 hours in a light condition and 14 hours in a dark condition for 5 days. The culture solution was subcultured in an MBM medium so that the absorbance at OD = 660 nm was about 0.03 to 0.05, and the culture was further integrated and cultured for 3 days under the above conditions. As a result of further repeating the subculture and the enrichment culture, a CO 2 concentration of 15% was obtained.
An enriched culture sample containing microalgae that grows under the conditions described above was obtained. Microalgae were separated from the obtained enrichment culture sample by the following method. After serially diluting the enriched culture sample with sterile water,
The diluted solution was applied to a Detmer plate agar medium (Table 2),
The culture was allowed to stand still at 25 ° C. for 2 weeks under a fluorescent lamp (illuminance: 2500 lux). Light irradiation cycle is 12 hours under light condition, 1 under dark condition
Two hours. The grown colonies were subcultured on MBM agar medium (MBM liquid medium of Table 1 plus 1.5% agar) and MBM liquid medium.

【表2】Detmer寒天平板培地の組成 ─────────────────────── Ca(NO3 2 ・4H2 O 1.0g KCl 0.25g MgSO4 ・7H2 O 0.25g KH2 PO4 0.25g FeCl3 0.002g 寒天 15g 水道水 1リットル ─────────────────────── 植え継いだ試料は、バクテリアなどによる汚染の有無を
栄養寒天培地などで確認し、分離試料は他の微生物の混
入がないクローンであることを確認した。さらに、純化
した分離株は、前述の集積培養条件下での生育試験を再
度行ない、集積培養条件での生育能を確認した。このよ
うにして15%という高濃度CO2 を固定して生育する
微細藻が6株分離され、これをHA−1株、HA−2
株、HC−1株、HC−2株、HT−1株およびHT−
2株と命名した。これらの分離株について光学顕微鏡に
より、その形態や生活環を観察したところ、全てクロレ
ラ属に属すると判断された。上記分離株の分離源の採取
地や形態等を表3にまとめて示す。また、これらの分離
株の顕微鏡写真を図1ないし図6に示し、それぞれの色
彩写真を参考写真1ないし6に示す。なお、上記6分離
株以外のサンプルでは、当該条件下で生育できる微細藻
株は分離できなかった。また、以下の9種の国立環境研
究所系統保存微細藻類株:Chloralla pyrenoidosa NIES
-226, Chloralla vulgaris NIES-227, Scenedesmus acu
minatus NIES-92, Scenedesmus acutusNIES-94, Chlamy
domonas augustae NIES-158, Chlamydomonas pulsatill
a NIES-122, Oscillatoria agardhii NIES-204, Spirul
ina platensis NIES-45, Spirulina subsalsa NIES-27
について上記の集積培養条件下での生育を調べたとこ
ろ、明らかな成長が認められたのはChloralla pyrenoid
osa NIES-226のみで、他の株は白色になって死滅する
か、ほとんど生育しなかった。
TABLE 2 Composition of Detmer agar plate medium ─────────────────────── Ca (NO 3 ) 2 .4H 2 O 1.0 g KCl 0.25 g MgSO 4 · 7H 2 O 0.25g KH 2 PO 4 0.25g FeCl 3 0.002g agar 15g water 1 liter of water ─────────────────────── The transferred sample was checked for the presence of bacteria or the like on a nutrient agar medium or the like, and the separated sample was confirmed to be a clone free of other microorganisms. Further, the purified isolate was subjected to the growth test under the enrichment culture conditions described above again, and the growth ability under the enrichment culture conditions was confirmed. Microalgae that grow in this way a high concentration of CO 2 of 15% as fixed is separated 6 strain which HA-1 strain, HA-2
Strains, HC-1, HC-2, HT-1 and HT-
It was named 2 strains. When the morphology and life cycle of these isolates were observed with an optical microscope, they were all determined to belong to the genus Chlorella. Table 3 summarizes the locations and forms of the sources of the above isolates. In addition, micrographs of these isolates are shown in FIGS. 1 to 6, and their color photographs are shown in Reference Photos 1 to 6. In the samples other than the above six isolates, microalgae strains capable of growing under the above conditions could not be isolated. In addition, the following nine NIES strain-preserving microalgae strains: Chloralla pyrenoidosa NIES
-226, Chloralla vulgaris NIES-227, Scenedesmus acu
minatus NIES-92, Scenedesmus acutusNIES-94, Chlamy
domonas augustae NIES-158, Chlamydomonas pulsatill
a NIES-122, Oscillatoria agardhii NIES-204, Spirul
ina platensis NIES-45, Spirulina subsalsa NIES-27
When the growth under the above-mentioned enrichment culture conditions was examined for Chloralla pyrenoid, clear growth was observed.
With osa NIES-226 alone, the other strains became white and died or hardly grew.

