JP3334232B2 - Deflection yoke with multi-core parallel conductor and deflection coil of the conductor - Google Patents

Deflection yoke with multi-core parallel conductor and deflection coil of the conductor

Info

Publication number
JP3334232B2
JP3334232B2 JP08799293A JP8799293A JP3334232B2 JP 3334232 B2 JP3334232 B2 JP 3334232B2 JP 08799293 A JP08799293 A JP 08799293A JP 8799293 A JP8799293 A JP 8799293A JP 3334232 B2 JP3334232 B2 JP 3334232B2
Authority
JP
Japan
Prior art keywords
core
conductor
wire
parallel
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08799293A
Other languages
Japanese (ja)
Other versions
JPH06275138A (en
Inventor
博 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP08799293A priority Critical patent/JP3334232B2/en
Publication of JPH06275138A publication Critical patent/JPH06275138A/en
Application granted granted Critical
Publication of JP3334232B2 publication Critical patent/JP3334232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はテレビジョン受像機やデ
ィスプレイ装置等に装着される偏向ヨークに用いられる
多芯平行導線およびその導線の偏向コイルを備えた偏向
ヨークに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-core parallel conductor used for a deflection yoke mounted on a television receiver or a display device, and a deflection yoke provided with a deflection coil of the conductor.

【0002】[0002]

【従来の技術】周知のように、テレビジョン受像機やデ
ィスプレイ装置等の陰極線管に装着される偏向ヨークは
水平偏向コイルと垂直偏向コイルを備えており、陰極線
管の仕様や画面の特性に対応して偏向磁界の分布が設計
段階で設定され、この偏向磁界の分布となるように、図
11に示すようなボビン2のコイル巻き溝5にばらばらの
単線を巻いて偏向コイルのコイル分布を調整していた。
2. Description of the Related Art As is well known, a deflection yoke mounted on a cathode ray tube of a television receiver or a display device is provided with a horizontal deflection coil and a vertical deflection coil, and corresponds to the specifications of the cathode ray tube and the characteristics of a screen. The distribution of the deflection magnetic field is set at the design stage, and the distribution of the deflection magnetic field is
The coil distribution of the deflection coil is adjusted by winding a discrete single wire around the coil winding groove 5 of the bobbin 2 as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図10に
示す如く、前記コイル巻き溝5に捲線11をばらばらの単
線のまま1本〜数本ずつ自動巻線機で巻回する方式は、
捲線11を巻くときに張力の方向が変化する等によって、
捲線11は、ずれて片寄って巻かれたり、捲線11の順番が
入れ換わったりして設計指示通りに巻くことができない
という問題が生じ、しかも量産される各偏向コイルの捲
線11の片寄りの状態も個々の製品毎にばらつきを生じ、
偏向磁界を精度よく設定することができないという問題
があった。
[SUMMARY OF THE INVENTION However, as shown in FIG. 10, a method of winding an automatic winding machine one by one - this number remains solid wire winding 11 Woba Rabara the coil winding grooves 5,
Due to the change in the direction of tension when winding the winding 11,
There is a problem that the winding 11 is displaced and shifted, or the order of the windings 11 is interchanged, so that the winding cannot be performed as specified by design, and furthermore, the deviation of the winding 11 of each deflection coil mass-produced. Also vary from product to product,
There was a problem that the deflection magnetic field could not be set accurately.

【0004】本出願人はこのような問題を解決するため
に、従来の1本、1本の単線のコイル導線に替えて、図
9に示すようなリボン線等の多芯平行導線を用いて形成
する偏向コイルを提案している。
In order to solve such a problem, the present applicant uses a multi-core parallel conductor such as a ribbon wire as shown in FIG. 9 in place of the conventional single coil conductor. A deflection coil to be formed is proposed.

【0005】前記多芯平行導線15としては、図9の
(a)に示すように、絶縁層4で被覆された銅やアルミ
ニウム等の導体線を芯線10として接着剤6を用いて平行
に配列して接着したものや、同図の(b)に示すよう
に、樹脂等の絶縁シート7の片面に導体線が絶縁層4で
被覆された芯線10を複数本平行に配列して接着剤6を用
いて接着したものや、同図の(c)に示すように、絶縁
層4と接着層9が形成された複数の芯線10を平行に配列
して接着したもの等が使用される。
[0005] As the multi-core parallel conductor 15, as shown in FIG. 9 (a), a conductor such as copper or aluminum covered with an insulating layer 4 is arranged in parallel using an adhesive 6 as a core 10. As shown in FIG. 2B, a plurality of core wires 10 in which conductor wires are covered with an insulating layer 4 on one surface of an insulating sheet 7 made of resin or the like are arranged in parallel as shown in FIG. And a plurality of core wires 10 on which an insulating layer 4 and an adhesive layer 9 are formed are arranged and adhered in parallel, as shown in FIG.

