JP4617560B2 - Static induction appliance and method for manufacturing the same - Google Patents

Static induction appliance and method for manufacturing the same Download PDF

Info

Publication number
JP4617560B2
JP4617560B2 JP2000331843A JP2000331843A JP4617560B2 JP 4617560 B2 JP4617560 B2 JP 4617560B2 JP 2000331843 A JP2000331843 A JP 2000331843A JP 2000331843 A JP2000331843 A JP 2000331843A JP 4617560 B2 JP4617560 B2 JP 4617560B2
Authority
JP
Japan
Prior art keywords
winding
secondary winding
direct
cylindrical
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000331843A
Other languages
Japanese (ja)
Other versions
JP2002141233A (en
Inventor
政芳 伊藤
正明 高坂
堅司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2000331843A priority Critical patent/JP4617560B2/en
Publication of JP2002141233A publication Critical patent/JP2002141233A/en
Application granted granted Critical
Publication of JP4617560B2 publication Critical patent/JP4617560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、大電流を出力する工業用の静止誘導電器に関し、特に、製作工数の少ない静止誘導電器に関する。
【0002】
【従来の技術】
図10は、従来の静止誘導電器の巻線結線図である。静止誘導電器が主変圧器1と直列変圧器2とで構成されている。主変圧器1は、鉄心3に主変1次巻線4と主変2次巻線2とタップ巻線6とが巻回されてなり、直列変圧器2はもう一つの鉄心8に直変1次巻線7と直変2次巻線9とが巻回されている。主変2次巻線5と直変2次巻線9とは直列接続され、直変1次巻線7の両端にタップ巻線6が並列接続されている。
【0003】
図10は、例えば電気炉用の変圧器など大電流を出力する工業用の静止誘導電器の巻線結線図であり、電圧の入力端U,Xが主変1次巻線4の両端であり、電圧の出力端u,xが主変2次巻線5と直変2次巻線9との直列回路の両端である。出力端u,xの電圧調整は、タップ巻線6のタップ位置を選択することによって行われる。すなわち、タップ巻線6のタップ位置の選択によって直変1次巻線7の励磁電圧が調整されるので、それによって、直変2次巻線9両端の電圧が変化し、出力端u,xの電圧が調整される。
【0004】
図11は、図10の静止誘導電器の巻線断面図である。左側、右側の点線枠内がそれぞれ主変圧器1、直列変圧器2であり、いずれも片側断面図である。主変圧器1は、鉄心3の周りに内径側からタップ巻線6、主変1次巻線4、主変2次巻線5の順で巻回されている。一方、直列変圧器2は、鉄心8の周りに内径側から直変1次巻線7、直変2次巻線9の順で巻回されている。主変2次巻線5は複数の巻線対5Cが積層されてなるとともに、直変2次巻線9も複数の巻線対9Cが積層されてなり、各巻線対5C,9Cがそれぞれ直列接続されて出力端u,xへの縦リード10,11に接続されている。
【0005】
図12は、図11の巻線構成を示す要部斜視図である。主変2次巻線5が、上部円板巻線5Aと下部円板巻線5Bとで構成される巻線対5Cからなり、主変1次巻線4の外周を巻回している。一方、直変2次巻線9が、上部円板巻線9Aと下部円板巻線9Bとで構成される巻線対9Cからなり、直変1次巻線7の外周を巻回している。巻線対5Cと9Cとで構成された巻線ブロック29が複数備えられ、その巻線ブロック29の数は、50MVAクラスの静止誘導電器の場合、約40個程度になる。図12ではその内、2個の巻線ブロック29が示されている。その他の巻線ブロック29は全く同じ構成でもって軸方向に積層されている。各巻線ブロック29は、出力端uへの縦リード10に接続される平角電線13が上部円板巻線9Aにおいて直変1次巻線7の外周に半ターン巻回された後に上部円板巻線5A側へ移され、主変1次巻線4の外周に3ターン巻回される。その後、平角電線13が下部円板巻線5Bへ移され、主変1次巻線4の外周に3ターン巻回される。さらに、平角電線13が下部円板巻線9Bへ移され、直変1次巻線7の外周に3ターン巻回される。その後、平角電線13が上部円板巻線9Aへ移され、直変1次巻線7の外周に2.5ターン巻回され、最終的には、平角電線13は出力端xへの縦リード11に接続される。
【0006】
図13は、図12の巻線ブロック29の構成を示す平面図であり、(A)が図12のR矢視図、(B)が図12のS矢視図である。各円板巻線5A,5B,9A,9Bでは平角電線が3ターンずつ巻回され、巻線ブロック29は8の字の形状をしていることから8の字巻線と呼ばれている。なお、巻線ブロック29は必ずしも3ターンとは限らず、静止誘導電器の仕様によって異なる。
【0007】
図14は、図12のT−T断面図であり、平角絶縁導体12が平角導体12Aを絶縁紙12Bでもって覆うことによって構成されている。平角電線13は、平角絶縁導体12を4本重ねたものからなり、下部円板巻線9Bから上部円板巻線9Aへの渡り部31で平角絶縁導体12を転位させてある。
【0008】
【発明が解決しようとする課題】
しかしながら、前述したような従来の静止誘導電器は、巻線ブロックが製作し難いという問題があった。
すなわち、従来の巻線ブロック29は、8の字状に一体化されているので、専用の巻線治具の周りに多数本の平角絶縁導体よりなる平角電線13を当てその形に成形する必要があった。そのために、巻線ブロック29の巻線作業には、高度の技量が要求されていた。しかも、上部円板巻線と下部円板巻線とを積層した後に縦ダクトを取り付けるとともに、円板巻線間の絶縁スペーサを取り付ける必要があったので、巻線の組み立てに多くの工数がかかっていた。また、上部円板巻線と下部円板巻線との渡り部で平角絶縁導体を転位させるのにも時間がかかっていた。さらに、平角絶縁導体を使用しているので巻線内の渦電流が多くなり、巻線の損失も大きいという欠点があった。
この発明の目的は、巻線ブロックの巻線工数を低減させることにあり、さらには、巻線の損失を低減させることにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、この発明によれば、主変1次巻線と主変2次巻線とタップ巻線とを備えた主変圧器と、直変1次巻線と直変2次巻線と備えた直列変圧器とからなり、前記主変2次巻線と前記直変2次巻線とは直列接続されるとともに巻き軸方向を同じにして並べて配され、前記タップ巻線と前記直変1次巻線とは並列接続され、入力電圧が前記主変1次巻線に加えられ、出力電圧が前記主変2次巻線と前記直変2次巻線との直列回路の両端から取り出され、前記タップ巻線のタップ位置が選択されることによって前記出力電圧の値が調整されてなる静止誘導電器において、前記主変2次巻線が主変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成されるとともに、前記直変2次巻線が直変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成され、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線がそれぞれ1つずつ隣接されるとともに,つなぎ部での接続により直列接続されて複数の巻線ブロックが形成され、前記巻線ブロックの両端から出力電圧が取り出され、前記静止誘導電器の出力端への1対のリードに前記複数の巻線ブロックの各両端がそれぞれ接続されてなるようにするとよい。それによって、主変2次巻線の円筒巻線と直変2次巻線の円筒巻線は、それぞれ異なる巻型に巻回されたのちにその円筒巻線同士の接続をすることができる。また、円筒巻線内の冷却用の絶縁スペーサは円筒巻線の巻回中に介装することができる。そのために、巻線ブロックの巻線作業が容易になり、巻線の組み立て工数が低減される。
【0010】
また、かかる構成において、前記巻線ブロックが、樹脂皮膜で覆われた複数の素線導体が積層されるとともに各素線導体の積層位置が長さ方向に行くに従って順次変わるようにしてなる転位導体からなるようにしてもよい。それによって、転位導体とすることによって、転位される多数本の並列導体に分割することができるので、巻線内の渦電流が少なくなる。しかも、巻線中に導体を転位させる必要がなくなるとともに、巻線ブロック数が減り、巻線ブロックの接続個所が減る。そのために、巻線の組み立て工数がさらに減る。
【0011】
また、かかる構成において、隣接される前記巻線ブロックの主変圧器の円筒巻線と直列変圧器の円筒巻線とを接続する渡り部同士が直交してなるようにしてもよい。それによって、渡り部の導体に電磁力が発生しないので、短絡時に発生する電磁機械力が働いても渡り部の導体同士が解け難くなる。
また、かかる構成において、前記巻線ブロックのターン間に主変2次巻線と直変2次巻線との軸方向長さを一致させる絶縁スペーサが介装されてなるようにしてもよい。それによって、主変2次巻線と直変2次巻線とのタ−ン数が異なっていても、その巻線軸方向の長さを同じにすることができ、巻線の組み立てが楽になる。
【0012】
また、かかる構成において、前記巻線ブロックの主変2次巻線および直変2次巻線が、互いに異なる軸方向幅を備えた導体でもって形成されてなるようにしてもよい。それによって、主変2次巻線と直変2次巻線とのタ−ン数が異なっていても、その巻線軸方向の長さを同じにすることができ、巻線の組み立てが楽になる。
【0013】
また、かかる構成において、前記巻線ブロックが主変2次巻線側の円筒巻線と直変2次巻線側の円筒巻線との接続位置を変える接続片を備えてなるようにしてもよい。
それによって、主変2次巻線と直変2次巻線とのタ−ン数が異なっていても、その巻線軸方向の長さを同じにすることができ、巻線の組み立てが楽になる。
また、この発明によれば、主変1次巻線と主変2次巻線とタップ巻線とを備えた主変圧器と、直変1次巻線と直変2次巻線と備えた直列変圧器とからなり、前記主変2次巻線と前記直変2次巻線とは直列接続されるとともに巻き軸方向を同じにして並べて配され、前記タップ巻線と前記直変1次巻線とは並列接続され、入力電圧が前記主変1次巻線に加えられ、出力電圧が前記主変2次巻線と前記直変2次巻線との直列回路の両端から取り出され、前記タップ巻線のタップ位置が選択されることによって前記出力電圧の値が調整されてなる静止誘導電器であって、前記主変2次巻線が,主変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成されるとともに、前記直変2次巻線が,直変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成され、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線とがそれぞれ1つずつ隣接されるとともに,つなぎ部での接続により直列接続されて複数の巻線ブロックが形成され、前記巻線ブロックの両端から出力電圧が取り出され、前記静止誘導電器の出力端への1対のリードに前記複数の巻線ブロックの各両端がそれぞれ接続されてなる静止誘導電器を製造するための製造方法において、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線とをそれぞれ異なる巻型に巻回した後に、その円筒巻線同士の接続を前記つなぎ部で行なうことにより前記巻線ブロックを製作する構成とする。
また、かかる構成において、前記巻線ブロックが、樹脂皮膜で覆われた複数の素線導体が積層されるとともに各素線導体の積層位置が長さ方向に行くに従って順次変わるようにしてなる転位導体からなる構成とすることができる。
また、かかる構成において、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線とをそれぞれ異なる巻型に,ターン間に冷却用の絶縁スペーサを挿入しながら巻回した後に、その円筒巻線同士の接続を前記つなぎ部で行なうことにより前記巻線ブロックを製作する構成とすることができる。
【0014】
【発明の実施の形態】
以下、この発明を実施例に基づいて説明する。図1は、この発明の実施例にかかる静止誘導電器の巻線ブロックの構成を示す要部斜視図である。主変2次巻線5が、主変1次巻線4の外周を巻回する複数の円筒巻線15であり、直変2次巻線9が、直変1次巻線7の外周を巻回する複数の円筒巻線16である。巻線ブロック17は、円筒巻線15と16とがつなぎ部14を介して直列接続されたものからなる。図1では、2個の巻線ブロック17が示され、その他の巻線ブロック17は全く同じ構成でもって上下方向に積層されている。巻線ブロック17は転位導体18でもって構成され、図2が転位導体18の断面図である。すなわち、図2の転位導体18は、図示されていない樹脂皮膜で覆われた複数の素線導体18Aが左右方向積層されるとともに上下2列に並べられ、外周が絶縁紙18Bで覆われている。また、素線導体18Aの積層位置は長さ方向に行くに従って変わるように構成されている。
【0015】
図1に戻り、各巻線ブロック17は、円筒巻線15の上部から転位導体18が直変1次巻線7の外周を半ターン巻回した後に、出力端uへの縦リード10に接続されている。一方、円筒巻線15の下部から転位導体18が直変1次巻線7の外周を半ターン巻回した後に、円筒巻線16とのつなぎ部14に接続されている。また、円筒巻線16の上部から転位導体18が出力端xへの縦リード11に接続されている。
【0016】
図1において、巻線ブロック17は、以下のようにして巻回される。まず、各円筒巻線15,16は、転位導体18でもってそれぞれ異なる巻き枠にターン間に冷却用の絶縁スペ−サを挿入しながら円筒状に巻回される。その際、円筒巻線15の上端は、予め直変2次巻線9の半ターン分と、縦リード10までの長さ分の転位導体18を確保しておく。また、円筒巻線15の下端も、直変2次巻線9の半ターン分の転位導体18を確保しておく。さらに、円筒巻線16の上端は、予め縦リード11までの長さ分の転位導体18を確保しておく。次に、円筒巻線15,16を所定の間隔に並ぶように立て、円筒巻線15の下端の予め長くした転位導体18を直変2次巻線9側の巻き枠に半ターン分巻き付け、円筒巻線15下端の転位導体18の端部x0 と円筒巻線16の下端の転位導体18の端部u2 とがつなぎ部14でもって接続される。その後、円筒巻線15の上端の予め長くした転位導体18を直変2次巻線9側の巻き枠に半ターン分巻き付け、さらに、転位導体18の端部を縦リード10に接続する。また、円筒巻線16の上端の予め長くした転位導体18の端部も縦リード11に接続する。
【0017】
上述のようにして巻回された巻線ブロック17は、転位導体18が使用されているので、従来の平角電線による図12のような巻線ブロック29より数が少なくて済む。すなわち、図12における従来の巻線ブロック29が平角絶縁導体12が4本重ねられた平角電線13(図14)で構成され、その巻線ブロック29が40個設けられていたとする。平角絶縁導体12の平角導体12Aの幅が10mm、厚さが3mmとすると、従来の巻線ブロック29の合計の導体断面積は、
【0018】
【数1】
40個×4本×10mm×3mm=4800mm2
となる。一方、図1における巻線ブロック17の転位導体18が31本の素線導体18Aで撚られ(図2)、その素線導体18Aの幅が8mm、厚さが2mmとすると、10個の巻線ブロック17の合計の導体断面積は、
【0019】
【数2】
10個×31本×8mm×2mm=4960mm2
となり、従来の巻線ブロック29の40個分の導体断面積とほぼ同じになる。したがって、図1の構成の巻線ブロック17の個数は、従来の場合の4分の1と非常に少なくて済む。このように大きな差が生ずる理由は、巻線ブロック17を従来の平角電線13から転位導体18にしたことによるもので、それによって、多数本の素線導体18Aを一括して巻回できるようになったからである。従来の巻線ブロック29の構成では、数十本の平角絶縁導体12を重ねて8の字巻線に成形することは不可能である。
【0020】
また、図1の構成の巻線ブロック17は、転位導体18を巻枠に円筒状に巻き付けるので、巻線作業が従来のように8の字状に加工するための熟練した技量は不要であり、巻線工数が大幅に低減される。さらに、従来の場合における平角電線13の接続は、40個の巻線ブロック29の場合、縦リード10,11に合計80個所行う必要があった。一方、転位導体18の接続は、10個の巻線ブロック17の場合、縦リード10,11での20個所と、つなぎ部14での10個所と、合計30個所で済み、この点からも巻線工数が低減される。
【0021】
なお、図2における転位導体18の素線導体18Aの外周を熱融着性の樹脂で覆ってもよい。それによって、転位導体18自体の曲げ強度が高くなり、機械的に丈夫な巻線ブロック17を形成することができる。したがって、短絡時に発生する電磁機械力に対しても充分に耐えられるようになる。
図3は、この発明の異なる実施例にかかる静止誘導電器の巻線ブロックに使用される転位導体の構成を示す断面斜視図である。転位導体19は、図示されていない熱融着性の樹脂皮膜で覆われた複数の素線導体19Aが左右方向に積層されるとともに上下2列に並べられ、外周が拘束部材19Bでもってターン間に隙間をあけるようにして巻回されている。また、素線導体19Aの積層位置は長さ方向に行くに従って変わるように構成されている。拘束部材19Bとしては、例えば、ポリエステル製の絶縁紐や熱収縮性のテープなどが用いられる。転位導体19は、図2の転位導体18のように絶縁紙18Bで覆われていないので熱放散性に優れている。したがって、この転位導体19が、図1のような巻線ブロック17に使用された場合、巻線ブロック17の冷却特性が向上する。また、素線導体19A同士が熱融着するので巻線ブロック17の機械的特性も優れている。
【0022】
図4は、この発明のさらに異なる実施例にかかる静止誘導電器の主変2次巻線の構成を示す要部斜視図である。すなわち、図4は、図1の主変2次巻線5を右側から見た図に対応する。転位導体18が絶縁スペーサ21を介して6ターン円筒状に巻回されて主変2次巻線5側の巻線ブロック17が形成されている。主変2次巻線5の上下の端部u1 ,端部x1 は、手前側の直変2次巻線9(図1)に渡るように構成されている。下部の巻線ブロック17における端部u1 での直変2次巻線9側への渡り部と、その上部の巻線ブロック17における端部x1 での直変2次巻線9側への渡り部とが互いに直交するように配されている。そのために、その渡り部で転位導体18同士に電磁力が発生しなくなるので、短絡時に発生する電磁機械力が働いても渡り部の導体は解け難くなり、機械的に信頼性の高い静止誘導電器を提供することができる。
【0023】
図5は、この発明のさらに異なる実施例にかかる静止誘導電器の直変2次巻線の構成を示す要部斜視図である。すなわち、図5は、図1の直変2次巻線9を右側から見た図に対応する。転位導体18が絶縁スペーサ22を介して6ターン円筒状に巻回されて直変2次巻線9側の巻線ブロック17が形成されている。図5において、太線で書かれた部分は、奥行き側の主変2次巻線5から半ターン巻回された後の転位導体18を示し、その転位導体18の端部u0 ,端部x2 はそれぞれ手間側の縦リード10,11(図1)へ接続される。また、端部x0 はつなぎ部14を介して端部u2 へ接続されている。巻線ブロック17の主変2次巻線5側と直変2次巻線9側との高さ調整用の絶縁スペーサ23が転位導体18間に介装されている。すなわち、絶縁スペーサ23は、巻線ブロック17の主変2次巻線5側と直変2次巻線9側との円筒巻線の巻回数が異なる場合があるので、その高さを互いに一致させるためのものである。それによって、主変2次巻線5と直変2次巻線9との高さを同じにすることができるので、巻線の組み立てが楽になり製作工数を低減することができる。
【0024】
図6は、この発明のさらに異なる実施例にかかる静止誘導電器の直変2次巻線の構成を示す要部斜視図である。巻線ブロック17の直変2次巻線9側の巻回数が、図5のそれより1ターン少ない場合であり、巻線ブロック17の主変2次巻線5側と直変2次巻線9側との高さ調整用の絶縁スペーサ23が転位導体18間に介装されている。図6のその他は、図5の構成と同じである。それによって、主変2次巻線5と直変2次巻線9との高さを同じにすることができるので、巻線の組み立てが楽になり製作工数を低減することができる。
【0025】
なお、この発明にかかる図5および図6は図の構成に限定されるものではなく、主変2次巻線5と直変2次巻線9との軸方向長さを一致させる絶縁スペーサが主変2次巻線5側のターン間に介装されてもよい。それによっても、巻線の組み立てが楽になり製作工数を低減することができる。
図7は、この発明のさらに異なる実施例にかかる静止誘導電器の直変2次巻線の構成を示す要部斜視図である。巻線ブロック17の直変2次巻線9側の巻回数が、図5のそれより1ターン多い場合である。直変2次巻線9側の転位導体25の上下方向の幅を図5の転位導体18のそれより小さくすることによって巻線ブロック17の主変2次巻線5側と直変2次巻線9側との高さが調整されている。図7のその他は、図5の構成と同じである。それによって、主変2次巻線5と直変2次巻線9との高さを同じにすることができるので、巻線の組み立てが楽になり製作工数を低減することができる。
【0026】
なお、この発明にかかる図7はこの構成に限定されるものではなく、巻線ブロック17の直変2次巻線9側の巻回数が、図5のそれより少ない場合、直変2次巻線9側の転位導体25の上下方向の幅を図5の転位導体18のそれより大きくすることによって巻線ブロック17の主変2次巻線側と直変2次巻線9側との高さの調整を行ってもよい。それによって、巻線の組み立てが楽になり製作工数を低減することができる。
【0027】
図8は、この発明のさらに異なる実施例にかかる静止誘導電器の巻線ブロックの構成を示す要部斜視図である。各巻線ブロック17は、円筒巻線15の下部から転位導体18が直変1次巻線7の外周を半ターン巻回した後に、接続片27とのつなぎ部28に接続されている。接続片27は、その上部がつなぎ部30を介して円筒巻線15上端の端部x2 に接続されている。円筒巻線15下端の端部u2 は縦リード11に接続されている。図8のその他は、図1の構成と同じである。接続片27の円筒巻線16との接続位置を変えることによって、円筒巻線16に流れる電流の向きが変わる。それによって、円筒巻線16の実質的なターン数を調整することができる。すなわち、図8の場合、縦リード10から流れ込んだ電流は、端部u。と端部u1 との間の半ターンと、端部x1 と端部x0 との間の半ターンとで、直変1次巻線7の周りを反時計方向に合計1ターン分流れる。さらにその電流は、接続片27の上部へ流れ、端部x2 と端部u2 との間で直変1次巻線7の周りを時計方向に5ターン分流れる。その結果、実質的には、円筒巻線16には時計方向に4ターン分の電流が流れることになる。このように、接続片27によって、円筒巻線16の実質的なターン数を調整することができる。
【0028】
図9は、図8の直変2次巻線9を右側から見た要部斜視図である。転位導体18の端部x0 と端部x2 との間が、つなぎ部27でもって接続されている。図9のその他は、図5の構成と同じである。図8で記述されたように、直変2次巻線9のターン数は実質的には4ターンとなるが、主変2次巻線5と直変2次巻線9との高さを同じにすることができる。それによって、巻線の組み立てが楽になり、製作工数を低減することができる。
【0029】
【発明の効果】
この発明は前述のように、主変2次巻線が主変1次巻線の外周に巻回されてなる複数の円筒巻線より構成されるとともに、直変2次巻線が直変1次巻線の外周に巻回されてなる複数の円筒巻線より構成され、主変2次巻線の円筒巻線と直変2次巻線の円筒巻線がそれぞれ1つずつ隣接されるとともに直列接続されて複数の巻線ブロックが形成され、巻線ブロックの両端から出力電圧が取り出されてなるようにすることによって、巻線の組み立て工数が低減され製作コストを下げることができる。
【0030】
また、かかる構成において、巻線ブロックが転位導体からなるようにすることによって、巻線の組み立て工数がさらに減り、製作コストをさらに下げることができる。
また、かかる構成において、隣接される巻線ブロックの主変圧器の円筒巻線と直列変圧器の円筒巻線とを接続する渡り部同士が直交してなるようにすることによって、巻線ブロックの機械力が増し、信頼性が向上するようになる。
【0031】
また、かかる構成において、前記巻線ブロックのターン間に主変2次巻線と直変2次巻線との軸方向長さを一致させる絶縁スペーサが介装されてなるようにすることによって、巻線の組み立てが楽になり製作コストをさらに下げることができる。
また、かかる構成において、前記巻線ブロックの主変2次巻線および直変2次巻線が、互いに異なる軸方向幅を備えた導体でもって形成されてなるようにすることによって、巻線の組み立てが楽になり製作コストをさらに下げることができる。
【0032】
また、かかる構成において、前記巻線ブロックが主変2次巻線側の円筒巻線と直変2次巻線側の円筒巻線との接続位置を変える接続片を備えてなるようにすることによって、巻線の組み立てが楽になり製作コストをさらに下げることができる。
【図面の簡単な説明】
【図1】この発明の実施例にかかる静止誘導電器の巻線ブロックの構成を示す要部斜視図
【図2】図1の転位導体の断面図
【図3】この発明の異なる実施例にかかる静止誘導電器の巻線ブロックに使用される転位導体の構成を示す断面斜視図
【図4】この発明のさらに異なる実施例にかかる静止誘導電器の主変2次巻線の構成を示す要部斜視図
【図5】この発明のさらに異なる実施例にかかる静止誘導電器の直変2次巻線の構成を示す要部斜視図
【図6】この発明のさらに異なる実施例にかかる静止誘導電器の直変2次巻線の構成を示す要部斜視図
【図7】この発明のさらに異なる実施例にかかる静止誘導電器の直変2次巻線の構成を示す要部斜視図
【図8】この発明のさらに異なる実施例にかかる静止誘導電器の巻線ブロックの構成を示す要部斜視図
【図9】図8の直変2次巻線を右側から見た要部斜視図
【図10】従来の静止誘導電器の巻線結線図
【図11】図10の静止誘導電器の巻線断面図
【図12】図11の巻線構成を示す要部斜視図
【図13】図12の巻線ブロックの構成を示す平面図であり、(A)が図12のR矢視図、(B)が図12のS矢視図
【図14】図12のT−T断面図
【符号の説明】
1:主変圧器、2:直列変圧器、3,8:鉄心、4:主変1次巻線、5:主変2次巻線、6:タップ巻線、7:直変1次巻線、9:直変2次巻線、10,11:縦リード、14,28,30:つなぎ部、15,16:円筒巻線、17:巻線ブロック、18,19,25:転位導体、21,22,23:絶縁スペーサ、27:接続片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an industrial static induction electric device that outputs a large current, and more particularly to a static induction electric appliance with a small number of manufacturing steps.
[0002]
[Prior art]
FIG. 10 is a winding connection diagram of a conventional static induction appliance. The static induction machine is composed of a main transformer 1 and a series transformer 2. The main transformer 1 has a main variable primary winding 4, a main variable secondary winding 2, and a tap winding 6 wound around an iron core 3, and the series transformer 2 changes directly to another iron core 8. A primary winding 7 and a direct change secondary winding 9 are wound. The main variable secondary winding 5 and the direct variable secondary winding 9 are connected in series, and the tap winding 6 is connected in parallel to both ends of the direct variable primary winding 7.
[0003]
FIG. 10 is a winding connection diagram of an industrial static induction electric device that outputs a large current such as a transformer for an electric furnace, for example, and voltage input terminals U and X are both ends of the main variable primary winding 4. The voltage output terminals u and x are both ends of the series circuit of the main variable secondary winding 5 and the direct variable secondary winding 9. The voltage adjustment of the output terminals u and x is performed by selecting the tap position of the tap winding 6. That is, the excitation voltage of the direct change primary winding 7 is adjusted by the selection of the tap position of the tap winding 6, so that the voltage across the direct change secondary winding 9 changes, and the output terminals u, x The voltage of is adjusted.
[0004]
FIG. 11 is a winding cross-sectional view of the static induction electric device of FIG. The insides of the left and right dotted frames are the main transformer 1 and the series transformer 2, respectively, and both are sectional views on one side. The main transformer 1 is wound around the iron core 3 in the order of the tap winding 6, the main variable primary winding 4, and the main variable secondary winding 5 from the inner diameter side. On the other hand, the series transformer 2 is wound around the iron core 8 in the order of the directly changing primary winding 7 and the directly changing secondary winding 9 from the inner diameter side. The main variable secondary winding 5 is formed by stacking a plurality of winding pairs 5C, and the direct variable secondary winding 9 is also formed by stacking a plurality of winding pairs 9C, and each winding pair 5C, 9C is connected in series. Connected to the vertical leads 10 and 11 to the output terminals u and x.
[0005]
FIG. 12 is a perspective view of the main part showing the winding configuration of FIG. The main variable secondary winding 5 is composed of a winding pair 5C composed of an upper disk winding 5A and a lower disk winding 5B, and is wound around the outer periphery of the main variable primary winding 4. On the other hand, the direct-change secondary winding 9 is composed of a winding pair 9C composed of an upper disc winding 9A and a lower disc winding 9B, and is wound around the outer periphery of the direct-change primary winding 7. . A plurality of winding blocks 29 composed of winding pairs 5C and 9C are provided, and the number of winding blocks 29 is about 40 in the case of a 50 MVA class static induction appliance. In FIG. 12, two winding blocks 29 are shown. The other winding blocks 29 have the same configuration and are stacked in the axial direction. Each winding block 29 has an upper disk winding after the flat electric wire 13 connected to the vertical lead 10 to the output end u is wound half turn around the outer circumference of the direct change primary winding 7 in the upper disk winding 9A. It is moved to the wire 5A side and wound around the outer periphery of the main variable primary winding 4 for 3 turns. Thereafter, the flat electric wire 13 is moved to the lower disk winding 5B and wound around the outer periphery of the main variable primary winding 4 for three turns. Further, the flat electric wire 13 is moved to the lower disk winding 9 </ b> B and is wound around the outer periphery of the direct change primary winding 7 by three turns. Thereafter, the flat electric wire 13 is moved to the upper disk winding 9A, and is wound around the outer periphery of the direct change primary winding 7 for 2.5 turns. Finally, the flat electric wire 13 is vertically lead to the output end x. 11 is connected.
[0006]
13 is a plan view showing the configuration of the winding block 29 of FIG. 12, in which (A) is a view taken in the direction of arrow R in FIG. 12, and (B) is a view taken in the direction of arrow S in FIG. In each of the disk windings 5A, 5B, 9A, and 9B, a rectangular electric wire is wound three turns at a time, and the winding block 29 has an 8-shaped shape, so that it is called an 8-shaped winding. Note that the winding block 29 is not necessarily three turns, and differs depending on the specifications of the static induction appliance.
[0007]
FIG. 14 is a cross-sectional view taken along the line T-T in FIG. 12, and the flat insulated conductor 12 covers the flat conductor 12A with insulating paper 12B. The flat electric wire 13 is composed of four flat insulated conductors 12 overlapped, and the flat insulated conductor 12 is transposed at a transition part 31 from the lower disk winding 9B to the upper disk winding 9A.
[0008]
[Problems to be solved by the invention]
However, the conventional static induction appliance as described above has a problem that it is difficult to manufacture a winding block.
That is, since the conventional winding block 29 is integrated in the shape of a figure 8, it is necessary to apply a flat electric wire 13 made of a large number of flat insulated conductors around a dedicated winding jig and to form it into that shape. was there. Therefore, a high level of skill is required for the winding work of the winding block 29. Moreover, since it was necessary to install the vertical duct after laminating the upper disk winding and the lower disk winding and to install the insulating spacer between the disk windings, it takes a lot of man-hours to assemble the winding. It was. In addition, it takes time to displace the flat insulated conductor at the transition between the upper disk winding and the lower disk winding. Further, since a rectangular insulated conductor is used, there are disadvantages that eddy currents in the windings increase and winding losses are large.
An object of the present invention is to reduce the number of winding steps of the winding block, and further to reduce the loss of the winding.
[0009]
[Means for Solving the Problems]
  In order to achieve the above object, according to the present invention, a main transformer having a main variable primary winding, a main variable secondary winding, and a tap winding, a direct change primary winding, and a direct change 2 And a series transformer provided with a secondary winding, wherein the main variable secondary winding and the direct variable secondary winding are connected in series and arranged side by side with the same winding axis direction. And the direct variable primary winding are connected in parallel, an input voltage is applied to the main variable primary winding, and an output voltage is a series circuit of the main variable secondary winding and the direct variable secondary winding. In the static induction electric machine in which the value of the output voltage is adjusted by selecting the tap position of the tap winding, the main secondary winding is,A plurality of cylindrical windings wound around the outer periphery of the main variable primary windingAre stacked in the direction of the winding axisAnd the directly variable secondary winding,A plurality of cylindrical windings wound around the outer circumference of the directly changing primary windingAre stacked in the direction of the winding axisConsists of a cylindrical winding of the main variable secondary winding and a cylindrical winding of the direct variable secondary windingWhenAre adjacent to each other, By connection at the connecting partA plurality of winding blocks are formed in series connection, and an output voltage is taken out from both ends of the winding block.Each end of each of the plurality of winding blocks is connected to a pair of leads to the output end of the static induction device.It is good to make it. Accordingly, the cylindrical winding of the main variable secondary winding and the cylindrical winding of the direct variable secondary winding can be connected to each other after being wound in different winding forms. The insulating spacer for cooling in the cylindrical winding can be interposed during the winding of the cylindrical winding. For this reason, the winding work of the winding block is facilitated, and the number of man-hours for assembling the winding is reduced.
[0010]
  In this configuration, the winding block isA plurality of strand conductors covered with a resin film are laminated, and the lamination position of each strand conductor is sequentially changed in the length direction.You may make it consist of a dislocation conductor. Thereby, by using the dislocation conductor, it can be divided into a large number of parallel conductors to be dislocated, so that the eddy current in the winding is reduced. In addition, it is not necessary to displace the conductor in the winding, the number of winding blocks is reduced, and the number of connection points of the winding blocks is reduced. As a result, the man-hours for assembling the windings are further reduced.
[0011]
In such a configuration, the connecting portions connecting the cylindrical winding of the main transformer and the cylindrical winding of the series transformer of the adjacent winding block may be orthogonal to each other. As a result, no electromagnetic force is generated in the conductors at the crossover portion, so that the conductors at the crossover portion are difficult to unwind even when an electromagnetic mechanical force generated at the time of a short circuit is applied.
Further, in such a configuration, an insulating spacer that matches the axial lengths of the main variable secondary winding and the direct variable secondary winding may be interposed between the turns of the winding block. Thereby, even if the number of turns of the main variable secondary winding and the direct variable secondary winding is different, the length in the direction of the winding axis can be made the same, and the winding can be easily assembled. .
[0012]
In such a configuration, the main variable secondary winding and the direct variable secondary winding of the winding block may be formed of conductors having different axial widths. Thereby, even if the number of turns of the main variable secondary winding and the direct variable secondary winding is different, the length in the direction of the winding axis can be made the same, and the winding can be easily assembled. .
[0013]
  Further, in this configuration, the winding block may include a connecting piece that changes a connection position between the cylindrical winding on the main variable secondary winding side and the cylindrical winding on the direct variable secondary winding side. Good.
  Thereby, even if the number of turns of the main variable secondary winding and the direct variable secondary winding is different, the length in the direction of the winding axis can be made the same, and the winding can be easily assembled. .
  In addition, according to the present invention, a main transformer having a main variable primary winding, a main variable secondary winding, and a tap winding, and a direct change primary winding and a direct change secondary winding are provided. The main variable secondary winding and the direct variable secondary winding are connected in series and arranged side by side with the same winding axis direction, and the tap winding and the direct variable primary The winding is connected in parallel, the input voltage is applied to the main variable primary winding, the output voltage is taken out from both ends of the series circuit of the main variable secondary winding and the direct variable secondary winding, A static induction electric appliance in which the value of the output voltage is adjusted by selecting a tap position of the tap winding, wherein the main variable secondary winding is wound around the outer periphery of the main variable primary winding A plurality of cylindrical windings are stacked in the winding axis direction, and the direct-change secondary winding is disposed on the outer periphery of the direct-change primary winding. A plurality of rotated cylindrical windings are stacked in the winding axis direction, and each of the cylindrical winding of the main variable secondary winding and the cylindrical winding of the direct variable secondary winding is one each. A plurality of winding blocks are formed by being connected in series by connection at a connecting portion, an output voltage is taken out from both ends of the winding block, and a pair of outputs to the output end of the static induction device In a manufacturing method for manufacturing a static induction device in which each end of each of the plurality of winding blocks is connected to a lead, the cylindrical winding of the main variable secondary winding and the cylinder of the direct variable secondary winding The winding block is manufactured by winding the windings in different winding dies and then connecting the cylindrical windings at the connecting portion.
Further, in this configuration, the winding block is a dislocation conductor in which a plurality of strand conductors covered with a resin film are laminated and the lamination position of each strand conductor is sequentially changed in the length direction. It can be set as the structure which consists of.
In this configuration, the cylindrical winding of the main variable secondary winding and the cylindrical winding of the direct variable secondary winding are wound in different winding forms while inserting an insulating spacer for cooling between the turns. After the turning, the winding block can be manufactured by connecting the cylindrical windings at the connecting portion.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on examples. FIG. 1 is a perspective view of a main part showing a configuration of a winding block of a stationary induction device according to an embodiment of the present invention. The main variable secondary winding 5 is a plurality of cylindrical windings 15 wound around the outer periphery of the main variable primary winding 4, and the direct variable secondary winding 9 is arranged around the outer periphery of the direct variable primary winding 7. A plurality of cylindrical windings 16 are wound. The winding block 17 is composed of cylindrical windings 15 and 16 connected in series via a connecting portion 14. In FIG. 1, two winding blocks 17 are shown, and the other winding blocks 17 are stacked in the vertical direction with the same configuration. The winding block 17 is constituted by a dislocation conductor 18, and FIG. 2 is a cross-sectional view of the dislocation conductor 18. That is, the dislocation conductor 18 in FIG. 2 has a plurality of strand conductors 18A covered with a resin film (not shown) laminated in the left-right direction and arranged in two rows, and the outer periphery is covered with insulating paper 18B. . The laminated position of the wire conductor 18A is configured to change as it goes in the length direction.
[0015]
Returning to FIG. 1, each winding block 17 is connected to the vertical lead 10 to the output end u after the dislocation conductor 18 has wound around the outer periphery of the direct change primary winding 7 from the upper part of the cylindrical winding 15. ing. On the other hand, the dislocation conductor 18 is connected from the lower part of the cylindrical winding 15 to the connecting portion 14 with the cylindrical winding 16 after winding the outer periphery of the direct change primary winding 7 by a half turn. A dislocation conductor 18 is connected to the vertical lead 11 from the upper part of the cylindrical winding 16 to the output end x.
[0016]
In FIG. 1, the winding block 17 is wound as follows. First, each of the cylindrical windings 15 and 16 is wound in a cylindrical shape with a dislocation conductor 18 while inserting an insulating spacer for cooling between turns on different winding frames. At that time, the upper end of the cylindrical winding 15 is secured in advance with a dislocation conductor 18 corresponding to the half turn of the direct-change secondary winding 9 and the length to the vertical lead 10. In addition, a dislocation conductor 18 corresponding to a half turn of the direct-change secondary winding 9 is also secured at the lower end of the cylindrical winding 15. Further, a dislocation conductor 18 corresponding to the length to the vertical lead 11 is secured in advance at the upper end of the cylindrical winding 16. Next, the cylindrical windings 15 and 16 are erected so as to be arranged at a predetermined interval, and a dislocation conductor 18 which is long at the lower end of the cylindrical winding 15 is wound around the winding frame on the side of the directly changing secondary winding 9 for a half turn, End x of the dislocation conductor 18 at the lower end of the cylindrical winding 150And the end u of the dislocation conductor 18 at the lower end of the cylindrical winding 162And are connected by a connecting portion 14. Thereafter, the pre-long dislocation conductor 18 at the upper end of the cylindrical winding 15 is wound around the winding frame on the direct-change secondary winding 9 side by a half turn, and the end of the dislocation conductor 18 is connected to the vertical lead 10. Further, the end portion of the dislocation conductor 18 which is elongated in advance at the upper end of the cylindrical winding 16 is also connected to the vertical lead 11.
[0017]
Since the winding block 17 wound as described above uses the dislocation conductor 18, the number of winding blocks 17 is smaller than that of the winding block 29 as shown in FIG. That is, it is assumed that the conventional winding block 29 in FIG. 12 is constituted by a rectangular electric wire 13 (FIG. 14) in which four flat insulated conductors 12 are stacked, and 40 winding blocks 29 are provided. When the width of the flat conductor 12A of the flat insulated conductor 12 is 10 mm and the thickness is 3 mm, the total conductor cross-sectional area of the conventional winding block 29 is
[0018]
[Expression 1]
40 x 4 x 10mm x 3mm = 4800mm2
It becomes. On the other hand, the dislocation conductor 18 of the winding block 17 in FIG. 1 is twisted by 31 strand conductors 18A (FIG. 2), and the strand conductor 18A has a width of 8 mm and a thickness of 2 mm. The total conductor cross-sectional area of the wire block 17 is
[0019]
[Expression 2]
10 x 31 x 8mm x 2mm = 4960mm2
Thus, the cross-sectional area of 40 conductors of the conventional winding block 29 is almost the same. Therefore, the number of the winding blocks 17 having the configuration shown in FIG. The reason why such a large difference arises is that the winding block 17 is changed from the conventional rectangular electric wire 13 to the dislocation conductor 18, so that a large number of strand conductors 18A can be wound together. Because it became. With the configuration of the conventional winding block 29, it is impossible to form dozens of flat insulated conductors 12 to form an 8-shaped winding.
[0020]
Further, the winding block 17 having the configuration shown in FIG. 1 winds the dislocation conductor 18 around the winding frame in a cylindrical shape, so that a skilled skill for processing the winding work into a figure 8 shape as in the prior art is unnecessary. Winding man-hours are greatly reduced. Further, in the case of 40 winding blocks 29, it is necessary to connect the rectangular electric wires 13 in the conventional case to a total of 80 places on the vertical leads 10 and 11. On the other hand, in the case of ten winding blocks 17, the connection of the dislocation conductors 18 is 20 in the longitudinal leads 10 and 11 and 10 in the connecting portion 14, and a total of 30 is sufficient. Wire man-hours are reduced.
[0021]
Note that the outer periphery of the strand conductor 18A of the dislocation conductor 18 in FIG. Thereby, the bending strength of the dislocation conductor 18 itself is increased, and a mechanically strong winding block 17 can be formed. Therefore, it can sufficiently withstand the electromagnetic mechanical force generated at the time of short circuit.
FIG. 3 is a cross-sectional perspective view showing a configuration of a dislocation conductor used in a winding block of a static induction electric machine according to another embodiment of the present invention. The dislocation conductor 19 has a plurality of strand conductors 19A covered with a heat-sealable resin film (not shown) stacked in the left-right direction and arranged in two rows, and the outer periphery is between the turns with a restraining member 19B. It is wound with a gap in between. In addition, the lamination position of the wire conductor 19A is configured to change as it goes in the length direction. As the restraining member 19B, for example, a polyester insulating string or a heat-shrinkable tape is used. Since the dislocation conductor 19 is not covered with the insulating paper 18B like the dislocation conductor 18 of FIG. 2, it has excellent heat dissipation. Therefore, when the dislocation conductor 19 is used in the winding block 17 as shown in FIG. 1, the cooling characteristics of the winding block 17 are improved. Moreover, since the wire conductors 19A are heat-sealed, the mechanical characteristics of the winding block 17 are also excellent.
[0022]
FIG. 4 is a main part perspective view showing a configuration of a main variable secondary winding of a static induction electric machine according to still another embodiment of the present invention. That is, FIG. 4 corresponds to a view of the main variable secondary winding 5 of FIG. 1 viewed from the right side. The dislocation conductor 18 is wound into a six-turn cylindrical shape via an insulating spacer 21 to form a winding block 17 on the main variable secondary winding 5 side. Upper and lower ends u of the main secondary winding 51, End x1Is configured so as to extend over the direct-change secondary winding 9 (FIG. 1) on the front side. End u in lower winding block 171And the end portion x of the winding block 17 at the upper part1Are arranged so as to be perpendicular to each other. For this reason, no electromagnetic force is generated between the dislocation conductors 18 at the crossing portion. Therefore, even if an electromagnetic mechanical force generated at the time of a short circuit is applied, the crossing portion conductor is difficult to be unwound, and a mechanically reliable static induction electric device. Can be provided.
[0023]
FIG. 5 is a main part perspective view showing a configuration of a direct variable secondary winding of a static induction electric machine according to still another embodiment of the present invention. That is, FIG. 5 corresponds to a view of the directly-changing secondary winding 9 of FIG. 1 viewed from the right side. The dislocation conductor 18 is wound into a six-turn cylindrical shape via an insulating spacer 22 to form a winding block 17 on the side of the directly changing secondary winding 9. In FIG. 5, the part written in bold lines shows the dislocation conductor 18 after being wound half turn from the main variable secondary winding 5 on the depth side, and the end u of the dislocation conductor 18.0, End x2Are respectively connected to the vertical leads 10 and 11 (FIG. 1) on the labor side. End x0The end u through the connecting part 142Connected to. An insulating spacer 23 for adjusting the height of the main variable secondary winding 5 side and the direct variable secondary winding 9 side of the winding block 17 is interposed between the dislocation conductors 18. That is, the insulating spacer 23 may have different numbers of turns of the cylindrical winding on the main variable secondary winding 5 side and the direct variable secondary winding 9 side of the winding block 17, so that the heights thereof coincide with each other. It is for making it happen. As a result, the heights of the main variable secondary winding 5 and the direct variable secondary winding 9 can be made the same, so that the winding can be easily assembled and the number of manufacturing steps can be reduced.
[0024]
FIG. 6 is a perspective view of a principal part showing a configuration of a direct variable secondary winding of a static induction electric machine according to still another embodiment of the present invention. This is a case where the number of turns on the directly changing secondary winding 9 side of the winding block 17 is one turn less than that of FIG. 5, and the main changing secondary winding 5 side and the directly changing secondary winding of the winding block 17. An insulating spacer 23 for height adjustment with respect to the 9 side is interposed between the dislocation conductors 18. The rest of FIG. 6 is the same as the configuration of FIG. As a result, the heights of the main variable secondary winding 5 and the direct variable secondary winding 9 can be made the same, so that the winding can be easily assembled and the number of manufacturing steps can be reduced.
[0025]
5 and 6 according to the present invention are not limited to the configuration shown in the drawing, and an insulating spacer for matching the axial lengths of the main variable secondary winding 5 and the direct variable secondary winding 9 is provided. It may be interposed between the turns on the main variable secondary winding 5 side. This also makes it easier to assemble the windings and reduce the number of manufacturing steps.
FIG. 7 is a perspective view of a principal part showing a configuration of a direct variable secondary winding of a static induction electric machine according to still another embodiment of the present invention. This is a case where the number of turns of the winding block 17 on the directly changing secondary winding 9 side is one turn more than that of FIG. By making the width in the vertical direction of the dislocation conductor 25 on the side of the direct change secondary winding 9 smaller than that of the dislocation conductor 18 in FIG. 5, the main change secondary winding 5 side and the direct change secondary winding of the winding block 17 are arranged. The height with respect to the line 9 side is adjusted. The rest of FIG. 7 is the same as the configuration of FIG. As a result, the heights of the main variable secondary winding 5 and the direct variable secondary winding 9 can be made the same, so that the winding can be easily assembled and the number of manufacturing steps can be reduced.
[0026]
7 according to the present invention is not limited to this configuration. When the number of turns of the winding block 17 on the directly changing secondary winding 9 side is smaller than that shown in FIG. 5, the directly changing secondary winding is used. The vertical width of the dislocation conductor 25 on the wire 9 side is made larger than that of the dislocation conductor 18 in FIG. 5, thereby increasing the height of the main variable secondary winding side and the direct variable secondary winding 9 side of the winding block 17. You may adjust the height. As a result, the winding can be easily assembled and the number of manufacturing steps can be reduced.
[0027]
FIG. 8 is a perspective view of a main part showing the configuration of a winding block of a static induction electric machine according to still another embodiment of the present invention. Each winding block 17 is connected to the connecting portion 28 with the connection piece 27 after the dislocation conductor 18 is wound around the outer periphery of the direct-change primary winding 7 by a half turn from the lower part of the cylindrical winding 15. The connection piece 27 has an upper end x at the upper end of the cylindrical winding 15 via the connecting portion 30.2It is connected to the. End u of cylindrical winding 15 lower end2Is connected to the vertical lead 11. The rest of FIG. 8 is the same as the configuration of FIG. By changing the connection position of the connection piece 27 with the cylindrical winding 16, the direction of the current flowing through the cylindrical winding 16 is changed. Thereby, the substantial number of turns of the cylindrical winding 16 can be adjusted. That is, in the case of FIG. 8, the current flowing from the vertical lead 10 is the end u. And end u1Half turn between and end x1And end x0A total of one turn flows in the counterclockwise direction around the directly changing primary winding 7 in a half turn. Further, the current flows to the upper part of the connecting piece 27 and the end x2And end u2Flows around the direct change primary winding 7 clockwise for 5 turns. As a result, substantially four turns of current flow in the cylindrical winding 16 in the clockwise direction. In this way, the substantial number of turns of the cylindrical winding 16 can be adjusted by the connection piece 27.
[0028]
FIG. 9 is a perspective view of the main part of the direct-change secondary winding 9 of FIG. 8 viewed from the right side. End x of dislocation conductor 180And end x2Are connected by a connecting portion 27. The rest of FIG. 9 is the same as the configuration of FIG. As described in FIG. 8, the number of turns of the direct variable secondary winding 9 is substantially four turns, but the height of the main variable secondary winding 5 and the direct variable secondary winding 9 is Can be the same. As a result, the winding can be easily assembled and the number of manufacturing steps can be reduced.
[0029]
【The invention's effect】
As described above, the present invention comprises a plurality of cylindrical windings in which the main variable secondary winding is wound around the outer periphery of the main variable primary winding, and the direct variable secondary winding is the direct variable 1. It is composed of a plurality of cylindrical windings wound around the outer periphery of the secondary winding, and the cylindrical winding of the main variable secondary winding and the cylindrical winding of the direct variable secondary winding are adjacent to each other one by one. A plurality of winding blocks are formed in series and the output voltage is extracted from both ends of the winding block, so that the number of winding assembly steps can be reduced and the manufacturing cost can be reduced.
[0030]
In such a configuration, the winding block is made of a dislocation conductor, so that the number of steps for assembling the windings can be further reduced and the manufacturing cost can be further reduced.
Further, in such a configuration, the crossing portions connecting the cylindrical winding of the main transformer and the cylindrical winding of the series transformer of adjacent winding blocks are orthogonal to each other, so that the winding block Increases mechanical power and improves reliability.
[0031]
Further, in such a configuration, an insulating spacer for matching the axial lengths of the main variable secondary winding and the direct variable secondary winding is interposed between the turns of the winding block. Assembling of the winding becomes easier and the production cost can be further reduced.
In such a configuration, the main variable secondary winding and the direct variable secondary winding of the winding block are formed of conductors having different axial widths, whereby Assembling becomes easier and production costs can be further reduced.
[0032]
Further, in this configuration, the winding block includes a connection piece that changes a connection position between the cylindrical winding on the main variable secondary winding side and the cylindrical winding on the direct variable secondary winding side. This makes it easier to assemble the windings and further reduce the production cost.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part showing the configuration of a winding block of a stationary induction device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the dislocation conductor of FIG.
FIG. 3 is a cross-sectional perspective view showing the configuration of a dislocation conductor used in a winding block of a static induction electric machine according to another embodiment of the present invention.
FIG. 4 is a perspective view of a main part showing a configuration of a main variable secondary winding of a static induction device according to still another embodiment of the present invention.
FIG. 5 is a perspective view of a main part showing a configuration of a direct variable secondary winding of a static induction electric machine according to still another embodiment of the present invention.
FIG. 6 is a perspective view of a main part showing the configuration of a direct variable secondary winding of a static induction device according to still another embodiment of the present invention.
FIG. 7 is a perspective view of a principal part showing the configuration of a direct variable secondary winding of a static induction device according to still another embodiment of the present invention.
FIG. 8 is a perspective view of a main part showing the configuration of a winding block of a static induction electric machine according to still another embodiment of the present invention.
9 is a perspective view of the main part of the direct-change secondary winding of FIG. 8 as viewed from the right side.
FIG. 10 is a wiring diagram of a conventional static induction machine.
11 is a cross-sectional view of the winding of the static induction device of FIG.
12 is a perspective view of the main part showing the winding configuration of FIG. 11;
13 is a plan view showing the configuration of the winding block of FIG. 12, where (A) is a view taken in the direction of arrow R in FIG. 12, and (B) is a view taken in the direction of arrow S in FIG.
14 is a sectional view taken along line TT in FIG.
[Explanation of symbols]
1: Main transformer, 2: Series transformer, 3, 8: Iron core, 4: Main variable primary winding, 5: Main variable secondary winding, 6: Tap winding, 7: Directly variable primary winding , 9: Directly changing secondary winding, 10, 11: Longitudinal lead, 14, 28, 30: Connecting portion, 15, 16: Cylindrical winding, 17: Winding block, 18, 19, 25: Dislocation conductor, 21 , 22, 23: insulating spacer, 27: connecting piece

Claims (9)

主変1次巻線と主変2次巻線とタップ巻線とを備えた主変圧器と、直変1次巻線と直変2次巻線と備えた直列変圧器とからなり、前記主変2次巻線と前記直変2次巻線とは直列接続されるとともに巻き軸方向を同じにして並べて配され、前記タップ巻線と前記直変1次巻線とは並列接続され、入力電圧が前記主変1次巻線に加えられ、出力電圧が前記主変2次巻線と前記直変2次巻線との直列回路の両端から取り出され、前記タップ巻線のタップ位置が選択されることによって前記出力電圧の値が調整されてなる静止誘導電器において、前記主変2次巻線が主変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成されるとともに、前記直変2次巻線が直変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成され、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線がそれぞれ1つずつ隣接されるとともに,つなぎ部での接続により直列接続されて複数の巻線ブロックが形成され、前記巻線ブロックの両端から出力電圧が取り出され、前記静止誘導電器の出力端への1対のリードに前記複数の巻線ブロックの各両端がそれぞれ接続されてなることを特徴とする静止誘導電器。A main transformer including a main variable primary winding, a main variable secondary winding, and a tap winding; and a series transformer including a direct variable primary winding and a direct variable secondary winding, The main variable secondary winding and the direct variable secondary winding are connected in series and arranged side by side with the same winding axis direction, and the tap winding and the direct variable primary winding are connected in parallel. An input voltage is applied to the main variable primary winding, an output voltage is taken from both ends of the series circuit of the main variable secondary winding and the direct variable secondary winding, and the tap position of the tap winding is In the static induction electric machine in which the value of the output voltage is adjusted by selection , the main secondary winding is wound with a plurality of cylindrical windings wound around the outer circumference of the main primary winding. while being configured to be stacked in the axial direction, the straight-varying secondary winding, a plurality of cylinders comprising wound around the outer periphery of the straight variable primary winding Is configured so as to stack a line winding direction, with a cylindrical winding is adjacent one each of the cylindrical winding of the main variable secondary winding linear varying secondary winding, the connecting portion connected by being serially connected in the formed plurality of windings blocks, the output voltage from both ends of the winding block is fetched, said plurality of windings block to a pair of leads to the output of the stationary induction apparatus A stationary induction device characterized in that both ends of each are connected . 請求項1に記載の静止誘導電器において、前記巻線ブロックが、樹脂皮膜で覆われた複数の素線導体が積層されるとともに各素線導体の積層位置が長さ方向に行くに従って順次変わるようにしてなる転位導体からなることを特徴とする静止誘導電器。2. The static induction appliance according to claim 1, wherein the winding block is formed by laminating a plurality of strand conductors covered with a resin film and sequentially changing the laminating position of each strand conductor in the length direction. A static induction device characterized by comprising a dislocation conductor formed as described above. 請求項1または2に記載の静止誘導電器において、隣接される前記巻線ブロックの主変圧器の円筒巻線と直列変圧器の円筒巻線とを接続する渡り部同士が直交してなることを特徴とする静止誘導電器。The static induction machine according to claim 1 or 2, wherein the connecting portions connecting the cylindrical winding of the main transformer of the adjacent winding block and the cylindrical winding of the series transformer are orthogonal to each other. Characteristic static induction machine. 請求項1または2に記載の静止誘導電器において、前記巻線ブロックのターン間に主変2次巻線と直変2次巻線との軸方向長さを一致させる絶縁スペーサが介装されてなることを特徴とする静止誘導電器。3. The static induction device according to claim 1, wherein an insulating spacer for interposing axial lengths of the main variable secondary winding and the direct variable secondary winding is interposed between the turns of the winding block. A static induction appliance characterized by 請求項1または2に記載の静止誘導電器において、前記巻線ブロックの主変2次巻線および直変2次巻線が、互いに異なる軸方向幅を備えた導体でもって形成されてなることを特徴とする静止誘導電器。3. The static induction device according to claim 1, wherein the main variable secondary winding and the direct variable secondary winding of the winding block are formed of conductors having different axial widths. Characteristic static induction machine. 請求項1または2に記載の静止誘導電器において、前記巻線ブロックが主変2次巻線側の円筒巻線と直変2次巻線側の円筒巻線との接続位置を変える接続片を備えてなることを特徴とする静止誘導電器。The static induction machine according to claim 1 or 2, wherein the winding block has a connection piece for changing a connection position between the cylindrical winding on the main variable secondary winding side and the cylindrical winding on the direct variable secondary winding side. A static induction machine characterized by comprising. 主変1次巻線と主変2次巻線とタップ巻線とを備えた主変圧器と、直変1次巻線と直変2次巻線と備えた直列変圧器とからなり、前記主変2次巻線と前記直変2次巻線とは直列接続されるとともに巻き軸方向を同じにして並べて配され、前記タップ巻線と前記直変1次巻線とは並列接続され、入力電圧が前記主変1次巻線に加えられ、出力電圧が前記主変2次巻線と前記直変2次巻線との直列回路の両端から取り出され、前記タップ巻線のタップ位置が選択されることによって前記出力電圧の値が調整されてなる静止誘導電器であって、前記主変2次巻線が,主変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成されるとともに、前記直変2次巻線が,直変1次巻線の外周に巻回されてなる複数の円筒巻線を巻き軸方向に積層するようにして構成され、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線とがそれぞれ1つずつ隣接されるとともに,つなぎ部での接続により直列接続されて複数の巻線ブロックが形成され、前記巻線ブロックの両端から出力電圧が取り出され、前記静止誘導電器の出力端への1対のリードに前記複数の巻線ブロックの各両端がそれぞれ接続されてなる静止誘導電器を製造するための製造方法において、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線とをそれぞれ異なる巻型に巻回した後に、その円筒巻線同士の接続を前記つなぎ部で行なうことにより前記巻線ブロックを製作することを特徴とする静止誘導電器の製造方法。A main transformer including a main variable primary winding, a main variable secondary winding, and a tap winding; and a series transformer including a direct variable primary winding and a direct variable secondary winding, The main variable secondary winding and the direct variable secondary winding are connected in series and arranged side by side with the same winding axis direction, and the tap winding and the direct variable primary winding are connected in parallel. An input voltage is applied to the main variable primary winding, an output voltage is taken from both ends of the series circuit of the main variable secondary winding and the direct variable secondary winding, and the tap position of the tap winding is A plurality of cylindrical windings in which the value of the output voltage is adjusted by selection and the main variable secondary winding is wound around the outer periphery of the main variable primary winding And a plurality of cylinders in which the direct-change secondary winding is wound around the outer periphery of the direct-change primary winding The wire is laminated in the direction of the winding axis, and the cylindrical winding of the main variable secondary winding and the cylindrical winding of the direct variable secondary winding are adjacent to each other and are connected to each other. Are connected in series to form a plurality of winding blocks, an output voltage is taken out from both ends of the winding block, and the plurality of winding blocks are connected to a pair of leads to the output end of the static induction device In the manufacturing method for manufacturing a static induction device in which both ends of each are connected, the cylindrical winding of the main variable secondary winding is different from the cylindrical winding of the direct variable secondary winding. The winding block is manufactured by connecting the cylindrical windings to each other at the connecting portion after being wound around the coil. 請求項7に記載の静止誘導電器の製造方法において、前記巻線ブロックが、樹脂皮膜で覆われた複数の素線導体が積層されるとともに各素線導体の積層位置が長さ方向に行くに従って順次変わるようにしてなる転位導体からなることを特徴とする静止誘導電器の製造方法。8. The method of manufacturing a static induction appliance according to claim 7, wherein the winding block is formed by laminating a plurality of strand conductors covered with a resin film and as the lamination position of each strand conductor goes in the length direction. A method of manufacturing a static induction device comprising dislocation conductors that are sequentially changed. 請求項7または8に記載の静止誘導電器の製造方法において、前記主変2次巻線の円筒巻線と前記直変2次巻線の円筒巻線とをそれぞれ異なる巻型に,ターン間に冷却用の絶縁スペーサを挿入しながら巻回した後に、その円筒巻線同士の接続を前記つなぎ部で行なうことにより前記巻線ブロックを製作することを特徴とする静止誘導電器の製造方法。9. The method of manufacturing a static induction electric appliance according to claim 7 or 8, wherein the cylindrical winding of the main variable secondary winding and the cylindrical winding of the direct variable secondary winding are arranged in different winding forms, and between turns. A method for manufacturing a stationary induction device, wherein the winding block is manufactured by performing winding while inserting an insulating spacer for cooling and then connecting the cylindrical windings at the connecting portion.
JP2000331843A 2000-10-31 2000-10-31 Static induction appliance and method for manufacturing the same Expired - Lifetime JP4617560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331843A JP4617560B2 (en) 2000-10-31 2000-10-31 Static induction appliance and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331843A JP4617560B2 (en) 2000-10-31 2000-10-31 Static induction appliance and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002141233A JP2002141233A (en) 2002-05-17
JP4617560B2 true JP4617560B2 (en) 2011-01-26

Family

ID=18808133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331843A Expired - Lifetime JP4617560B2 (en) 2000-10-31 2000-10-31 Static induction appliance and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4617560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230350A1 (en) * 2020-05-14 2021-11-18 株式会社アルテクス Rivet joining method and joining process device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115317A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Multi-stage helical winding of induced electric machine
JPS5421526A (en) * 1977-07-20 1979-02-17 Hitachi Ltd Induction electricmachine winding
JPH04196302A (en) * 1990-11-28 1992-07-16 Toshiba Corp Transformer
JPH04134825U (en) * 1991-06-10 1992-12-15 株式会社明電舎 induction electric winding
JPH06244039A (en) * 1993-02-18 1994-09-02 Fuji Electric Co Ltd Winding of transformer
JPH08138945A (en) * 1994-11-09 1996-05-31 Nissin Electric Co Ltd Winding of induction motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115317A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Multi-stage helical winding of induced electric machine
JPS5421526A (en) * 1977-07-20 1979-02-17 Hitachi Ltd Induction electricmachine winding
JPH04196302A (en) * 1990-11-28 1992-07-16 Toshiba Corp Transformer
JPH04134825U (en) * 1991-06-10 1992-12-15 株式会社明電舎 induction electric winding
JPH06244039A (en) * 1993-02-18 1994-09-02 Fuji Electric Co Ltd Winding of transformer
JPH08138945A (en) * 1994-11-09 1996-05-31 Nissin Electric Co Ltd Winding of induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230350A1 (en) * 2020-05-14 2021-11-18 株式会社アルテクス Rivet joining method and joining process device

Also Published As

Publication number Publication date
JP2002141233A (en) 2002-05-17

Similar Documents

Publication Publication Date Title
US6750749B2 (en) Amorphous metal core transformer
US7582999B2 (en) Electric machine having a magnetically inducible core
JPH06209535A (en) Coil structure of motor
US20120124821A1 (en) Method for producing group of electrical coils
JP2002153002A (en) Stator for dynamo-electric machine
JP3659874B2 (en) Rotating electric machine stator
EP3093961A2 (en) Windings for electrical machines
JP4254152B2 (en) AC motor stator
US3633273A (en) Method of constructing electrical windings
US7425884B2 (en) Electrical device and method of producing the same
JP4617560B2 (en) Static induction appliance and method for manufacturing the same
JP4888138B2 (en) Method for manufacturing field coil of rotating electrical machine
US6121867A (en) Electrical coil assembly having a plurality of coils arranged in pairs
US4859978A (en) High-voltage windings for shell-form power transformers
US7750526B2 (en) Circulatory current choke
JPH08168229A (en) Linear motor
JP4160536B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP4518907B2 (en) Static induction equipment coil
JP2003274594A (en) Stator for rotating electric machine
JP2002034229A (en) Coreless linear motor
JP2007295691A (en) Stator coil of multiplex-winding motor
JP2006254585A (en) Method of manufacturing preformed coil, and the coil
US20020186116A1 (en) Inductor using printed circuit board
JPH0220809Y2 (en)
JPH03206605A (en) Choke transformer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term