【表3】 分離株の採取地および特徴* ─────────────────────────────────── 分離株 採取地(分離試料) 細胞の大きさ 属名 ─────────────────────────────────── HA−1株 茨城県美穂村(ハス田の低土) 2−7μm Chlorella HA−2株 茨城県北浦白浜(湖水) 2−8μm Chlorella HC−1株 佐賀県筑後川下流(田面水) 2−6μm Chlorella HC−2株 佐賀県筑後川下流(田面水) 2−7μm Chlorella HT−1株 香川県綾上町(貯水池水) 2−6μm Chlorella HT−2株 香川県善通寺市(貯水池水) 2−7μm Chlorella ─────────────────────────────────── (脚注) *6種の分離株いずれも単細胞で球形であり、自生胞子
形成による無性生殖によって増殖する。葉緑体数は1つ
で、鞭毛を持たず運動性はない。緑藻である。
[Table 3] Sampling location and characteristics * Isolate sampling Ground (separated sample) Cell size Genus ─────────────────────────────────── HA-1 strain 2-7 μm Chlorella HA-2 strain, Kitaura Shirahama, Ibaraki Prefecture (lake) 2-8 μm Chlorella HC-1, 2-6 μm Chlorella HC-2, downstream of Chikugo River, Saga Prefecture 2-7μm Chlorella HT-1 strain Ayakami-cho, Kagawa prefecture (reservoir water) 2-6μm Chlorella HT-2 strain Zentsuji-shi, Kagawa prefecture (reservoir water) 2-7μm Chlorella II ─────────────────────────────── (Footnotes) * All six isolates are single-celled and spherical, and autologous vesicles Formation by growing by asexual reproduction. It has one chloroplast, has no flagella and has no motility. It is a green algae.

【0014】実施例2 微細藻分離株の培養特性 (a)増殖比 実施例1に記載のクロレラ属の6種の分離株と対照株Ch
loralla pyrenoidosaNIES-226(国立環境研究所系統保
存微細藻類)について、CO2 濃度と生長速度の関係に
ついて検討した。本実施例で用いた培養装置は培養槽、
恒温槽、光照射システム、CO2 富化空気供給装置から
構成され、光照射システムとCO2 富化空気供給装置は
タイマーで時間制御した。培養槽は、高さ30cm×内
径8cmのアクリル製円筒状の容器で、外部壁は側面か
らの入光を防ぐために白色塗料を塗布した。光照射シス
テムには、平行光束型高輝度光源装置UI−501C
(ウシオ電気製)を用いた。この装置では、紫外線と赤
外線を各々レンズ型フィルターとコールドミラーを用い
て減衰させており、また波長特性については光合成に利
用可能な可視光線(400〜700nm)をバランスよ
く発生しており太陽光を模擬できる。本培養装置では、
光は培養槽の上部から照射され、培養液の受光面積は5
0cm2 であった。照度計で測定した受光面の平均照度
は55000ルクスで1100μE/m2 /秒に相当
し、これは関東地方における夏期昼間照度の約半分にあ
たる。CO2 富化空気供給装置は、純CO2 ガスボン
ベ、エアーポンプ、ガス流量計、電磁弁から構成され、
エアーポンプと電磁弁はタイマーに連動し、空気とCO
2 の混合を制御できるようになっている。調整されたC
2 富化空気は、培養液下部からガラス製フィルター
(木下理化株式会社製)を通して細かな泡として供給し
た。なお、CO2 富化空気のCO2 濃度は赤外線吸収方
式CO2 分析計LX−710型(飯島電子工業株式会社
製)によって定期的に確認した。培養槽の温度は温度コ
ントローラー(大洋株式会社製)によって一定に保っ
た。培養実験は以下のように行った。上述した培養装置
を4組設置し、各装置に、それぞれ空気、5%CO2
含む空気、10%CO2 を含む空気および15%CO2
を含む空気を0.25リットル/分の流速で通気した。
培養液として上記のMBM液体培地に比べ栄養塩濃度が
高く、高密度の培養により適しているM4N培地(表
4)を用いた。また、接種源は、M4N培地を用いて空
気を通気しながら培養した各分離株および対照株を70
00rpmで30分間遠心分離し、蒸留水で洗浄してさ
らに遠心分離し、蒸留水に再懸濁して調製した。各培養
装置の培養槽には950mlのM4N培地を入れ、接種
源を50ml接種した。接種源中の藻体量は各株毎の一
連の実験において同量であり、各株毎の接種量は約80
ないし110mgであった。接種した後、各装置におい
て、それぞれの濃度のCO2 を含んだ空気を通気しなが
ら、25℃で1週間培養した。光照射サイクルは明条件
12時間、暗条件12時間とし、通気は明条件期間のみ
行った。なお、培養は無菌条件ではなく開放系で行っ
た。培養後、培養液の全量を遠心分離し、蒸留水で洗浄
してさらに遠心分離し蒸留水に再懸濁した。懸濁液を1
05℃で乾燥し、生産乾物量を測定した。乾物試料はさ
らにC/NコーダーNC−800型(住友化学工業株式
会社製)を用いて炭素含量および窒素含量を測定した。
Example 2 Culture characteristics of microalgae isolates (a) Growth ratio Six isolates of Chlorella sp. Described in Example 1 and a control strain Ch
For loralla pyrenoidosaNIES-226 (National Institute for Environmental Studies strain-preserved microalgae), the relationship between CO 2 concentration and growth rate was examined. The culture device used in this example is a culture tank,
Thermostat light irradiation system, is composed of CO 2 enriched air supplying device, an optical illumination system and CO 2 enriched air supplying device is controlled by the timer time. The culture tank was an acrylic cylindrical container having a height of 30 cm and an inner diameter of 8 cm. The outer wall was coated with white paint to prevent light from entering from the side. The light irradiation system includes a parallel beam type high brightness light source device UI-501C.
(Ushio Inc.) was used. In this device, ultraviolet light and infrared light are attenuated using a lens type filter and a cold mirror, respectively, and the wavelength characteristic is that visible light (400 to 700 nm) that can be used for photosynthesis is generated in a well-balanced manner. Can simulate. In the main culture device,
Light is irradiated from the top of the culture tank, and the light receiving area of the culture solution is 5
It was 0 cm 2 . The average illuminance of the light receiving surface measured by the illuminometer is 55000 lux, which is equivalent to 1100 μE / m 2 / sec, which is about half of the daytime illuminance in summer in the Kanto region. The CO 2 enriched air supply device is composed of a pure CO 2 gas cylinder, an air pump, a gas flow meter, and a solenoid valve.
The air pump and solenoid valve are linked to a timer, and air and CO
The mixing of the two can be controlled. Adjusted C
O 2 enriched air was supplied as fine bubbles through a glass filter (manufactured by Rika Kinoshita Co.) from the culture medium lower. In addition, the CO 2 concentration of the CO 2 -enriched air was periodically confirmed by an infrared absorption type CO 2 analyzer LX-710 (manufactured by Iijima Electronics Co., Ltd.). The temperature of the culture tank was kept constant by a temperature controller (manufactured by Taiyo Corporation). The culture experiment was performed as follows. Four sets of the above-mentioned culture devices are installed, and each device is provided with air, air containing 5% CO 2 , air containing 10% CO 2 and 15% CO 2 respectively.
Was flowed at a flow rate of 0.25 liter / min.
An M4N medium (Table 4), which has a higher nutrient concentration than the MBM liquid medium and is more suitable for high-density culture, was used as a culture solution. The inoculum was obtained by isolating each of the isolates and control strains cultured in an M4N medium while aerating air.
The mixture was centrifuged at 00 rpm for 30 minutes, washed with distilled water, further centrifuged, and resuspended in distilled water. 950 ml of M4N medium was placed in the culture tank of each culture device, and 50 ml of the inoculum was inoculated. The amount of algal bodies in the inoculum was the same in a series of experiments for each strain, and the inoculum volume for each strain was approximately 80
To 110 mg. After inoculation, the cells were cultured at 25 ° C. for 1 week in each device while passing air containing CO 2 at each concentration. The light irradiation cycle was a light condition of 12 hours and a dark condition of 12 hours, and ventilation was performed only during the light condition period. The cultivation was performed in an open system, not under aseptic conditions. After culturing, the entire amount of the culture was centrifuged, washed with distilled water, further centrifuged, and resuspended in distilled water. 1 suspension
It dried at 05 degreeC, and measured the amount of dry matter produced. The dry matter sample was further measured for carbon content and nitrogen content using a C / N coder NC-800 type (manufactured by Sumitomo Chemical Co., Ltd.).