【0006】上記多芯平行導線15の芯線10はそれぞれの
多芯平行導線15内で順序よく固定されており、したがっ
て、芯線10はそれぞれの多芯平行導線15内で線がずれた
り、また、線の順番が入れ換わったりすることがないの
で、これらの多芯平行導線15を用い、この多芯平行導線
15をコイル巻き溝5に巻回することにより前記芯線10の
大幅なずれ等を解消し得る偏向コイルの作製が期待でき
る。
The core wires 10 of the multi-core parallel conductors 15 are fixed in order within the respective multi-core parallel conductors 15, so that the core wires 10 are displaced within the respective multi-core parallel conductors 15, or Since the order of the multi-core parallel conductors is not changed, these multi-core parallel conductors 15 are used.
15 Preparation of deflection coils that can eliminate a significant deviation or the like of the core wire 10 by winding the coil winding groove 5 can be expected.

【0007】ところで、図8の(a)に示すような複数
の芯線10を連接して形成した多芯平行導線15に交流を通
電すると、各芯線10には磁界が発生するが、磁界が他の
芯線10を横切ると通電芯線10のインピーダンスが上昇
、しかも周波数が高いとますます上昇する。このと
き、多芯平行導線15の左側の芯線10をNo.1とし、
側の芯線10をNo.nとすると、中央側に位置する
電芯線10から発生した磁界は両側の近接芯線を順々に
横切るので、近接芯線の数に対応して中央位置の通電芯
線10はインピーダンスが増大する。一方、左側No.
1の芯線の場合には磁界を横切る芯線は右側の芯線のみ
となり、同様に右側No.nの芯線の場合は磁界を横
切る芯線は左側の芯線のみのため、左右端側の芯線はイ
ンピーダンスの上昇が小さい。そのため、中央側の芯線
10に流れる電流は小となり、左右側の芯線10に流れる
電流は大となって図8の(c)に示すように、多芯平
行導線の電流分布パターンは左右のバランスが保たれ実
線Cのカーブを描く。
By the way, a plurality as shown in FIG. 8 (a)
When an alternating current is applied to a multi-core parallel conductor 15 formed by connecting the core wires 10 of each other, a magnetic field is generated in each core wire 10, but when the magnetic field crosses the other core wires 10, the impedance of the conductive core wire 10 increases.
And, yet more and more increases when the high frequency. At this time, the core wire 10 of the left end side of the multicore parallel conductors 15 No. 1 and
No. the core wire 10 of the right end side When n, since the magnetic field generated from <br/> through Denshin line 10 located in the center side across the sides of the adjacent core wire in turn, passing Denshin center position corresponding to the number of adjacent core <br Line 10 has an increased impedance. On the other hand, the left end No.
Core across a magnetic field is only the right of the core wire in the case of 1 of the core, likewise right end No. In the case of n core wires, since only the left core wire crosses the magnetic field, the impedance of the left and right end core wires is small. Therefore, the center core wire
Current flowing through the 10 small, and the current flowing through the core wire 10 of the left and right end side becomes large, as shown in (c) of FIG. 8, a current distribution pattern of multi-core parallel conductors left-right balance is kept solid Draw the curve of C.

【0008】また、同時に各芯線10には磁界によって渦
電流が発生し、また、各芯線10は流れる電流により銅
損が発生する。この銅損Pは P=(i +i +・・・・・i )R で表される。ここに、Rは各芯線の抵抗値、i ,i
・・・・・iはNo.1,No.2・・・・・N
o.nの各芯線に流れる電流値を示す。ところが、図8
の(c)のように、電流分布が一様にならない状態で
は、均一の電流分布のときと比較して銅損Pは電流の二
の大きさで影響を受けて大幅に増大し、この銅損によ
って通電エネルギー損が発生する。また、各芯線10への
磁界通過による渦電流の発生によって渦電力損を生ず
る。このように、通電導体のインピーダンスの増加によ
る電流のアンバランスから銅損増大となる通電エネルギ
ー損と、渦電流による渦電力損とを合わせた近接効果の
影響が非常に大となる。
Further, an eddy current is generated by the magnetic field in the core wires 10 at the same time, also, the copper loss is generated by current flowing in each conductor 10. The copper loss P is represented by P = (i 1 2 + i 2 2 + ····· i n 2) R. Here, R is the resistance value of each core wire, i 1 , i
2 ····· i n is No. 1, No. 2 ... N
o. The value of the current flowing through each core wire of n is shown. However, FIG.
(C), when the current distribution is not uniform, the copper loss P is greatly affected by the magnitude of the square of the current and greatly increases as compared with the case of the uniform current distribution. The conduction energy loss occurs due to the loss. In addition, eddy current loss occurs due to generation of eddy current due to passage of a magnetic field through each core wire 10. As described above, the influence of the proximity effect, which is a combination of the energization energy loss that increases the copper loss due to the current imbalance due to the increase in the impedance of the current-carrying conductor and the eddy power loss caused by the eddy current, becomes very large.

【0009】ところで、図5に示すように、ボビン2
A,2Bのコイル巻き溝5内に多芯平行導線15を巻回し
た場合には、この多芯平行導線に通電すると、窓側のN
o.1の芯線10の外側(窓側)には、磁界を横切る芯線
がないため、窓側(No.1)における電芯線10のイ
ンピーダンスの上昇は少い。一方、セパレート側(N
o.n側)の芯線10では半割り状のボビン2B側の芯線
10がセパレート16A,16Bを挟んで積層されているた
め、このボビン2A側のNo.n側の芯線10の磁界はボ
ビン2B側の芯線10ボビン2A側の芯線10を横切る。
したがって、No.n側の芯線10は窓側No.1側の芯
線10に比べると磁界が横切る芯線がボビン2B側の芯線
10を横切る分だけ多くなり、その分インピーダンスは窓
側芯線10よりも大きくなる。したがって、図8の(b)
に示すように、窓側の芯線10には大きな電流が流れ、セ
パレート側の芯線10にはインピーダンスが増えた分だけ
電流は少くなり、中央側芯線10にはインピーダンスの増
大により少い電流が流れて電流分布は不均一、かつ、ア
ンバランスの実線Aのカーブを描くようになり、一点破
Bのような均一な電流分布は期待できない。
By the way, as shown in FIG.
When the multi-core parallel conductor 15 is wound in the coil winding grooves 5 of A and 2B, when the multi-core parallel conductor is energized, N
o. On the outside of the first core 10 (window side), since there is no core to cross the magnetic field, increase in the impedance of the passing Denshin line 10 in window side (No.1) is small. On the other hand, on the separate side (N
o. The core wire 10 on the n-side) bobbin 2B side is a half-split type
No. 10 is stacked with the separates 16A and 16B interposed therebetween. The magnetic field of the core wire 10 on the n side crosses the core wire 10 on the bobbin 2B side and the core wire 10 on the bobbin 2A side.
Therefore, No. The core wire 10 on the n side is the window side No. The core wire that the magnetic field crosses compared to the core wire 10 on the one side is the core wire on the bobbin 2B side
It increases by the amount that crosses 10, and the impedance becomes larger than that of the window-side core wire 10 by that amount. Therefore, FIG.
As shown in the figure, a large current flows through the core wire 10 on the window side, the current decreases by an amount corresponding to the increase in the impedance on the core wire 10 on the separate side, and a small current flows through the core wire 10 on the center side due to the increase in the impedance. current distribution uneven and, to paint the curve indicated by the solid line a of imbalance, broken one point
A uniform current distribution like the line B cannot be expected.

【0010】このように、電流分布のアンバランスから
銅損Pが増大するため、この多芯平行導線15、特に、窓
側芯線が発熱し易く、温度上昇するという問題があり、
同時に電力損失も大となる。また、図6に示すように、
マルチスキャンタイプのディスプレイ装置において、水
平走査周波数を例えば31.5KHz から64KHz に変えると、
窓側の芯線に流れる電流はさらに増大して電流分布のパ
ターンがさらにアンバランスとなって変化するので、
磁界分布が変化して陰極線管の画面のコンバージェン
スが変化するという問題がある。そのため、マルチスキ
ャンタイプのディスプレイ装置では、良質の画像が得ら
れないという問題があった。
As described above, since the copper loss P increases due to the imbalance of the current distribution, there is a problem that the multi-core parallel conductor 15, particularly the window-side core, easily generates heat and the temperature rises.
At the same time, the power loss increases. Also, as shown in FIG.
In a multi-scan type display device, changing the horizontal scanning frequency from 31.5KHz to 64KHz, for example,
Since the current flowing through the window side of the core wire is further increased varies a further imbalance pattern of the current distribution, polarized
There is a problem that the convergence of the screen of the cathode ray tube changes due to the change in the distribution of the directional magnetic field. Therefore, there is a problem that a high-quality image cannot be obtained with a multi-scan type display device.

【0011】本発明は上記課題を解決するためになされ
たものであり、その目的は、偏向ヨークに電流を流した
ときに、多芯平行導線に流れる電流の近接効果による不
均一化やアンバランスを解消して発熱や電力損失を抑制
することができ、かつ、水平走査周波数が変化するマル
チスキャンタイプにおいても陰極線管の画面のコンバー
ジェンスに変化のない多芯平行導線およびその導線の偏
向コイルを備えた偏向ヨークを提供するものである。
[0011] The present invention has been made to solve the above problems, when current flows in the deflection yoke, uneven and Ann due to the proximity effect of the current flowing through the multi-core parallel guide lines A multi-core parallel conductor and a deflecting coil for that conductor that can eliminate the balance to suppress heat generation and power loss, and that does not change the convergence of the screen of the cathode ray tube even in the multi-scan type where the horizontal scanning frequency changes. And a deflection yoke having the same.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するために次のように構成されている。すなわち、本発
明の多芯平行導線は複数の導体線を絶縁層を介して平
行に連接してなる帯状の多芯平行導線であって、該多芯
平行導線の連続する芯線配列の中央部に位置する芯線を
不導体線に置き換えたことを特徴として構成されてい
る。
The present invention is configured as follows to achieve the above object. That is, the multi-core parallel conductor of the present invention is a strip-shaped multi-core parallel conductor formed by connecting a plurality of conductor wires in parallel via an insulating layer, and a central portion of a continuous core array of the multi-core parallel conductor. and it is configured the core wire positioned as characterized by replacing the non-conductive line.

【0013】また、本発明の偏向ヨークは、水平偏向コ
イルと垂直偏向コイルを備えた偏向ヨークであって、水
平偏向コイルと垂直偏向コイルの一方又は両方を前記多
芯平行導線を巻回して形成したことを特徴として構成さ
れている。
The deflection yoke of the present invention is a deflection yoke provided with a horizontal deflection coil and a vertical deflection coil, wherein one or both of the horizontal deflection coil and the vertical deflection coil are formed by winding the multi-core parallel conductor . It is characterized by having done.

【0014】[0014]

【作用】多芯平行導線を巻回して偏向コイルを形成し、
この偏向コイルを組立てた偏向ヨークに偏向電流を流し
たときに、前記多芯平行導線の連続する芯線配列の中央
部に位置する芯線を不導体線に置き換えた多芯平行導線
によって近接効果を抑制し電流分布パターンを平均化す
る。これにより、多芯平行導線の発熱を抑えることがで
きる。また、偏向電流の周波数を切り換えても陰極線管
の画面におけるコンバージェンスの変化を防止すること
ができる。
[Action] A deflection coil is formed by winding a multi-core parallel conductor,
When a deflecting current is applied to the deflecting yoke assembled with the deflecting coil, the center of the continuous core array of the multi-core parallel conductor is
Averaging the suppressing current distribution pattern proximity effect by the core wire located in a multi-core parallel conductors <br/> replaced with non-conductive line section. Thereby, the heat generation of the multi-core parallel conductive wire can be suppressed. Further, even if the frequency of the deflection current is switched, a change in convergence on the screen of the cathode ray tube can be prevented.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。なお、本実施例の説明において、従来例と同一の
名称部分には同一符号を付し、その詳細な重複説明は省
略する。図1には本実施例の偏向ヨークに係わる偏向コ
イルの多芯平行導線が示されている。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same names as those in the conventional example, and detailed description thereof will be omitted. FIG. 1 shows a multifilament parallel conducting wire of a deflection coil relating to the deflection yoke of the present embodiment.

【0016】前記本実施例の多芯平行導線20は図1に
示すように、絶縁層4で被覆された銅やアルミニウム等
の導体線を芯線10として接着層(ホットメルト層)9を
用いて平行に配列して接着し、この帯状導体線20の幅方
向の中央部14に位置する2個の芯10を、例えば、プラ
スチック製の釣糸からなる2個の不導体線18で置き換え
たものである。
The multi-core parallel conductor 20 of the present embodiment is shown in FIG.
As shown, the coated copper or adhesive layer as the core wire 10 a conductor wire such as aluminum with a (hot melt layer) 9 is adhered are arranged in parallel, the width of the strip conductor lines 20 in the insulating layer 4 two core lines 10 situated in the direction of the central portion 14, for example, is replaced by two electrically non body line 18 consisting of plastic fishing line.

【0017】本実施例の偏向ヨークは、水平偏向コイル
と垂直偏向コイルを備えており、水平偏向コイルと垂直
偏向コイルの一方又は両方は、図1のような多芯平行導
線20を図4に示すボビン2A,2Bのコイル巻き溝5
回して形成したものである。
The deflection yoke of this embodiment has a horizontal deflection coil and a vertical deflection coil, and one or both of the horizontal deflection coil and the vertical deflection coil are provided with a multi-core parallel conductor 20 as shown in FIG. Shown in the coil winding groove 5 of the bobbins 2A and 2B
It is formed by winding .

【0018】この偏向コイルを組立てた偏向ヨークに
電流を流したときに、芯線10の磁界は多芯平行導線20
の中央側14に設けた不導体線18を横切るが、この線18は
不導体のために不導体線18に接する芯線10側では、近接
効果が減少する。これにより、インピーダンスの増加が
少く、かつ、銅損も小となって図3に示すように、こ
の多芯平行導線20全体に流れるトータル電流は一定の
ため、中央部側で近接効果が減少した分だけ多く流れ、
窓側およびセパレート側に流れる電流はその分減少して
電流分布のパターンは実線Eのカーブを描いて、電流分
布が均一化される。
[0018] The polarized to the deflection yoke assembly the deflection coil
When a directional current is applied, the magnetic field of the core wire 10
Crosses the central side 14 nonconducting body line 18 provided on it, the line 18 This is the core 10 side in contact with the electrically non body line 18 for nonconductor, the proximity effect is reduced. Thus, an increase in impedance is reduced, and the copper loss also becomes small, as shown in Figure 3, for the amount of total current is constant flowing throughout the multicore parallel conductors 20, near the central portion side effects Flows more by the reduced amount,
The current flowing on the window side and the separate side is reduced by that amount, and the current distribution pattern draws the curve of the solid line E, and the current distribution is made uniform.

【0019】本実施例によれば、多芯平行導線の幅方向
の中央部14に合成樹脂製の釣糸等の不導体線18を設けた
多芯平行導線20を形成し、この多芯平行導線20をコイル
巻溝5に巻いて偏向コイルを形成したので、この偏向コ
イルを組立てた偏向ヨークに電流を流したときに、不導
体芯線18によって、近接効果が減少し、多芯平行導線20
電流分布が均一化される。その結果、銅損が減少し、
多芯平行導線20の温度上昇および電力損失を抑制するこ
とができる。
According to this embodiment, the multicore parallel conductors 20 having a nonconducting material line 18 of the fishing line, such as the central portion 14 in made of a synthetic resin in the width direction of the multi-wire parallel conductors formed, parallel the multicore Since the conducting wire 20 is wound around the coil winding groove 5 to form a deflection coil, the proximity effect is reduced by the non -conductor core wire 18 when a current flows through the deflection yoke in which the deflection coil is assembled.
Current distribution is made uniform. As a result, copper loss is reduced,
The temperature rise and the power loss of the multi-core parallel conducting wire 20 can be suppressed.

【0020】また、マルチスキャンタイプのディスプレ
イ装置において、水平走査周波数が変化しても、不導
18によって多芯平行導線20の近接効果を減少すること
ができるので、多芯平行導線20の電流分布パターン
が少なくなる。したがって、多芯平行導線20の近接効
果による偏向磁界分布の変化が認められないため、陰極
線管の画面におけるコンバージェンスの変化を抑制する
ことができる。これにより、マルチスキャンタイプのデ
ィスプレイ装置でも、良質の画像を得ることができる。
Further, in the multi-scan type display device, even after changing the horizontal scanning frequency, nonconducting body
It is possible to reduce the proximity effects of multi-core parallel conductors 20 by line 18, varying <br/> of current distribution patterns of the multi-wire parallel conductors 20 is reduced. Therefore, the proximity effect of the multi-core parallel conductor 20
Since the change in the deflection magnetic field distribution due to the result is not recognized, the change in the convergence on the screen of the cathode ray tube can be suppressed. Thus, a high-quality image can be obtained even with a multi-scan type display device.

【0021】さらに、多芯平行導線に流れる電流を均
一化する方法として、例えば、図7に示すように巻線
途中に中間タップ等を設けて電流量が多窓側やセパレ
ート側の芯線を電流量が少ない中央側の芯線に巻線途中
で接続し、芯線の配列順番を入れ換えて偏向コイルを形
成することにより、多芯平行導線の各芯線10に流れる電
流量を均一化することが考えられるが、この場合、芯線
の接続作業が極めて面倒であり、作業性が悪いという問
題がある。これに対し、本実施例では、多芯平行導線20
を提案例と同様に巻線機によって巻回するだけでよいの
で、巻線途中で面倒な接続作業を行う必要がなく、巻線
作業が容易であり巻線時間を短縮することができる。
Furthermore, as a method of equalizing the amount of current flowing through the multi-core parallel guide lines, for example, as shown in FIG. 7, the winding middle intermediate tap or the like of the window side and separate side current amount is not multi provided connect the middle winding the core wire to the core of the center-side current amount is not less, by forming the deflection coils by interchanging the sequence order of the core wire, to equalize the amount of current flowing through each core 10 of the multi-core parallel conductors However, in this case, there is a problem that the work of connecting the core wires is extremely troublesome and the workability is poor. In contrast, in the present embodiment, the multi-core parallel conductor 20
Since the proposed examples and need only wound by the likewise winding machine, with no need to perform a troublesome connecting work middle winding, can be winding work is shortened easy and winding time .

【0022】さらにまた、多芯平行導線の導体幅を狭く
して芯線10の線径を細くすれば、近接効果は減少できる
が、この場合、導体幅を狭くした分および線径を細くし
た分巻線時間が増加し、インダクタンスLと抵抗Rとの
比L/Rが小さくなって偏向コイル性能が低下する。
実施例では、不導体線18を多芯平行導線20の中央側に配
設することにより、多芯平行導線20の各芯線10の線径を
細くすることなく、多芯平行導線の導体幅を狭くした状
態と等価となるので、L/Rの減少も少なく、巻線時間
の増加もない。また、コイル巻き鍔3の厚さはボビンの
成形条件により0.8 mm厚以下にできないので、コイル巻
き溝幅を狭くすると線積率(設定コイル巻き溝の総体積
に対する積層コイルの総体積との比)が低下するが、本
実施例では、ボビンのコイル巻き溝に提案例の多芯平行
導線15の幅と同幅の多芯平行導線20を巻くので、多芯平
行導線20の線積率の低下の心配はない。
Furthermore, the proximity effect can be reduced by reducing the conductor width of the multi-core parallel conductor to reduce the wire diameter of the core wire 10, but in this case, the conductor width is reduced and the wire diameter is reduced. increased winding time, you drop deflection coil performance ratio L / R between inductance L and resistance R is decreased. In the present embodiment, by disposing the non-conductive wire 18 at the center of the multi-core parallel conductor 20, the conductor width of the multi-core parallel conductor 20 can be reduced without reducing the wire diameter of each core 10 of the multi-core parallel conductor 20. Is equivalent to a state where N is reduced, so that L / R does not decrease much and the winding time does not increase. Further, the thickness of the coil winding collar 3 cannot be reduced to 0.8 mm or less due to the bobbin molding conditions. Therefore, when the coil winding groove width is reduced, the linear area ratio (the ratio of the total volume of the laminated coil to the total volume of the set coil winding groove) is reduced. In this embodiment, since the multi-core parallel conductor 20 having the same width as the width of the multi-core parallel conductor 15 of the proposed example is wound around the coil winding groove of the bobbin, the area factor of the multi-core parallel conductor 20 is reduced. Don't worry about the drop.

【0023】さらにまた、不導体線18として一般に広く
使用されている釣糸を用いることができるので、不導体
線18は安価に入手できる。この場合、不導体線18は線間
接着層(ホットメルト)9の塗布温度(溶融温度)より
も溶融温度の高い材料を用いることが必要である。
Furthermore, since the fishing line generally used widely can be used as the non-conductive wire 18, the non-conductive wire 18 can be obtained at low cost. In this case, it is necessary to use a material having a melting temperature higher than the application temperature (melting temperature) of the non-conductive wire 18 for the inter-layer adhesive layer (hot melt) 9.

【0024】なお、本発明は上記実施例限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例では多芯平行導線20の中央部14に2個の不導体線
18を設けたが、この不導体線18は1個でもよく配設数は
1個以上であれば、その数は問わない。また、図1に示
すように、例えば、不導体線18の配設位置を23Aや24B
のように外側芯線と中央部との中間位置に追加して設け
てもよく、必要に応じて配設位置を設定すればよい。
The present invention is not limited to the above-described embodiment , but can adopt various embodiments. For example, in the above embodiment, two non-conductive wires
Although the number 18 is provided, the number of the nonconductive wires 18 may be one as long as the number is one or more. Further, as shown in FIG. 1, for example, the disposition position of the nonconductive wire 18 is changed to 23A or 24B.
May be additionally provided at an intermediate position between the outer core wire and the central portion, and the arrangement position may be set as needed.

【0025】また、上記実施例では、多芯平行導線とし
て図9の(c)の形態のものを用いたが、図9の(a)
や(b)の形態のものでもよく、その形態は問わない。
Further, in the above embodiment, the multi-core parallel conductor having the form shown in FIG. 9C was used.
And (b), and the form is not limited.

【0026】さらに、上記実施例では、不導体線18とし
て釣糸等の断面が円形形状のものを用いたが、図2の
(b)に示すように、波形形状の不導体21を用いてもよ
く、また、不導体としての形状は図2の(c)に示す
ように、長方形の不導体22でもよく、あるいは三角形や
四角形等の不導体22でもよく、その形状は問わない。な
お、コイル巻き溝に多芯平行導線20を巻くときに、コ
イル巻き溝5幅と多芯平行導線20幅との間には多芯平行
導線20が巻き易いように隙間を持たせた設計をしている
ので、隙間内で多芯平行導線の各層がずれを生じたまま
の状態で積層されて巻回される虞があるが、図2の
(b)の多芯平行導線20を巻く場合、波形形状の不導体
21に復元弾力性(ばね性)をもたせることにより、波形
形状の不導体21の弾性復元力によって多芯平行導線20の
両端側芯線がコイル巻き溝5の鍔面に当接し、ずれを生
ずることなく精度よく巻くことができる。
Further, in the above-described embodiment, the non-conductor wire 18 having a circular cross section, such as a fishing line, is used. However, as shown in FIG. 2B , a corrugated non-conductor 21 may be used. well, also, the shape of a non-conductor is shown in FIG. 2 (c)
As described above, a rectangular non-conductor 22 or a triangular or quadrangular non-conductor 22 may be used, and the shape is not limited. Note that when winding the multicore parallel conductors 20 to the coil-winding groove 5, gave a clearance to facilitate multi-core parallel conductors 20 are wound between the coiling groove 5 width and multi-core parallel conductor 20 width design Therefore, there is a risk that the layers of the multi-core parallel conductor are stacked and wound in a state where the layers are displaced within the gap, but the multi-core parallel conductor 20 shown in FIG. In case, non-conductor of corrugated shape
By providing the elasticity (springiness) of the elastic member 21, the core wires at both ends of the multi-core parallel conductive wire 20 abut against the flange surface of the coil winding groove 5 due to the elastic restoring force of the corrugated non-conductor 21, causing a displacement. It can be wound with high accuracy.

【0027】さらにまた、上記実施例では、多芯平行導
線20を偏向ヨークに用いたが、本発明の多芯平行導線20
は偏向ヨークに限定されることはなく、例えば、モータ
等の巻線として用いてもよく、その用途は問わない。
[0027] Furthermore, in the above embodiment, using a multi-wire parallel conductors 20 to the deflection yoke, multicore parallel conductors 20 of the present invention
Is not limited to a deflection yoke, and may be used, for example, as a winding of a motor or the like.

【0028】さらにまた、上記実施例では、本発明の多
芯平行導線20をボビン2のコイル巻き溝5に巻回して偏
向コイルを形成したが、この多芯平行導線20を金型の
枠に巻いて偏向コイルを形成してもよい。この場合には
巻回終了後、偏向コイルを金型から離型し、偏向ヨーク
のボビンに組み込むことになる。
Furthermore, in the above embodiment, the multifilamentary parallel conductor 20 of the present invention is wound around the coil winding groove 5 of the bobbin 2 to form a deflection coil .
The deflection coil may be formed by winding around a frame . In this case, after the winding is completed, the deflection coil is released from the mold and incorporated into the bobbin of the deflection yoke.

【0029】[0029]

【発明の効果】本発明によれば、多芯平行導線は連続す
る芯線配列の中央部に位置する芯線を不導体線に置き換
えて構成したので、不導体線を設けたことによって多芯
平行導線の近接効果を減少させ、多芯平行導線の流分
布パターンを均一化することができる。これにより、多
芯平行導線の温度上昇および電力損失を抑制することが
可能となる。また、この多芯平行導線を巻回して偏向コ
イルを形成し、この偏向コイルを用いて偏向ヨークを組
立てたときには、多芯平行導線の各芯線に流れる電流量
を均一化することができる。
According to the present invention, the multifilamentary parallel conductor is a continuous conductor .
Replace the core wire located at the center of the core array with a non-conductive wire
Ete since the construction, multi-core depending on the provision of the non-conductor wire
Reduces the proximity effect of the parallel conductors, it is possible to equalize the current content <br/> distribution pattern of the multi-wire parallel conductors. Thereby, it becomes possible to suppress the temperature rise and the power loss of the multi-core parallel conducting wire. The multi-core parallel conductor is wound around the deflection core.
A deflection yoke using this deflection coil.
When standing, the amount of current flowing through each core of the multi-core parallel conductor
Can be made uniform.

【0030】また、マルチスキャンタイプのディスプレ
イ装置において、水平走査周波数が変化しても、不導体
線によって多芯平行導線の近接効果を減少することがで
きるので、多芯平行導線の電流分布パターンは変化する
ことがなく、したがって、磁界分布も変化しないため、
陰極線管の画面のコンバージェンスを良好に維持する
とができる。これにより、マルチスキャンタイプのディ
スプレイ装置でも良質の画像を得ることができる。
Further, in the multi-scan type display device, even after changing the horizontal scanning frequency, it is possible to reduce the proximity effects of multi-core parallel conductors by non-conductor wire, the multicore parallel conductors current distribution Since the pattern does not change, and therefore the magnetic field distribution does not change,
It is the this <br/> to maintain good convergence of the cathode ray tube screen. Thus, a high-quality image can be obtained even with a multi-scan type display device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多芯平行導線の一実施例を示す
明図である。
FIG. 1 is an explanatory view showing one embodiment of a multi-core parallel conducting wire according to the present invention .

【図2】本発明に係る多芯平行導線の他の実施例を示す
説明図である。
FIG. 2 is an explanatory view showing another embodiment of the multi- core parallel conducting wire according to the present invention .

【図3】図1に示す多芯平行導線に流れる電流分布パタ
ーンの説明図である。
3 is an explanatory diagram of the current distribution pattern flowing through the multi-core parallel guide lines shown in FIG.

【図4】図1に示す多芯平行導線をボビンのコイル巻き
溝に巻いた状態の説明図である。
Multicore parallel conductors shown in FIG. 1; FIG illustrates a state wound on coils wound grooves of the bobbin.

【図5】提案例の多芯平行導線をボビンのコイル巻き溝
に巻回した状態の説明図である。
[5] The multi-wire parallel conductors of Proposed Example illustrates a state wound into coils wound grooves of the bobbin.

【図6】水平走査周波数を変化したときに提案例の多芯
平行導線に流れる電流分布パターンの説明図である。
FIG. 6 is an explanatory diagram of a distribution pattern of a current flowing through a multi-core parallel conductive wire of the proposed example when the horizontal scanning frequency is changed.

【図7】多芯平行導線のコイル巻き途中で芯線の巻線順
番を入れ換えた状態の説明図である。
FIG. 7 is an explanatory diagram of a state in which the winding order of the core wires is changed during the winding of the coil of the multi-core parallel conductive wire.

【図8】図中の(a)は提案例の多芯平行導線の説明
図、(b)は図5の状態の多芯平行導線に交流を通電し
たときの電流分布パターンの説明図、(c)は提案例の
多芯平行導線に交流を通電たときの電流分布パターン
説明図である。
8 (a) in the figure description of multi-core parallel conductors proposed examples
FIG. 5B shows a state in which an alternating current is applied to the multi-core parallel conductor in the state of FIG.
Explanatory drawing of the current distribution pattern when (c) is
It is explanatory drawing of the electric current distribution pattern when alternating current is supplied to a multifilament parallel conducting wire .

【図9】多芯平行芯線の各種形態の説明図である。FIG. 9 is an explanatory diagram of various forms of a multi-core parallel core wire.

【図10】従来の偏向コイルのコイル巻き状態を示す一
部断面図である。
FIG. 10 is a diagram illustrating a coil winding state of a conventional deflection coil.
It is a fragmentary sectional view .

【図11】従来の偏向コイルに用いるボビン一例を示
す斜視図である。
[11] An example of a bobbin used in a conventional deflection coil shown
FIG .

【符号の説明】[Explanation of symbols]

2 ボビン 5 コイル巻き溝 10 芯線 15,20 多芯平行導線 18 不導体線2 Bobbin 5 Coil winding groove 10 Core wire 15 , 20 Multi-core parallel conductor 18 Non-conductor wire

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の導体線を絶縁層を介して平行に連
接してなる帯状の多芯平行導線であって、該多芯平行導
線の連続する芯線配列の中央部に位置する芯線を不導体
線に置き換えたことを特徴とする多芯平行導線。
1. A strip-shaped multi-core parallel conductor formed by connecting a plurality of conductor wires in parallel via an insulating layer, wherein a core located at the center of a continuous core array of the multi-core parallel conductor is not connected. A multi-core parallel conductor characterized by being replaced with a conductor wire.
【請求項2】 水平偏向コイルと垂直偏向コイルを備え
た偏向ヨークにおいて、水平偏向コイルと垂直偏向コイ
ルの一方又は両方を請求項1記載の多芯平行導線を巻
して形成したことを特徴とする偏向ヨーク。
2. A deflection yoke comprising a horizontal deflection coil and a vertical deflection coil, forms one or multi-core parallel conductors of both claim 1, wherein the horizontal deflection coil and the vertical deflection coil by <br/> winding A deflection yoke, characterized in that:
JP08799293A 1993-03-22 1993-03-22 Deflection yoke with multi-core parallel conductor and deflection coil of the conductor Expired - Fee Related JP3334232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08799293A JP3334232B2 (en) 1993-03-22 1993-03-22 Deflection yoke with multi-core parallel conductor and deflection coil of the conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08799293A JP3334232B2 (en) 1993-03-22 1993-03-22 Deflection yoke with multi-core parallel conductor and deflection coil of the conductor

Publications (2)

Publication Number Publication Date
JPH06275138A JPH06275138A (en) 1994-09-30
JP3334232B2 true JP3334232B2 (en) 2002-10-15

Family

ID=13930310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08799293A Expired - Fee Related JP3334232B2 (en) 1993-03-22 1993-03-22 Deflection yoke with multi-core parallel conductor and deflection coil of the conductor

Country Status (1)

Country Link
JP (1) JP3334232B2 (en)

Also Published As

Publication number Publication date
JPH06275138A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
JP5393097B2 (en) Alpha winding coil
US5225802A (en) Low loss spiders
JP3334232B2 (en) Deflection yoke with multi-core parallel conductor and deflection coil of the conductor
JP3198668B2 (en) Multi-core parallel conductor
EP0566303B1 (en) Fabrication method of a deflection coil
US4435664A (en) Magnetic interpole apparatus for improving commutation characteristics of a dynamoelectric machine
US5446432A (en) Saddle type deflection coil
KR102210425B1 (en) Transformer assembly and method for assembling the same
US4859978A (en) High-voltage windings for shell-form power transformers
JPS62274535A (en) Deflection yoke
JP2897544B2 (en) Deflection yoke
JPH06162961A (en) Deflection yoke
JPH06243799A (en) Deflecting yoke
JP3355670B2 (en) Deflection yoke and method of adjusting distribution of deflection magnetic field
JPH08185813A (en) Deflection yoke
JP3109241B2 (en) Deflection coil and method of manufacturing the same
JP4617560B2 (en) Static induction appliance and method for manufacturing the same
JP3117741B2 (en) Method of manufacturing deflection yoke coil
JPS6132335A (en) Deflection yoke
KR20220011160A (en) solenoid coil
JPH06121182A (en) Deflection coil
JPH081789B2 (en) Deflection yoke
KR100549428B1 (en) Energy resonance induction control apparatus and energy resonance induction control system
JPH07114537B2 (en) Field pole of rotating electrical equipment and field pole winding device
JPH08162044A (en) Deflection yoke

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees