JP3336381B2 - 炭化水素を含む有機結晶とその製造方法 - Google Patents

炭化水素を含む有機結晶とその製造方法

Info

Publication number
JP3336381B2
JP3336381B2 JP24800099A JP24800099A JP3336381B2 JP 3336381 B2 JP3336381 B2 JP 3336381B2 JP 24800099 A JP24800099 A JP 24800099A JP 24800099 A JP24800099 A JP 24800099A JP 3336381 B2 JP3336381 B2 JP 3336381B2
Authority
JP
Japan
Prior art keywords
magnetic field
crystal
crystals
organic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24800099A
Other languages
English (en)
Other versions
JP2001072617A (ja
Inventor
豁 坂口
喜久男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, National Institute for Materials Science filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP24800099A priority Critical patent/JP3336381B2/ja
Publication of JP2001072617A publication Critical patent/JP2001072617A/ja
Application granted granted Critical
Publication of JP3336381B2 publication Critical patent/JP3336381B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、磁場配向性を有す
る炭化水素を含む有機結晶とその製造方法に関する。
【0002】
【従来の技術】微弱な電場、磁場の変化によって、巨視
的な配向状態を変化させることができる有機液晶化合物
は、液晶表示材料等として多くの用途で利用されてい
る。しかしながら、これらの液晶化合物は一般に構造が
複雑で、合成に煩雑な工程を要し、また、特定の物性を
得るための特定の構造となるよう合成するため、汎用性
がない。即ち、特定の、限られた磁性等を有するものが
必要になると、ある特定の構造の化合物を合成すること
になる。
【0003】このような問題を考慮して、既存の有機化
合物を用いて得られる新たな材料が検討されている。例
えば棒状、針状や平板状などの揃った粒形や結晶形を有
し、特定の配向性や磁性、偏光性などを有する材料であ
れば、その性質を利用して、表示材料や偏光フィルムな
どに用いられている液晶などのような用途に利用しうる
と考えられる。このような試みとしては例えば、天然の
蛋白質や脂質を、磁場中で配向させる基礎研究がなされ
ている。しかしながら、これらの天然由来物質は、現状
では、あまりに少量しか得られず、従って高価で、か
つ、磁場による配向性も悪く、実用性に乏しい。
【0004】
【発明が解決しようとする課題】したがって本発明は、
このような現状を踏まえて、入手の容易な有機化合物を
原料として得られ、棒状、針状又は長繊維状などの形状
とすることができ、磁場配向させることのできる有機結
晶材料を提供することを目的とする。
【0005】
【課題を解決するための手段】本発明者は、n−パラフ
ィンと、長鎖アルキル基を有する界面活性剤との水中に
おけるファンデルワールス力に基づく相互作用について
検討する過程で、この界面活性剤が短鎖n−パラフィン
と容易に巨視的集合体を形成し、低沸点、低融点のn−
パラフィンをも固定して、固体状にできることを見出
し、さらに、他の有機化合物も固形化することができる
ことを見出した。更に、これらの固形化物を棒状、針状
ないし長繊維状の結晶として得ることが出来、結晶成長
時に磁場をかけることにより成長方向を制御でき、磁場
配向性を示すことが分かった。本発明はこれらの知見に
基づき検討を重ね、なされたものである。すなわち本発
明は、(1)水中での溶解、乳化又は懸濁下において、
脂肪族カルボン酸金属塩と炭化水素とを会合、結晶化さ
せたことを特徴とする炭化水素を含む有機結晶、(2)
磁場配向していることを特徴とする(1)項記載の有機
結晶、及び(3)脂肪族カルボン酸金属塩及び炭化水素
を水中に溶解、乳化又は懸濁させて、磁場中で結晶化さ
せることを特徴とする(1)項記載の有機結晶の製造方
法を提供するものである。なお、本発明の有機結晶は水
中において形成されるが、形成された有機結晶中には水
を含有せず、脂肪族カルボン酸金属塩及び炭化水素のみ
からなる。
【0006】
【発明の実施の形態】本発明において用いる脂肪族カル
ボン酸金属塩(以下、カルボン酸金属塩という)は、特
に制限はないが、好ましくは直鎖状のカルボン酸の金属
塩であり、飽和でも不飽和でもよい。カルボン酸金属塩
の炭素数は、好ましくは10〜22、さらに好ましくは
12〜18である。金属の種類は特に制限はなく、通常
金属セッケンに含まれる金属の塩を用いることができる
が、好ましくはナトリウムである。本発明で用いること
のできるカルボン酸金属塩として、具体的には例えば、
ラウリン酸ナトリウム、トリデカン酸ナトリウム、ミリ
スチン酸ナトリウム、ペンタデカン酸ナトリウム、パル
ミチン酸ナトリウム、ヘプタデカン酸ナトリウム、ステ
アリン酸ナトリウム、オレイン酸ナトリウムなどがあげ
られる。
【0007】本発明方法でカルボン酸塩と共に結晶性材
料を作る炭化水素は、常温(20℃)で液体のものであ
って、沸点があまり高くないもの(好ましくは沸点が3
6〜300℃のもの)が好ましく、炭素原子及び水素原
子のみからなる化合物であり酸素原子、窒素原子、イオ
ウ原子等を含まないのが好ましい。また、炭素数が好ま
しくは5〜17、さらに好ましくは5〜10の脂肪族炭
化水素、もしくは炭素数が好ましくは6〜14、さらに
好ましくは6〜9の芳香族炭化水素である。具体的には
例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オク
タン、n-ノナン、n-デカン、ベンゼン、トルエン、o-キ
シレン、m-キシレン、p-キシレン、エチルベンゼン、イ
ソプロピルベンゼン、2,2,4-トリメチルペンタン等があ
げられる。
【0008】本発明におけるカルボン酸金属塩/炭化水
素のモル比は、好ましくは1/10〜1/1000、さ
らに好ましくは1/50〜1/200であり、カルボン
酸金属塩/水のモル比は、好ましくは1/500〜1/
50000、さらに好ましくは1/2000〜1/25
000である。上記のようにカルボン酸金属塩に対して
炭化水素が限定されたモルの範囲で、また、さらにカル
ボン酸金属塩に対して水が大過剰のモル比のときに限っ
て、このような結晶状態になる。これは、本来水に溶け
やすいカルボン酸金属塩が、水中に強制的に混合された
炭化水素と、ファンデルワールス力によって結合し、疎
水性の結晶となって、析出するためと考えられる。
【0009】本発明においては、カルボン酸金属塩及び
炭化水素を水中に溶解、乳化又は懸濁させ、これを室温
(通常20〜25℃)に静置し、または/および緩やか
に昇温後、緩やかに降温することにより、カルボン酸金
属塩と炭化水素とから形成された結晶を得ることができ
る。用いる炭化水素及びカルボン酸金属塩の種類や目的
とする結晶の形などにより結晶析出の条件は適宜設定さ
れるが、昇温及び降温を行う場合は1〜0.05℃/分
の速度で、室温から50〜60℃まで昇温した後、同様
に室温まで降温するのが好ましい。本発明において結晶
を析出させる方法としては、具体的には例えば、以下の
ような方法が挙げられる。 カルボン酸金属塩、液体炭化水素、水を同時に容器に
入れ、加熱して、カルボン酸金属塩を完全に溶解した
後、撹拌して均一に混合し、室温に静置して、結晶を析
出させる方法。 上記の処理後、再度、緩やかに昇温後、降温し、結
晶を析出させる方法。 上記の処理後、反応混合物の一部を分取し、水の入
った別の容器に加え、緩やかに昇温後、降温し、結晶を
析出させる方法。
【0010】カルボン酸金属塩溶解のための加熱はカル
ボン酸金属塩の種類に応じて30〜95℃で、5〜30
分程度行う。水は、好ましくは純水を用いる。撹拌は、
カルボン酸金属塩が均一に溶解、乳化又は懸濁するまで
行うのが好ましい。通常は、撹拌終了後、0.5〜10
0時間かけて静置し、または/および緩やかに昇温後、
緩やかに降温することにより、目的の炭化水素を含む有
機結晶が得られる。析出する結晶は、水面上に出来る場
合、容器の底に沈殿する場合、水中に3次元的に析出す
る場合、の3通りがある。析出する結晶の形状は棒状、
針状、長繊維状、微粉状、極めて細かい網目状などであ
り、好ましくは棒状、針状又は長繊維状である。このよ
うにして析出、成長させて得られる本発明の有機結晶
は、通常60℃位までは安定であるが、それ以上の温度
になると結晶が破壊され、再び室温に戻しても、通常
は、もとの揃った形状を有する結晶を得ることはできな
い。得られた結晶は保存等に際し、好ましくは35℃以
下で、さらに好ましくは室温以下で密閉容器に入れて取
り扱う。
【0011】上記のようにして得られる本発明の有機結
晶は、磁場に反応し、磁場中で析出、成長させることに
より各結晶の成長方向を一定方向に制御することができ
る。例えば針状、棒状、長繊維状などの結晶形を有する
本発明の有機結晶の集合に一方向の磁場を与えると、大
半の結晶の長さ方向が同じ方向となり、この磁場の方向
を変えると、磁場方向の変化に応じ結晶の長さ方向が一
斉に変化することになる。
【0012】次に、磁場により結晶の成長方向を磁場方
向に配向させて本発明の有機結晶を製造する方法につい
て説明する。本発明において、棒状、針状又は長繊維状
の結晶を析出させる場合、その析出を磁場中で行い、磁
場中で結晶を成長させると、結晶の長さ方向が全体とし
て磁場方向(結晶析出位置における磁力線の方向)に配
向した、整列した状態での本発明の有機結晶を得ること
ができる。このときの磁場の強度は適宜設定できるが、
好ましくは0.2テスラ以上、さらに好ましくは2テス
ラ以上、特に好ましくは5テスラ以上であり、永久磁
石、ヘリウムフリーの超電導磁石などによって形成する
ことができる。磁場の方向は水平方向とするのが好まし
い。また、上記結晶析出工程の静置及び/又は昇温・降
温において、磁場中に1時間以上保持されるようにする
のが好ましい。水面上に生成した結晶は、他の2つのタ
イプの結晶に比べ容器内壁の影響を受けやすく、結晶の
成長方向を磁場方向に配向させる事が困難である場合が
あるが、長い針状ないし長繊維状結晶として析出した場
合には、結晶間の相互作用の方が、器壁が結晶に及ぼす
力よりも大きくなって、磁場による配向が容易になる。
容器の底に沈殿した結晶は、結晶が成長しながら沈殿す
る過程で磁場による影響を受けやすく、比較的、成長過
程での磁場による配向が行われやすいが、微粉状結晶や
極細の網目状結晶の場合には、配向し難い。水中に3次
元的に結晶が析出する場合にも、その成長方向を磁場方
向に配向させる事が可能である。この場合にも、結晶が
成長する過程で磁場の影響を受け、水中を、比較的自由
に浮遊しながら、3次元的に結晶が形成されていくため
に、磁場による配向が行われやすいものと考えられる。
すなわち、本発明の有機結晶の形が、棒状、針状、或い
は長繊維状の場合には、磁場中で析出、成長させると磁
場の影響を受けて、結晶全体の成長方向が磁場方向に配
向し、結晶の長さ方向が磁場方向に揃って整列したもの
が得られる。しかしながら、微粉状結晶の場合には、通
常、磁場中で析出、成長させても、無配向となる。した
がって本発明の有機結晶において成長方向を磁場方向に
配向させる場合は、棒状、針状、又は長繊維状の結晶が
析出するよう上記結晶析出の条件を調整する。このよう
な磁場配向性の有機結晶とする場合には、長さ100〜
5000μm、太さ1〜100μmの棒状、針状、又は
長繊維状の結晶形が好ましい。
【0013】本発明の有機結晶は、磁場配向しうるた
め、表示材料などへの利用が可能である。また、棒状、
針状などの結晶形の長さ方向を揃えて形成させ、そのま
ま整列した状態でフィルムなどに配合しうるので、偏光
材料などへの利用も可能である。
【0014】
【実施例】次に、本発明を実施例に基づいてさらに詳細
に説明する。 実施例1 ペンタデカン酸ナトリウム 1mg(3.8×10−6
ル)、n-ヘプタン 70μl(4.8×10−4モル)、
純水 1.0ml(5.5×10−2モル)を、直径12mmの
ガラス瓶中に入れ、75℃に加熱してペンタデカン酸ナト
リウムを完全に溶解した後、ボルテックス(Vortex)ミ
キサーを用いて混合した。室温放置後、10テスラの磁
場中に入れ、25℃から60℃まで昇温し、更に25℃
まで降温した。昇温、降温の速度は、毎分0.1℃とし
た。更に磁場中で10時間保持した後、取り出し、実体
顕微鏡により観察した。その結果、水の表面に析出した
太さ10〜20μm、長さ400〜2000μmの長繊
維状結晶が10mg得られた。図1に示す顕微鏡写真の
通り、得られた有機結晶は長方向を磁場方向(図1の上
下方向)として整列しており、磁場配向していることが
分かる。この結晶は60℃までは安定であったが70℃
になると破壊され、白色の固形状集合体となった。な
お、全く同じ操作を磁場のない環境で行ったところ、同
様の長繊維状結晶が得られたが、図2に示す顕微鏡写真
のように生成した結晶は整列しておらず、磁場配向性の
ないものであった。
【0015】実施例2〜4 n-ヘプタンに代えて、n-オクタン、n-ノナン又はn-デカ
ンを等モル用いた以外は実施例1と全く同様にして有機
結晶を製造したところ、同様に磁場配向した太さ10〜
20μm、長さ400〜2000μmの長繊維状結晶各
々10〜20mgが得られた。これらの結晶は60℃ま
では安定であったが、70〜80℃で結晶状態が消失
し、無配向の白色固形状集合物となった。
【0016】実施例5 パルミチン酸ナトリウム 1mg(3.6×10−6
ル)、p-キシレン 70μl(5.7×10−4モル)、
純水 1.0ml(5.5×10−2モル)を、直径12mmの
ガラス瓶中に入れ、75℃に加熱してパルミチン酸ナトリ
ウムを完全に溶解した後、ボルテックスミキサーを用い
て混合した。室温放置後、水表面及び水中に析出してき
た結晶の一部を分取し、純水 1.0mlの入った別の容器
に入れ、10テスラの磁場中に入れ、25℃から60℃
まで昇温し、更に25℃まで降温した。昇温、降温の速
度は、毎分0.1℃とした。更に磁場中で10時間保持
した後、取り出し、実体顕微鏡により観察した。その結
果、容器の底面に太さ10〜20μm、長さ400〜2
000μmの針状結晶2mgが析出した。磁場方向に整
列し、磁場配向した有機結晶であった。この結晶は実施
例1と同様に70℃以上で分解した。なお、全く同じ操
作を磁場のない環境で行ったところ、同様の針状結晶が
得られたが生成した結晶は整列しておらず、磁場配向性
のないものであった。
【0017】実施例6〜11 p-キシレンに代えて、ベンゼン、トルエン、o-キシレ
ン、m-キシレン、エチルベンゼン又はn-ヘプタンを等モ
ル用いた以外は実施例5と全く同様にして有機結晶を製
造したところ、同様に磁場配向した太さ10〜20μ
m、長さ400〜2000μmの針状結晶各々2〜10
mgが得られた。これらの結晶は55〜80℃で結晶状
態が消失した。
【0018】実施例12 ペンタデカン酸ナトリウム 1mg(3.8×10−6
ル)、2,2,4-トリメチルペンタン 80μl(4.9×1
−4モル)、純水 0.8ml(4.4×10−2モル)
を、直径12mmのガラス瓶中に入れ、75℃に加熱してペン
タデカン酸ナトリウムを完全に溶解した後、ボルテック
スミキサーを用いて混合した。室温に戻した後直ちに、
10テスラの磁場中に入れ、25℃から60℃まで昇温
し、更に25℃まで降温した。昇温、降温の速度は、毎
分0.2℃とした。更に磁場中で10時間保持した後、
取り出し、肉眼及び実体顕微鏡により観察した。その結
果、水中に太さ50〜100μm、長さ500〜300
0μmの長繊維状結晶が3次元的に50mg析出した。
磁場方向に整列し、磁場配向した有機結晶であった。こ
の結晶は60℃以上で分解した。なお、同様の操作を磁
場のない環境で行ったところ、同様の長繊維状結晶が得
られたが生成した結晶は整列しておらず、磁場配向性の
ないものであった。
【0019】
【発明の効果】本発明の有機結晶は、炭化水素、カルボ
ン酸金属塩及び水を用いて製造することができ、棒状、
針状、長繊維状などの結晶形とすることができる。ま
た、与える磁場の方向により結晶の成長などの方向を制
御しうる。本発明の有機結晶は表示材料などの用途に利
用しうる。
【図面の簡単な説明】
【図1】実施例1において、磁場中で析出、成長を行っ
て得られた有機結晶の結晶構造を示す実体顕微鏡写真
(対物レンズ 4倍、写真の横幅が実物の2.3mmに
相当)である。
【図2】実施例1において、磁場をかけずに析出、成長
を行って得られた有機結晶の結晶構造を示す実体顕微鏡
写真(対物レンズ 4倍、写真の横幅が実物の2.3m
mに相当)である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 喜久男 茨城県つくば市千現一丁目2番1号 科 学技術庁金属材料技術研究所内 (56)参考文献 特開 平7−49475(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 9/14 C07C 7/20 C07C 15/02 C07C 51/43 C07C 53/126

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 水中での溶解、乳化又は懸濁下におい
    て、脂肪族カルボン酸金属塩と炭化水素とを会合、結晶
    化させたことを特徴とする炭化水素を含む有機結晶。
  2. 【請求項2】 磁場配向していることを特徴とする請求
    項1記載の有機結晶。
  3. 【請求項3】 脂肪族カルボン酸金属塩及び炭化水素を
    水中に溶解、乳化又は懸濁させて、磁場中で結晶化させ
    ることを特徴とする請求項1記載の有機結晶の製造方
    法。
JP24800099A 1999-09-01 1999-09-01 炭化水素を含む有機結晶とその製造方法 Expired - Lifetime JP3336381B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24800099A JP3336381B2 (ja) 1999-09-01 1999-09-01 炭化水素を含む有機結晶とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24800099A JP3336381B2 (ja) 1999-09-01 1999-09-01 炭化水素を含む有機結晶とその製造方法

Publications (2)

Publication Number Publication Date
JP2001072617A JP2001072617A (ja) 2001-03-21
JP3336381B2 true JP3336381B2 (ja) 2002-10-21

Family

ID=17171711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24800099A Expired - Lifetime JP3336381B2 (ja) 1999-09-01 1999-09-01 炭化水素を含む有機結晶とその製造方法

Country Status (1)

Country Link
JP (1) JP3336381B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953742B2 (ja) 2001-03-14 2007-08-08 独立行政法人産業技術総合研究所 気体炭化水素の固定化材とその使用及び炭化水素の固形化方法
US6797846B2 (en) 2001-03-14 2004-09-28 National Institute Of Advanced Industrial Science And Technology Fibrous crystal aggregates, preparation method thereof and use thereof
JP5353852B2 (ja) * 2010-09-28 2013-11-27 コニカミノルタ株式会社 面発光体および面発光体の製造方法

Also Published As

Publication number Publication date
JP2001072617A (ja) 2001-03-21

Similar Documents

Publication Publication Date Title
Fermani et al. Protein crystallization on polymeric film surfaces
Magill et al. Physical Properties of Aromatic Hydrocarbons. II. Solidification Behavior of 1, 3, 5‐Tri‐α‐Naphthylbenzene
Olson et al. Dislocations in molecular crystals
Sazaki et al. Effects of a magnetic field on the nucleation and growth of protein crystals
Kivelson et al. Frustration‐limited clusters in liquids
JP4411078B2 (ja) 半導体液晶組成物及びその製造方法
Estroff et al. An organic hydrogel as a matrix for the growth of calcite crystals
CA1336530C (en) Human serum albumin crystals and method of preparation
Kuznetsov et al. AFM studies of the nucleation and growth mechanisms of macromolecular crystals
Kuznetsov et al. Atomic-force-microscopy studies of phase separations in macromolecular systems
JP3336381B2 (ja) 炭化水素を含む有機結晶とその製造方法
Rong et al. Control of heterogeneous nucleation of lysozyme crystals by using Poly-L-Lysine modified substrate
Yang et al. Transformation between two types of spherulitic growth: tuning the morphology of spherulitic nitroguanidine in a gelatin solution
Koizumi et al. Crystallization technique of high-quality protein crystals controlling surface free energy
Lea et al. Heteroepitaxial growth of a manganese carbonate secondary nano-phase on the (1 0 1̄ 4) surface of calcite in solution
Land et al. Mechanisms of protein and virus crystal growth: an atomic force microscopy study of canavalin and STMV crystallization
Uskoković et al. Uniform particles of pure and silica-coated cholesterol
Tang et al. Effects of the silanized mica surface on protein crystallization
Naka et al. Effect of anionic dendrimers on the crystallization of calcium carbonate in aqueous solution
Xue et al. Effect of Langmuir monolayer of bovine serum albumin protein on the morphology of calcium carbonate
Cölfen Polymer-mediated growth of crystals and mesocrystals
Nanev Recent experimental and theoretical studies on protein crystallization
Fraxedas et al. Dislocation hollow cores observed on surfaces of molecular organic thin films: p-nitrophenyl nitroxyl nitroxide radical
CA1301397C (en) Facilitation of orientation of thermotropic polymers in a magnetic field
McHugh et al. The kinetics and morphology of polyethylene solution crystallization

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3336381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term