【表4】 結果を図7ないし図13に示すが、微細藻の増殖を示す
指標として、増殖比、すなわち1週間の培養で増殖した
量(最終乾物重から接種乾物重を差し引いた量)を接種
乾物重で除した値を用いた。従って、増殖比に1を加え
た数値は接種したクロレラの量が1週間で何倍になった
かを示す。本実験条件下では、クロレラ乾物重の経時的
増加率はほぼ直線的であったため、増殖比は、増殖率を
示す指標として用い得ると判断された。これによると、
本発明のクロレラ属HA−1株(図7)の増殖比は5%
CO2と10%CO2 でほぼ同じで、15%CO2 でや
や低下するものの高い値を維持しており、HA−2株
(図8)、HC−1株(図9)およびHT−2株(図1
2)の3株は5%CO2 から15%CO2 までほぼ一定
の高い増殖比を示し、HT−1株(図11)はCO2
度の上昇とともに増殖比も増加した。従って、これらの
5株は10%から15%CO2 濃度である火力発電所排
ガスと同程度のCO2 濃度での生長促進が明らかであ
り、CO2 濃度に関しては、火力発電所排ガスを直接用
いて培養することが可能であり、空気で希釈する全く必
要がない。また、HC−2株(図10)は上記5株には
やや劣るものの、増殖比が10%CO2濃度で最も高
く、これまでのクロレラ属の微細藻にはなかった培養特
性を示すものである。これに対し、対照株であるChlora
lla pyrenoidosa NIES-226(図13)は、空気を通気を
した場合に比較して、5%CO2 富化空気を通気した条
件では、増殖比が約3倍となり、明らかな生長促進効果
が認められたものの、10%CO2 および15%CO2
の下では生長低下が認められた。このことは、この藻を
用いて火力発電所排ガスにより培養する場合、空気で排
ガスを希釈しなければ、効率的な培養ができないことを
示す。
[Table 4] The results are shown in FIGS. 7 to 13. As an index indicating the growth of the microalgae, the growth ratio, that is, the amount grown in one-week culture (the amount obtained by subtracting the inoculum dry weight from the final dry weight) was used as the inoculum dry weight. The divided value was used. Therefore, a value obtained by adding 1 to the growth ratio indicates how many times the amount of inoculated chlorella increased in one week. Under the conditions of this experiment, the rate of increase in chlorella dry weight over time was almost linear, and thus it was determined that the growth ratio could be used as an index indicating the growth rate. according to this,
The growth ratio of the Chlorella HA-1 strain of the present invention (FIG. 7) is 5%.
CO 2 and similar in 10% CO 2, maintains the high values of those slightly decreased with 15% CO 2, HA-2 strain (Fig. 8), HC-1 strain (Fig. 9) and HT-2 Stock (Figure 1
The three strains 2) showed a substantially constant high growth ratio from 5% CO 2 to 15% CO 2 , and the HT-1 strain (FIG. 11) increased the growth ratio with an increase in the CO 2 concentration. Thus, these 5 strains are apparent growth promotion in the CO 2 concentration of the same level as thermal power plant flue gas is 15% CO 2 concentration of 10%, with respect to the CO 2 concentration, using a thermal power plant flue gas directly Culture without the need for any dilution with air. Although the HC-2 strain (FIG. 10) is slightly inferior to the above five strains, the growth ratio is the highest at a CO 2 concentration of 10%, and shows culture characteristics not found in conventional Chlorella microalgae. is there. In contrast, the control strain Chlora
lla pyrenoidosa NIES-226 (FIG. 13) has a growth ratio of about 3 times under the condition of aerated with 5% CO 2 -enriched air compared with the case of aerated, and a clear growth promoting effect is recognized. 10% CO 2 and 15% CO 2
Under the conditions, growth was decreased. This indicates that, when cultivating flue gas from a thermal power plant using this algae, efficient culturing cannot be performed unless the flue gas is diluted with air.

【0015】(b)生長速度,CO2 固定速度,光合成
効率 次に、前項(a)の実験結果から、照射された太陽エネ
ルギー量がどれだけの乾物量、固定炭素量にどれだけの
速さで変換されているかについてを表5にまとめて示
す。なお、表5には各分離株の最適CO2 濃度における
増殖比〔前項(a)参照〕、生長速度、CO2 固定速度
および光合成効率(photosynthetic efficiency, P.E.)
を示したが、生長速度は生産乾物量から光照射面積1日
あたりの速度に換算し(単位:g乾物/m2 /日)、C
2 固定速度は生産乾物量にC/Nコーダーの測定によ
って得られた炭素量を乗じて算出し(単位:g炭素/m
2 /日)、そして光合成効率はクロレラの藻体に取り込
まれた炭素量から固定されたエネルギー量を求め、照射
光エネルギー量に対する百分率で示した(すなわち、微
細藻類の1g炭素あたりの化学エネルギーは11.4K
calであるので、炭素量にこの数値を乗じて、光の照
射エネルギーで除した;本実験条件での照射光エネルギ
ー量=2450Kcal/m2 /日・培養槽)。
(B) Growth rate, CO 2 fixation rate, photosynthetic efficiency Next, from the experimental results in the preceding section (a), how much dry energy and fixed carbon quantity of irradiated solar energy are Table 5 summarizes whether or not the conversion has been performed. Table 5 shows the growth ratio of each isolate at the optimum CO 2 concentration [see (a)], growth rate, CO 2 fixation rate, and photosynthetic efficiency (PE).
The growth rate was converted from the amount of dry matter produced to the rate per day of the light irradiation area (unit: g dry matter / m 2 / day).
The O 2 fixation rate is calculated by multiplying the amount of dry matter produced by the amount of carbon obtained by measuring the C / N coder (unit: g carbon / m).
2 / day), and photosynthetic efficiency was calculated from the amount of carbon incorporated into the algal cells of Chlorella, and was expressed as a percentage of the energy of irradiation light (ie, the chemical energy per gram of carbon of microalgae was calculated as 11.4K
Therefore, the carbon amount was multiplied by this value and divided by the irradiation energy of light; the irradiation light energy amount under the present experimental conditions = 2450 Kcal / m 2 / day / culture tank).

【表5】 クロレラ分離株の生長速度,CO2 固定速度,光合成効率 ──────────────────────────────── 供試株 最適CO2 増殖比 生長速度 CO2 光合成 濃度 固定速度 効率 ──────────────────────────────── HA−1 10 5.90 17.1 7.80 3.62 HA−2 5 4.63 10.6 4.44 2.06 HC−1 10 4.86 14.0 6.29 2.92 HC−2 10 3.61 11.7 4.98 2.31 HT−1 15 5.74 12.9 6.10 2.83 HT−2 10 5.52 12.6 5.69 2.64 対照 5 4.74 15.4 6.83 3.17 ──────────────────────────────── 表5に示した結果によると、対照のChloralla pyrenoid
osa NIES-226株は5%CO2 条件では、生長速度、CO
2 固定速度が早く、P.E.も高い。しかし、前項
(a)で示したように、10%CO2 では5%CO2
比較して57%、15%CO2 では40%に増殖比が低
下しているので高濃度CO2 での生長促進効果が望めな
い。これに対し、本発明の分離株の場合、HA−1株が
高濃度CO2条件下で、生長速度、CO2 固定速度およ
びP.E.ともに、対照の5%CO2条件下での値以上
の値を示し、HC−1株およびHT−1株もそれに近い
値を示しており、高い生産力が10%ないし15%CO
2 濃度でも得られるものである。
[Table 5] Growth rate, CO 2 fixation rate, photosynthetic efficiency of Chlorella isolates Test strain Optimal CO 2 growth ratio Growth rate CO 2 photosynthesis concentration Fixed rate Efficiency ──────────────────────────────── HA -1 10 5.90 17.1 7.80 3.62 HA-2 5 4.63 10.6 4.44 2.06 HC-1 10 4.86 14.0 6.29 2.92 HC-2 10 3.61 11.7 4.98 2.31 HT-1 15 5.74 12.9 6.10 2.83 HT-2 10 5.52 12.6 5.69 2.64 Control 5 4.74 15.4 6.83 3.17 に よ る Based on the results shown in Table 5. The control of Chloralla pyrenoid
The osa NIES-226 strain 5% CO 2 condition, growth rate, CO
2 Fixed speed is fast. E. FIG. Is also expensive. However, as indicated in the previous section (a), 57% compared to 10% CO 2 in 5% CO 2, at high concentrations CO 2 since the growth ratio is decreased to 15% in CO 2 40% Growth effect cannot be expected. In contrast, if isolates of the present invention, HA-1 strain with high-concentration CO 2 conditions, growth rate, CO 2 fixed speed and P. E. FIG. In both cases, the values under the 5% CO 2 condition of the control were higher than those of the control, and the HC-1 strain and the HT-1 strain also showed values close to the values.
It can be obtained even at two concentrations.

【0016】実施例3 HA−1株の培養条件に関する
培養特性 本発明の上記6つの分離株中、最も生育のよかったクロ
レラ属HA−1株の主要な培養条件に関する培養特性に
ついて検討した。微細藻類の増殖に影響を与える主要な
因子は光、培地組成、通気CO2 濃度、通気量(攪拌速
度)、温度および培地pHであるが、このうち通気CO
2 濃度、通気量、温度および培地pHの4種の培養因子
について条件を変えて検討した。培養は上記の条件を変
える以外は実施例2に従った。結果を図14ないし図1
7に示した。これによると、CO2 濃度10%が生長に
最適であり、20%でもかなり高い増殖比を示し、その
後CO2 濃度の上昇につれて増殖比も低下し、100%
CO2 通気条件下ではほとんど生長しなかった(図1
4)。図15に示す通気量についての実験では、0.2
5リットル/分および0.5リットル/分で若干生長が
よかったが、0.10リットル/分と1.0リットル/
分との差は小さかった。図16に示す温度について検討
した実験では、増殖比は20℃で低かったものの、25
℃から35℃でほぼ一定であり、HA−1株は温度適応
範囲の広い中温性株であることが判明した。図17に示
す培地pHについての実験では、最適なpH(初期培
地)は4から5程度であることが示された。ただし、培
養に伴い、培地pHは1週間の培養後で約0.6前後上
昇した。pHが3の場合は、増殖することができず死滅
した。しかし、この株はpH4でも活発に生長すること
から、pHが低くても機能する株であることが示され
た。培地pHはCO2 濃度と同様にクロレラの生育に与
える影響が強い因子であるので、排ガスに含まれるNO
X 等の酸性物質の影響の可能性を考えると、HA−1株
の低pH耐性は有用な形質である。以上の結果から、ク
ロレラ属HA−1株は、排ガスを用いて培養する場合に
おいて、重要な制御項目である排ガス濃度、流量、温
度、培地pHに関して厳密な管理を行わなくても、効率
よく培養できるものである。大規模な培養システムを考
えた場合、培養システムは単純でメンテナンスが簡便な
ことが必要であるので、このクロレラ属HA−1株は簡
便なCO2 固定培養システムに適したものといえる。
Example 3 Culture Characteristics of HA-1 Strain Regarding Culture Conditions The culture characteristics of the Chlorella sp. HA-1 strain that grew best among the above six isolates of the present invention were examined. The main factors affecting the growth of microalgae are light, medium composition, aerated CO 2 concentration, aerated amount (stirring speed), temperature and medium pH.
(2) Four types of culture factors of concentration, aeration amount, temperature and medium pH were examined under different conditions. The culture was performed according to Example 2 except that the above conditions were changed. The results are shown in FIGS.
7 is shown. According to this, a CO 2 concentration of 10% is optimal for growth, showing a fairly high growth ratio even at 20%, after which the growth ratio decreases as the CO 2 concentration increases,
It hardly grew under the CO 2 aeration condition (Fig. 1
4). In the experiment on the ventilation rate shown in FIG.
The growth was slightly better at 5 liters / minute and 0.5 liters / minute, but 0.10 liters / minute and 1.0 liters / minute.
The difference from the minute was small. In the experiment in which the temperature shown in FIG. 16 was examined, the growth ratio was low at 20 ° C.
The HA-1 strain was almost constant from ℃ to 35 ℃, indicating that the HA-1 strain was a mesophilic strain having a wide temperature adaptation range. The experiment on the medium pH shown in FIG. 17 showed that the optimum pH (initial medium) was about 4 to 5. However, with the culturing, the pH of the medium increased by about 0.6 after culturing for one week. When the pH was 3, it could not grow and died. However, since this strain grew actively even at pH 4, it was shown that the strain functions even at low pH. Since the pH of the medium is a factor that has a strong effect on the growth of chlorella like the CO 2 concentration, the NO contained in the exhaust gas
Given the possible effects of acidic substances such as X , low pH tolerance of the HA-1 strain is a useful trait. From the above results, the chlorella HA-1 strain can be efficiently cultured without strict control of the exhaust gas concentration, flow rate, temperature, and medium pH, which are important control items, when culturing using exhaust gas. You can do it. Considering a large-scale culture system, the culture system needs to be simple and easy to maintain, so that the Chlorella sp. HA-1 strain is suitable for a simple CO 2 fixed culture system.

【0017】実施例4 微細藻体のタンパク質含量 実施例1で得られたクロレラ属HA−1株のCO2 固定
産物である微細藻体に含まれるタンパク質含量を分析し
た。分析は以下の手順で行なった。まず、藻体を15分
間超音波処理して破砕し、さらに1N NaOHを加え
た後100℃で10分間加熱してタンパク質を抽出し、
バイオラッド社プロテインアッセイキットを用いてアル
ブミンを標準として測定した。その結果を表6に示す。
各CO2条件下で培養した藻体のタンパク質含量に大差
はなく、乾物重の42〜44%がタンパク質であった。
この結果は、HA−1株の藻体の半分近くがタンパク質
であり、高栄養の飼料または工業用タンパク質もしくは
その原料として使えることを示している。
Example 4 Protein Content of Microalgae The protein content of microalgae, which is a CO 2 fixed product of Chlorella sp. HA-1 strain obtained in Example 1, was analyzed. The analysis was performed according to the following procedure. First, the alga bodies were sonicated for 15 minutes to be crushed, and further added with 1N NaOH, and then heated at 100 ° C. for 10 minutes to extract proteins.
Albumin was measured using BioRad protein assay kit as a standard. Table 6 shows the results.
There was no significant difference in the protein content of the algal cells cultured under each CO 2 condition, and 42 to 44% of the dry weight was protein.
This result indicates that nearly half of the algal cells of the HA-1 strain are proteins, and can be used as a highly nutrient feed or industrial protein or its raw material.

【表6】 各CO2 濃度条件下で通気培養したHA−1株藻体のタンパク質含量 ──────────────────────────────── 通気CO2 濃度(%) ────────────────────── 0.035 5 10 15 (空気) ──────────────────────────────── タンパク質含量 (乾物当り%) 44.2 44.4 42.0 43.2 ────────────────────────────────[Table 6] Protein content of HA-1 strain algal cells cultured under aeration at each CO 2 concentration condition通 気 Aeration CO 2 concentration (%) 0.0 0.035 5 10 15 (air) ─────── ───────────────────────── Protein content (% per dry matter) 44.2 44.4 42.0 43.2 ────── ──────────────────────────

【0018】[0018]

【発明の効果】以上詳細に記載したように、本発明は5
ないし20%という高いCO2 濃度で安定に生育し、C
2 を固定するクロレラ属の微細藻を単離したものであ
る。従って、本発明の微細藻は、火力発電所などのCO
2 濃度の高い排ガスを直接培養槽に導いても、該排ガス
中のCO2 を固定し、安定に生育し得るものである。さ
らに、本発明の微細藻によるCO2 固定産物はタンパク
含量が高く、家畜の飼料や工業用タンパク質の原料とし
て有効利用することができる。このように、本発明の微
細藻を用いて排ガス中のCO2 固定を行ない、固定産物
を有効利用することによって、CO2 などの温室効果ガ
スによる地球温暖化の防止、人口増や生活レベルの上昇
に起因する食糧問題の解決ならびに熱帯林の破壊・砂漠
化の防止などが図られるため、本発明は地球環境問題解
決に大きく寄与するものである。
As described in detail above, the present invention provides a
Stable growth at CO 2 concentration as high as
This is a microalga of the genus Chlorella that fixes O 2 . Therefore, the microalgae of the present invention can be used for CO2 such as thermal power plants.
2 Even if the exhaust gas having a high concentration is directly introduced into the culture tank, the CO 2 in the exhaust gas is fixed and can be stably grown. Further, the CO 2 fixed product by the microalga of the present invention has a high protein content and can be effectively used as a feed for livestock and a raw material for industrial proteins. As described above, by using the microalgae of the present invention to fix CO 2 in exhaust gas and effectively use the fixed products, it is possible to prevent global warming due to greenhouse gases such as CO 2 , increase population and improve living standards. The present invention greatly contributes to solving global environmental problems because it can solve food problems caused by the rise and prevent destruction and desertification of tropical forests.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のクロレラ属HA−1株の生物の形態を
示す顕微鏡写真である。
FIG. 1 is a micrograph showing the morphology of a living organism of the Chlorella sp. HA-1 strain of the present invention.

【図2】本発明のクロレラ属HA−2株の生物の形態を
示す顕微鏡写真である。
FIG. 2 is a photomicrograph showing the morphology of the organism of the Chlorella sp. HA-2 strain of the present invention.

【図3】本発明のクロレラ属HC−1株の生物の形態を
示す顕微鏡写真である。
FIG. 3 is a photomicrograph showing the morphology of the organism of the Chlorella sp. HC-1 strain of the present invention.

【図4】本発明のクロレラ属HC−2株の生物の形態を
示す顕微鏡写真である。
FIG. 4 is a micrograph showing the morphology of the organism of the Chlorella sp. HC-2 strain of the present invention.

【図5】本発明のクロレラ属HT−1株の生物の形態を
示す顕微鏡写真である。
FIG. 5 is a micrograph showing the morphology of a living organism of Chlorella sp. HT-1 strain of the present invention.

【図6】本発明のクロレラ属HT−2株の生物の形態を
示す顕微鏡写真である。
FIG. 6 is a micrograph showing the morphology of a living organism of Chlorella HT-2 strain of the present invention.

【図7】CO2 濃度の異なる空気を通気してHA−1株
を培養した場合の生育を示すグラフである。
FIG. 7 is a graph showing growth when the HA-1 strain is cultured with air having different CO 2 concentrations being aerated.

【図8】CO2 濃度の異なる空気を通気してHA−2株
を培養した場合の生育を示すグラフである。
FIG. 8 is a graph showing the growth when the HA-2 strain is cultured by passing air having different CO 2 concentrations.

【図9】CO2 濃度の異なる空気を通気してHC−1株
を培養した場合の生育を示すグラフである。
FIG. 9 is a graph showing growth when the HC-1 strain is cultured with air having different CO 2 concentrations being aerated.

【図10】CO2 濃度の異なる空気を通気してHC−2
株を培養した場合の生育を示すグラフである。
FIG. 10 shows that air with different CO 2 concentration is ventilated and HC-2
It is a graph which shows growth when a strain is cultured.

【図11】CO2 濃度の異なる空気を通気してHT−1
株を培養した場合の生育を示すグラフである。
FIG. 11 shows the flow of air having different CO 2 concentrations to form HT-1.
It is a graph which shows growth when a strain is cultured.

【図12】CO2 濃度の異なる空気を通気してHT−2
株を培養した場合の生育を示すグラフである。
FIG. 12 shows that HT-2 is produced by ventilating air having different CO 2 concentrations.
It is a graph which shows growth when a strain is cultured.

【図13】CO2 濃度の異なる空気を通気して対照株
(Chloralla pyrenoidosa NIES-226)を培養した場合の
生育を示すグラフである。
FIG. 13 is a graph showing the growth when a control strain (Chloralla pyrenoidosa NIES-226) was cultured with air having different CO 2 concentrations ventilated.

【図14】CO2 濃度とHA−1株の生育の関係を示す
グラフである。
FIG. 14 is a graph showing the relationship between the CO 2 concentration and the growth of the HA-1 strain.

【図15】通気量とHA−1株の生育の関係を示すグラ
フである。
FIG. 15 is a graph showing the relationship between the aeration rate and the growth of the HA-1 strain.

【図16】温度とHA−1株の生育の関係を示すグラフ
である。
FIG. 16 is a graph showing the relationship between the temperature and the growth of the HA-1 strain.

【図17】培地pHとHA−1株の生育の関係を示すグ
ラフである。
FIG. 17 is a graph showing the relationship between the medium pH and the growth of the HA-1 strain.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 5ないし20容量%のCO2濃度で、通
常の大気通気条件下での生育と同等ないしはそれ以上
に、安定に生育可能であるクロレラ属HA−1株である
クロレラ属の微細藻。
1. A strain of Chlorella sp. HA-1 which can stably grow at a CO 2 concentration of 5 to 20% by volume at a level equivalent to or higher than that of growth under normal atmospheric ventilation conditions. Chlorella microalgae.
【請求項2】 5ないし20容量%のCO 2 濃度で、通
常の大気通気条件下での生育と同等ないしはそれ以上
に、安定に生育可能であるクロレラ属HA−2株である
クロレラ属の微細藻。
2. At a CO 2 concentration of 5 to 20% by volume , the
Equal to or better than growth under normal atmospheric ventilation conditions
And a chlorella HA-2 strain that can stably grow.
Chlorella microalgae.
【請求項3】 5ないし20容量%のCO 2 濃度で、通
常の大気通気条件下での生育と同等ないしはそれ以上
に、安定に生育可能であるクロレラ属HC−1株である
クロレラ属の微細藻。
3. At a CO 2 concentration of 5 to 20% by volume , the
Equal to or better than growth under normal atmospheric ventilation conditions
And a Chlorella HC-1 strain that can stably grow.
Chlorella microalgae.
【請求項4】 5ないし20容量%のCO 2 濃度で、通
常の大気通気条件下での生育と同等ないしはそれ以上
に、安定に生育可能であるクロレラ属HC−2株である
クロレラ属の微細藻。
4. At a CO 2 concentration of 5 to 20% by volume , the
Equal to or better than growth under normal atmospheric ventilation conditions
In addition, a stable Chlorella HC-2 strain
Chlorella microalgae.
【請求項5】 5ないし20容量%のCO 2 濃度で、通
常の大気通気条件下での生育と同等ないしはそれ以上
に、安定に生育可能であるクロレラ属HT−1株である
クロレラ属の微細藻。
5. The method according to claim 1, wherein the CO 2 concentration is between 5 and 20% by volume.
Equal to or better than growth under normal atmospheric ventilation conditions
In addition, a chlorella HT-1 strain that can grow stably
Chlorella microalgae.
【請求項6】 5ないし20容量%のCO 2 濃度で、通
常の大気通気条件下での生育と同等ないしはそれ以上
に、安定に生育可能であるクロレラ属HT−2株である
クロレラ属の微細藻。
6. At a CO 2 concentration of 5 to 20% by volume , the
Equal to or better than growth under normal atmospheric ventilation conditions
And a Chlorella HT-2 strain capable of stably growing.
Chlorella microalgae.
JP24586092A 1991-10-31 1992-08-20 Chlorella microalgae that fix high concentration CO2 Expired - Fee Related JP3336439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24586092A JP3336439B2 (en) 1991-10-31 1992-08-20 Chlorella microalgae that fix high concentration CO2

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31385291 1991-10-31
JP3-313852 1991-10-31
JP24586092A JP3336439B2 (en) 1991-10-31 1992-08-20 Chlorella microalgae that fix high concentration CO2

Publications (2)

Publication Number Publication Date
JPH05304945A JPH05304945A (en) 1993-11-19
JP3336439B2 true JP3336439B2 (en) 2002-10-21

Family

ID=26537446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24586092A Expired - Fee Related JP3336439B2 (en) 1991-10-31 1992-08-20 Chlorella microalgae that fix high concentration CO2

Country Status (1)

Country Link
JP (1) JP3336439B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2308912B2 (en) * 2007-01-16 2009-09-16 Bernard A.J. Stroiazzo-Mougin ACCELERATED PROCEDURE OF ENERGETIC CONVERSION OF CARBON DIOXIDE.
US20090064567A1 (en) 2007-09-12 2009-03-12 Martek Biosciences Corporation Biological oils and production and uses Thereof
JP6235210B2 (en) 2012-12-14 2017-11-22 株式会社デンソー Microalgae culture method
CN116333886B (en) * 2022-12-06 2024-03-12 华南农业大学 Single-cell green algae capable of producing oil and application thereof

Also Published As

Publication number Publication date
JPH05304945A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
Ramaraj et al. Cultivation of green microalga, Chlorella vulgaris for biogas purification
Watanabe et al. Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere
Yue et al. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae
Barghbani et al. Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi's experimental approach
US20110020913A1 (en) Process for the production of algal biomass with a high lipid content
CN107287125B (en) Method for culturing chlorella pyrenoidosa
Xiao et al. Microalgae Scenedesmus quadricauda grown in digested wastewater for simultaneous CO2 fixation and nutrient removal
Magdaong et al. Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor
CN105600942A (en) Method for formation of bioflocs by cyanobacterial bloom
US9222065B2 (en) Method for photoculturing and harvesting microalgae
CN109971691A (en) One plant of selenium-rich bacterium and its separation method
CN107937276B (en) Method for promoting carbon sequestration growth of chlorella by mixing and regulating carbon dioxide and acetic acid
JP3336439B2 (en) Chlorella microalgae that fix high concentration CO2
RU2126202C1 (en) Method of preparing an endosymbiosis plant/bacterium able to nitrogen-fixing in plant parts
CN103184157B (en) A kind ofly administer protozoon and realize stablizing the algal culture technique of high yield
Solovchenko et al. Possibilities of bioconversion of agricultural waste with the use of microalgae
KR101797070B1 (en) Culture compositions for promoting growth of spirulina and the method culturing for promoting growth of spirulina by using the same
JP3757325B2 (en) Microalgae for carbon dioxide fixation
CN107988080A (en) A kind of microalgae method of contaminants disposal
Rorrer et al. Bromoperoxidase activity in microplantlet suspension cultures of the macrophytic red alga Ochtodes secundiramea
JP3468955B2 (en) Method for producing lactic acid by microalgae
JPH10248553A (en) Microalgal chlorella and fixation of carbon dioxide using microalgal chlorella
CN113136321A (en) Method and system for heterotrophic-autotrophic co-culture of photosynthetic microorganisms and method for production of biomass and bioenergy
CN113136339A (en) Method for mixotrophic-autotrophic continuous culture of photosynthetic microorganisms, culture system and application thereof
RU2726111C1 (en) Plankton strain parachlorella kessleri intended for production of food products

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees