JP3333698B2 - Tire pressure detector - Google Patents

Tire pressure detector

Info

Publication number
JP3333698B2
JP3333698B2 JP30134496A JP30134496A JP3333698B2 JP 3333698 B2 JP3333698 B2 JP 3333698B2 JP 30134496 A JP30134496 A JP 30134496A JP 30134496 A JP30134496 A JP 30134496A JP 3333698 B2 JP3333698 B2 JP 3333698B2
Authority
JP
Japan
Prior art keywords
wheel
resonance frequency
value
tire
tire pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30134496A
Other languages
Japanese (ja)
Other versions
JPH10129222A (en
Inventor
元規 富永
西川  佳弘
祐一 井上
健治 冨板
伸次郎 深田
秀樹 大橋
孝治 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP30134496A priority Critical patent/JP3333698B2/en
Priority to US08/939,048 priority patent/US5982279A/en
Priority to EP97116807A priority patent/EP0832768B1/en
Priority to DE69714930T priority patent/DE69714930T2/en
Publication of JPH10129222A publication Critical patent/JPH10129222A/en
Application granted granted Critical
Publication of JP3333698B2 publication Critical patent/JP3333698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両においてパン
ク等のタイヤ空気圧の状態を検知するタイヤ空気圧検知
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tire pressure detecting device for detecting a tire pressure condition such as a puncture in a vehicle.

【0002】[0002]

【従来の技術】タイヤ空気圧検知装置は、車両の走行中
にタイヤの空気圧状態を監視してタイヤの空気抜け等の
タイヤの異常を運転者等に知らせるもので、タイヤの空
気圧を直接検出するようにしたものの他、特開平5−1
33831号公報に記載のタイヤ空気圧検知装置(第1
従来例)のようにタイヤの空気圧とタイヤの共振周波数
との相関に着目し、タイヤの共振周波数を利用したもの
がある(共振点方式)。第1従来例では車輪速の高速フ
ーリエ変換(FFT)演算により車輪速の振動成分のス
ペクトラムを得(図14参照)、タイヤの共振周波数を
検出し、図15に示すように共振周波数が所定値を下回
るとタイヤにパンク等の空気抜けが発生したものと判断
して警告を発するようにしている。
2. Description of the Related Art A tire pressure detecting device monitors a tire pressure condition during running of a vehicle and informs a driver or the like of a tire abnormality such as tire deflation. The tire pressure detecting device detects the tire pressure directly. 5-1.
No. 33831 discloses a tire pressure detecting device (first tire pressure detecting device).
As in the conventional example), there is an apparatus that focuses on the correlation between the tire air pressure and the tire resonance frequency and uses the tire resonance frequency (resonance point method). In the first conventional example, the spectrum of the vibration component of the wheel speed is obtained by fast Fourier transform (FFT) calculation of the wheel speed (see FIG. 14), the resonance frequency of the tire is detected, and as shown in FIG. If it falls below the threshold, it is determined that an air leak such as a puncture has occurred in the tire, and a warning is issued.

【0003】また特開昭63−305011号公報に
は、第1従来例のようなタイヤ空気圧を共振周波数に基
づいて検出する絶対評価ではないが、タイヤ空気圧状態
(パンクの発生等)を間接的に検知するようにした車輛
の減圧タイヤの検出法が開示されている。この車輛の減
圧タイヤの検出法(第2従来例)では、4つの各車輪の
角速度を検出して対角線上に位置する2組の車輪の角速
度の和をそれぞれ算出し、これら和の差が所定値内であ
れば各車輪の角速度を4つの車輪の角速度の平均値と比
較し空気圧の低下を相対的に評価するようにしている。
Japanese Patent Application Laid-Open No. Sho 63-305011 does not provide an absolute evaluation of detecting tire air pressure based on a resonance frequency as in the first prior art, but indirectly detects a tire air pressure state (such as occurrence of puncture). A method for detecting a reduced pressure tire of a vehicle is disclosed. In this method for detecting a reduced pressure tire of a vehicle (second conventional example), the angular velocities of four wheels are detected, and the sum of the angular velocities of two pairs of wheels located on a diagonal line is calculated. If the values are within the values, the angular velocity of each wheel is compared with the average value of the angular velocities of the four wheels to relatively evaluate the decrease in air pressure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記第1
従来例では、車輪速がタイヤの共振周波数の他、ノイズ
となる他の共振周波数を含むことから、S/N比の良否
がタイヤ空気圧の検出精度に影響する。S/N比は高速
域で駆動輪が低下し、第1従来例の実用上の限界速度は
約60〜100km/hである。
However, the first problem is to be solved.
In the conventional example, since the wheel speed includes other resonance frequencies that become noise in addition to the resonance frequency of the tire, the quality of the S / N ratio affects the detection accuracy of the tire air pressure. As for the S / N ratio, the driving wheels decrease in the high speed range, and the practical limit speed of the first conventional example is about 60 to 100 km / h.

【0005】第2従来例では、第1従来例のように車速
の制限はないが、1輪の相対的な判定しかすることがで
きず、また対角2輪のうちどちらが異常なのかも分から
ない。
In the second conventional example, there is no limitation on the vehicle speed as in the first conventional example, but only relative determination of one wheel can be made, and it is not known which of the two diagonal wheels is abnormal. .

【0006】そこで本発明は、高速域でもタイヤ空気圧
状態を絶対評価で行うことのできるタイヤ空気圧検知装
置を提供することを目的とする。
Accordingly, an object of the present invention is to provide a tire pressure detecting device capable of performing absolute evaluation of a tire pressure state even in a high-speed range.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明で
は、車両の走行時に共振周波数抽出手段が車輪速検出手
段により検出される各車輪の車輪速から、各車輪に取り
付けられたタイヤの共振周波数を抽出し、判定手段が共
振周波数に基づいて車輪のタイヤの空気圧状態を判定す
る構成に、車輪速に基づいて従動輪における左右の車輪
の回転状態の偏度と駆動輪における左右の車輪の回転状
態の偏度の差に依存する回転状態値を演算する回転状態
値演算手段と、車速が予め設定した上限値以上になって
からの回転状態値の経時変化量および車速が上記上限値
以上になってからの従動輪の共振周波数の経時変化量を
演算する回転状態値変化量演算手段および共振周波数変
化量演算手段と、記憶手段に記憶された、タイヤの空気
圧が変化したときの共振周波数と回転状態値の関係に基
づき、従動輪の共振周波数の経時変化量を回転状態値の
経時変化量に換算し、換算された経時変化量により回転
状態値の経時変化量を補正する補正手段と、車速が上記
上限値以上になると、記憶手段に記憶された関係に基づ
き、補正手段により補正された回転状態値の経時変化量
車速が上記上限値以上になってからの駆動輪の共振周
波数の経時変化量に換算し、車速が上記上限値を越える
前の駆動輪の共振周波数および上記経時変化量から駆動
輪の共振周波数を推定する駆動輪共振周波数推定手段と
を具備せしめ、上記判定手段を、上記上限値以上の車速
において、駆動輪のタイヤ空気圧状態が、駆動輪共振周
波数推定手段により推定された共振周波数に基づいて判
定されるように設定する。
According to the first aspect of the present invention, the resonance frequency extraction means detects the resonance of the tire mounted on each wheel from the wheel speed of each wheel detected by the wheel speed detection means when the vehicle is running. The frequency is extracted, and the determination unit determines the air pressure state of the tire of the wheel based on the resonance frequency, the deviation of the rotational state of the left and right wheels in the driven wheels and the left and right wheels of the drive wheels based on the wheel speed. A rotation state value calculation means for calculating a rotation state value depending on a difference in rotation state deviation, and a vehicle speed exceeding a preset upper limit value
The amount of change over time and the vehicle speed of the rotation state value from
A rotational state value change amount calculating means and a resonance frequency change amount calculating means for calculating a temporal change amount of the resonance frequency of the driven wheel after the above, and a resonance when the tire air pressure changes stored in the storage means. Correction means for converting the change over time in the resonance frequency of the driven wheel into a change over time in the rotation state value based on the relationship between the frequency and the rotation state value, and correcting the change over time in the rotation state value with the converted change over time. When the vehicle speed becomes equal to or higher than the <br/> upper limit, based on the stored relationship in the storage unit, the vehicle speed with time variation of the corrected rotational state value by the correction means from equal to or more than the upper limit value in terms of change over time in the resonance frequency of the drive wheels, the vehicle speed is above the upper limit value exceeds previous estimates the resonance frequency of the drive <br/> wheels from the resonance frequency and the temporal variation amount of the drive wheel the drive wheel resonance frequency estimate Means Therefore, the determination means is set so that the tire pressure state of the drive wheel is determined based on the resonance frequency estimated by the drive wheel resonance frequency estimation means at the vehicle speed equal to or higher than the upper limit value.

【0008】補正手段により、回転状態値経時変化量か
らタイヤ空気圧の低下による従動輪の偏度の経時変化の
影響が除去され、補正後の回転状態値の経時変化量には
タイヤ空気圧の低下による駆動輪の偏度の経時変化に依
存する成分のみが残る。この補正後の回転状態値経時変
化量を換算してタイヤ空気圧の低下による駆動輪の共振
周波数の経時変化量が知られる。しかして車速が上記上
限値を越える前の駆動輪の共振周波数および駆動輪の共
振周波数の経時変化量とから、タイヤ空気圧の低下した
駆動輪の共振周波数がよい精度で推定でき、限界速度を
上げることができる。
[0008] The correction means eliminates the influence of the time-dependent change in the rotational state value of the driven wheel due to a decrease in the tire air pressure from the time-dependent change in the rotation state value. Only the components that depend on the change over time in the drive wheel bias remain. By converting the corrected rotational state value over time, the amount of change over time of the resonance frequency of the drive wheel due to a decrease in tire air pressure is known. Thus, from the resonance frequency of the drive wheel before the vehicle speed exceeds the upper limit value and the amount of change over time in the resonance frequency of the drive wheel, the resonance frequency of the drive wheel with reduced tire pressure can be estimated with good accuracy, and the limit speed is increased. be able to.

【0009】上記偏度は、請求項2のように車輪速比と
してもよいし、請求項3のように車輪加速度比としても
よい。
The deviation may be a wheel speed ratio as in claim 2 or a wheel acceleration ratio as in claim 3.

【0010】請求項4記載の発明では、車速が上記上限
値を越える前の駆動輪の共振周波数が検出不能のとき、
上記判定手段が、駆動輪のタイヤ空気圧状態を、上記補
正手段により補正された回転状態値経時変化量に基づい
て判定するように設定する。
According to the present invention, when the resonance frequency of the driving wheel cannot be detected before the vehicle speed exceeds the upper limit,
The determination means is set so as to determine the tire pressure state of the drive wheel based on the amount of change over time in the rotation state value corrected by the correction means.

【0011】補正された回転状態値経時変化量にはタイ
ヤ空気圧の低下による駆動輪の偏度の経時変化に依存す
る成分のみが残っている。したがって車両が急加速した
場合のように、車速が上記上限値を越える前の駆動輪の
共振周波数が検出不能で駆動輪の共振周波数の推定がで
きない場合であっても、補正された回転状態値経時変化
量より駆動輪のタイヤ空気圧状態が相対的に判定でき
る。
In the corrected amount of change in the rotational state value with time, only a component that depends on the change with time in the bias of the drive wheel due to the decrease in tire air pressure remains. Therefore, even when the vehicle rapidly accelerates, for example, when the resonance frequency of the drive wheel before the vehicle speed exceeds the upper limit cannot be detected and the resonance frequency of the drive wheel cannot be estimated, the corrected rotation state value The tire pressure state of the drive wheel can be relatively determined from the amount of change with time.

【0012】請求項5記載の発明では、回転状態値経時
変化量が演算不能のとき、上記判定手段が、上記回転状
態値演算手段により演算された回転状態値に基づいて駆
動輪のタイヤ空気圧状態を判定するように設定する。
According to the fifth aspect of the present invention, when the amount of change over time in the rotational state value cannot be calculated, the determining means determines the tire pressure state of the drive wheel based on the rotational state value calculated by the rotational state value calculating means. Is set to be determined.

【0013】車両が急加速し車速が上記上限値を越えた
場合、ごく早い時期には回転状態値経時変化量も演算不
能であるが、あるタイヤに空気圧異常が生じていれば車
輪速が他の車輪の車輪速に比して大きくなっているか
ら、回転状態値にタイヤの空気圧の異常の有無が反映す
る。したがって車両が走行開始時からあるタイヤの空気
圧が低下した状態で急加速し車速が上記上限値を越えた
場合であっても早期にタイヤの空気圧の異常を検知でき
る。
When the vehicle suddenly accelerates and the vehicle speed exceeds the upper limit value, it is impossible to calculate the time-dependent change in the rotation state value at a very early stage. Since the wheel speed is larger than the wheel speed of the wheel, the presence or absence of abnormality in the tire pressure is reflected in the rotation state value. Therefore, even if the vehicle suddenly accelerates in a state where the air pressure of a certain tire has decreased since the start of traveling and the vehicle speed exceeds the above upper limit, an abnormality in the air pressure of the tire can be detected early.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)図1に本発明のタイヤ空気圧検知装置
を示す。タイヤ空気圧検知装置が搭載される車両は、エ
ンジンが車両前部のエンジンルーム内にマウントされ後
輪が駆動輪であるFR車である。車両の各タイヤに対応
して設けた車輪速検出手段たる車輪速センサ1a,1
b,1c,1dと、車輪速センサ1a〜1dを入力とす
る演算処理装置2と、演算処理装置2から警告信号が発
せられるとタイヤの空気圧の低下を運転者に警告する警
告装置3とで構成してある。車輪速センサ1a〜1d
は、うち2つ(例えば1a,1b)が前輪に対応し、残
りの2つ(例えば1c,1d)が後輪に対応している。
(First Embodiment) FIG. 1 shows a tire pressure detecting device according to the present invention. The vehicle on which the tire pressure detecting device is mounted is an FR vehicle in which an engine is mounted in an engine room at a front portion of the vehicle and rear wheels are driving wheels. Wheel speed sensors 1a and 1 serving as wheel speed detecting means provided for each tire of the vehicle.
b, 1c, 1d, an arithmetic processing device 2 having the wheel speed sensors 1a to 1d as inputs, and a warning device 3 for warning a driver of a decrease in tire air pressure when a warning signal is issued from the processing device 2. It is composed. Wheel speed sensors 1a-1d
Among them, two (for example, 1a and 1b) correspond to the front wheels, and the remaining two (for example, 1c and 1d) correspond to the rear wheels.

【0015】演算処理装置2はマイクロコンピュータ等
で構成され、タイヤ空気圧状態の判定は車輪速センサ1
a〜1dからのパルス信号に基づいて演算処理装置2の
ソフトウェア上で実行される。演算処理装置2の機能構
成は、車輪速センサ1a〜1dからパルス信号として入
力する車輪速のデータが車輪速演算部2a、FFT演算
部2b、平均処理部2c、移動平均処理部2d、共振周
波数演算部2eを経て差圧判定値演算部2jおよび共振
周波数記憶部2fに入力する。上記車輪速のデータはま
た車輪速演算部2aより車輪速偏差値演算部2g、車輪
速偏差値平均処理部2hを経て差圧判定値演算部2jお
よび車輪速偏差値記憶部2iに入力するようになってい
る。共振周波数記憶部2fおよび車輪速偏差値記憶部2
iは上記マイクロコンピュータのメモリで構成される。
共振周波数記憶部2f、車輪速偏差値記憶部2iより読
み出されたデータは共振周波数演算部2e、車輪速偏差
値平均処理部2hからのデータとともに差圧判定値演算
部2j、空気圧低下判断部2kを経てタイヤ空気圧状態
の判定データに加工されて、警報装置3に出力されるよ
うになっている。
The arithmetic processing unit 2 is composed of a microcomputer or the like.
It is executed on software of the arithmetic processing unit 2 based on the pulse signals from a to 1d. The functional configuration of the arithmetic processing device 2 is as follows. The wheel speed data input as pulse signals from the wheel speed sensors 1a to 1d is calculated by the wheel speed calculating unit 2a, the FFT calculating unit 2b, the averaging unit 2c, the moving average processing unit 2d, the resonance frequency The data is input to the differential pressure determination value calculator 2j and the resonance frequency storage 2f via the calculator 2e. The wheel speed data is input from the wheel speed calculator 2a to the differential pressure determination value calculator 2j and the wheel speed deviation value storage 2i via the wheel speed deviation calculator 2g and the wheel speed deviation average processor 2h. It has become. Resonance frequency storage unit 2f and wheel speed deviation value storage unit 2
i is constituted by the memory of the microcomputer.
The data read from the resonance frequency storage unit 2f and the wheel speed deviation value storage unit 2i are combined with the data from the resonance frequency calculation unit 2e and the wheel speed deviation average processing unit 2h together with the differential pressure determination value calculation unit 2j and the air pressure drop determination unit. After 2k, the data is processed into determination data of the tire pressure state and output to the alarm device 3.

【0016】図2は演算処理装置2で実行される車輪速
演算から空気圧低下の警告までのメインルーチンの流れ
を示すものである。ステップ(以下Sと記す)100
F,S100Rは前輪共振周波数検出サブルーチンおよ
び後輪共振周波数検出サブルーチンで、それぞれ前輪車
輪速、後輪車輪速に基づいて共振周波数が抽出される。
S200では4つの車輪速に基づいて車輪速偏差値Dが
算出される。車輪速偏差値Dは車輪速センサ1a〜1d
により検出された前後左右の車輪の車輪速の関数として
与えられるもので、算出の詳細については後述する。
FIG. 2 shows the flow of the main routine from the calculation of the wheel speed executed by the arithmetic processing unit 2 to the warning of the decrease in air pressure. Step (hereinafter referred to as S) 100
F and S100R denote a front wheel resonance frequency detection subroutine and a rear wheel resonance frequency detection subroutine, in which resonance frequencies are extracted based on front wheel speed and rear wheel speed, respectively.
In S200, a wheel speed deviation value D is calculated based on the four wheel speeds. The wheel speed deviation value D is determined by the wheel speed sensors 1a to 1d.
This is given as a function of the wheel speeds of the front, rear, left and right wheels detected by, and details of the calculation will be described later.

【0017】図3は共振周波数演算サブルーチンの流れ
を示すもので、前輪と後輪とで同一のフローである。S
110は車輪速センサ1a〜1dとともに車輪速検出手
段を構成する車輪速演算部2aの作動で、所定時間、例
えば5ms内に入力する各車輪速センサ1a〜1dから
のパルス信号の数から各車輪の車輪速を演算する。
FIG. 3 shows the flow of the resonance frequency calculation subroutine, which is the same for the front wheels and the rear wheels. S
Reference numeral 110 denotes an operation of a wheel speed calculating unit 2a which constitutes a wheel speed detecting means together with the wheel speed sensors 1a to 1d. Each wheel is calculated from the number of pulse signals input from the wheel speed sensors 1a to 1d within a predetermined time, for example, 5 ms. Is calculated.

【0018】S120〜170は共振周波数抽出手段と
しての作動である。S120はFFT演算部2bの作動
で、各車輪の車輪速をFFT演算しスペクトルデータを
得る。スペクトルデータはその各成分値が解像度Flsb
(Hz)の離散した周波数ごとに与えられる。次いで演
算回数カウンタNを1インクリイメントし、結果保存メ
モリB(N)に一時保存する(S130)。
Steps S120 to S170 are operations as resonance frequency extracting means. S120 is an operation of the FFT operation unit 2b, in which the wheel speed of each wheel is subjected to FFT operation to obtain spectrum data. In the spectral data, each component value has a resolution of F lsb
(Hz) for each discrete frequency. Next, the number-of-operations counter N is incremented by 1 and temporarily stored in the result storage memory B (N) (S130).

【0019】続くS140では演算回数カウンタNを所
定値n0 と比較する。N<n0 であればS110に戻
る。N≧n0 となれば、すなわち車輪速についてFFT
演算(S120)がn0 回、行われれば、S150に進
む。
[0019] Compare At subsequent S140 computation number counter N with a predetermined value n 0. If N <n 0 returns to S110. If N ≧ n 0 , that is, FFT for wheel speed
If the calculation (S120) is performed n 0 times, the process proceeds to S150.

【0020】S150は平均処理部2cの作動で、結果
保存メモリB(N)より上記n0 回のFFT演算の結果
を読み出し平均化する。路面に存在する凹凸の形状(大
きさや高さ)が一定ではなくFFT演算の結果にランダ
ムなばらつきを含んでおり、これを除去するためであ
る。S160は移動平均処理部2dの作動で、S150
において平均化したスペクトルデータを移動平均により
スムージング処理を行い、高周波成分を予め除去し共振
周波数の検出精度を高めている。
In step S150, the averaging unit 2c operates to read the results of the n 0 FFT operations from the result storage memory B (N) and average them. This is because the shape (size and height) of the unevenness existing on the road surface is not constant, and the results of the FFT calculation include random variations, which are to be removed. S160 is the operation of the moving average processing unit 2d, and S150
The smoothing process is performed on the averaged spectrum data by moving average to remove high frequency components in advance, thereby improving the detection accuracy of the resonance frequency.

【0021】S170は共振周波数演算部2eの作動
で、重心法による共振周波数演算サブルーチンである。
スムージング処理されたスペクトルデータより重心法に
より共振周波数を決定する。
S170 is an operation of the resonance frequency calculation unit 2e, which is a resonance frequency calculation subroutine by the center of gravity method.
The resonance frequency is determined from the smoothed spectrum data by the centroid method.

【0022】図4に重心法による共振周波数演算サブル
ーチンの詳細手順を示す。先ずS171では重心法を適
用する周波数範囲について式(1)により成分値F
(i)の総和Sを算出する。ここでiは周波数に対応し
たインデックスで、重心法を適用する周波数範囲はi=
ws〜Fweである。
FIG. 4 shows a detailed procedure of a resonance frequency calculation subroutine by the center of gravity method. First, in step S171, the component value F is calculated using Equation (1) for the frequency range to which the centroid method is applied.
The sum S of (i) is calculated. Here, i is an index corresponding to the frequency, and the frequency range to which the centroid method is applied is i =
F ws to F we .

【0023】[0023]

【数1】 (Equation 1)

【0024】S172ではS’を0にリセットするとと
もにiをFws−1に設定する。次いでiを1、インクリ
メントし(S173)、S’にF(i)を加算し更新す
る(S174)。S175ではS’をS/2と比較す
る。S173〜S175はS’がS/2に達するまで繰
り返され、そのときのiが成分値の重心となる周波数に
対応する。このようにして得られたiに解像度Flsb
乗じて共振周波数Fk を得る(S176)。以後、共振
周波数は右側前輪をFk (FR)、左側前輪をFk (F
L)、右側後輪をFk (RR)、左側後輪をFk (R
L)で表すものとする。
In S172, S 'is reset to 0 and i is set to F ws -1. Next, i is incremented by 1 (S173), and F (i) is added to S 'and updated (S174). In S175, S 'is compared with S / 2. S173 to S175 are repeated until S ′ reaches S / 2, and i at that time corresponds to the frequency at which the component value is located at the center of gravity. Thus the i obtained by multiplying the resolution F lsb obtain resonance frequency F k (S176). Thereafter, the resonance frequency of the right front wheel is F k (FR) and the left front wheel is F k (F
L), the right rear wheel is F k (RR), and the left rear wheel is F k (R
L).

【0025】図5にS200(図2)の車輪速偏差値演
算サブルーチンを示す。車輪速偏差値演算サブルーチン
は回転状態値演算手段としての作動部分である。S21
0〜230は車輪速偏差値演算部2gの作動で、S21
0,S220では前輪と後輪それぞれについて、検出さ
れた車輪速について偏度たる右側車輪と左側車輪の比F
d ,Rd を、式(2)、(3)により演算し(S21
0,S220)、これらから回転状態値たる車輪速偏差
値Dを式(4)により演算し、演算回数カウンタNを
1、インクリメントする(S230)。 Fd =FR/FL・・・・(2) Rd =RR/RL・・・・(3) D=Fd −Rd ・・・・(4)
FIG. 5 shows a subroutine for calculating the wheel speed deviation value in S200 (FIG. 2). The wheel speed deviation value calculation subroutine is an operation part as a rotation state value calculation means. S21
Reference numerals 0 to 230 denote operations of the wheel speed deviation value calculation unit 2g.
0, S220, the ratio F of the right wheel and the left wheel which is deviated with respect to the detected wheel speed for each of the front wheel and the rear wheel.
d and R d are calculated by the equations (2) and (3) (S21).
0, S220), the wheel speed deviation value D, which is the rotation state value, is calculated from the equation (4), and the number-of-calculations counter N is incremented by 1 (S230). F d = FR / FL ···· ( 2) R d = RR / RL ···· (3) D = F d -R d ···· (4)

【0026】S240では、演算回数カウンタNを所定
数n0 と比較する。N<n0 であればS210に戻る。
N≧n0 となれば、すなわち車輪速偏差値Dの演算(S
210〜230)がn0 回、行われれば、S250に進
む。
[0026] In S240, compares the number of operations counter N and the predetermined number n 0. If N <n 0 returns to S210.
If N ≧ n 0 , that is, the calculation of the wheel speed deviation value D (S
If (210 to 230) is performed n 0 times, the process proceeds to S250.

【0027】S250は車輪速偏差値平均処理部2iの
作動で、一時記憶したn0 個の車輪速偏差値Dを平均化
し、メインルーチン(図2)に返す。なお車輪速偏差値
Dの平均値も車輪速偏差値Dというものとする。
In step S250, the wheel speed deviation value averaging unit 2i operates to average the n 0 wheel speed deviation values D which are temporarily stored, and returns the result to the main routine (FIG. 2). Note that the average value of the wheel speed deviation values D is also referred to as a wheel speed deviation value D.

【0028】図6は車輪速偏差値Dの挙動を説明するも
のである。全車輪のタイヤ空気圧が正常で直線走行時に
は4輪とも車輪速が等しいから前輪の左右車輪速比
d 、後輪の左右車輪速比Rd はいずれも1であり、車
輪速偏差値Dは0となる。また旋回時には前輪は左右で
旋回半径が異なるため、前輪の左右車輪速比Fd は旋回
方向により1を中心に上下する。一方、後輪は特に高速
域において前輪と同じ挙動を示し、後輪の左右車輪速比
d は前輪の左右車輪速比Fd と等しい。したがって車
輪速偏差値Dは、旋回時における左右車輪速比Fd ,R
d の変化が互いに相殺し直線走行時、旋回時を問わず常
に同じ値となる。
FIG. 6 explains the behavior of the wheel speed deviation value D. All because wheel tire pressure of the equal 4-wheel wheel speed during straight running normal left and right front wheels wheel speed ratio F d, the left and right wheel speed ratio R d of the rear wheel is both 1, the wheel speed deviation D is It becomes 0. The front wheels during turning for left and right turning radius is different, the front wheels of the right and left wheel speed ratio F d to and below the 1 by turning direction. On the other hand, the rear wheels in particular shows the same behavior as the front wheels in a high speed region, the right and left wheel speed ratio R d of the rear wheel is equal to the left and right front wheels wheel speed ratio F d. Therefore, the wheel speed deviation value D is determined by the left and right wheel speed ratios F d , R
The changes in d cancel each other out and always take the same value regardless of whether the vehicle is traveling straight or turning.

【0029】次に例えば前輪の右側のタイヤ空気圧が低
下した場合、その車輪速は空気圧の低下にともなって大
きくなるから直線時においても前輪の左右車輪速比Fd
が増加する。一方、後輪は車輪速が左右で等しいから、
左右車輪速比Rd は1のままである。したがって車輪速
偏差値Dは、タイヤ空気圧の低下量に対応して正側に変
化する。その他の車輪のタイヤ空気圧が低下した場合も
同様に車輪速偏差値Dが変化するが、前輪の左側もしく
は後輪の右側のタイヤ空気圧が低下した場合、車輪速偏
差値Dは負値をとる。
[0029] Then for example if the right tire pressure of the front wheel is lowered, the wheel speed is the left and right front wheels wheel speed ratio even when the linear because increases with decreasing pressure F d
Increase. On the other hand, since the rear wheels have the same wheel speed on the left and right,
The left and right wheel speed ratio Rd remains 1. Therefore, the wheel speed deviation value D changes to the positive side in accordance with the amount of decrease in the tire pressure. The wheel speed deviation value D also changes when the tire air pressure of the other wheels decreases, but when the tire air pressure on the left side of the front wheel or the right side of the rear wheel decreases, the wheel speed deviation value D takes a negative value.

【0030】S100,S200において前後輪の共振
周波数Fk (FR),Fk (FL),Fk (RR),F
k (RL)および車輪速偏差値Dを演算した後、S30
0に進む。
In S100 and S200, the resonance frequencies Fk (FR), Fk (FL), Fk (RR), Fk
k (RL) and the wheel speed deviation value D, and then S30
Go to 0.

【0031】S300〜1100は判定手段たる空気圧
低下判断部2kの一部分の作動である。その他の部分に
ついては後述する。S300,S500では前輪の共振
周波数Fk (FR),Fk (FL)をそれぞれスレッシ
ョルド値Fshと比較する。スッショルド値Fshは空気
抜けのおそれありと認められる空気圧のときの共振周波
数に設定してある。前輪の共振周波数Fk (FR),F
k (FL)がFshを越えていれば警告装置3に警告信号
を出力する(S400,S600)。警告信号は空気圧
の低下量が数値で出力され、運転者は警告装置3より空
気圧の低下を数値により絶対評価できる。
Steps S300 to S1100 are the operations of a part of the air pressure drop judging section 2k as judging means. Other parts will be described later. In S300 and S500, the resonance frequencies Fk (FR) and Fk (FL) of the front wheels are compared with the threshold value Fsh . The Threshold Level Sshorudo value F sh is set to the resonance frequency when the air pressure is recognized that there is a risk of deflation. Front wheel resonance frequency F k (FR), F
k (FL) outputs a warning signal to the warning device 3 if beyond the F sh (S400, S600). As the warning signal, the amount of decrease in the air pressure is output as a numerical value, and the driver can absolutely evaluate the decrease in the air pressure by the numerical value from the warning device 3.

【0032】次いで車速Vを上限値たる限界速度Vsh
比較し(S700)、車速Vが限界速度Vsh以下であれ
ば共振周波数の検出精度は問題なしと判断し、後輪の共
振周波数Fk (RR),Fk (RL)をそれぞれ所定値
shと比較し(S800,S1000)、Fshを越えて
いれば警告装置3に警告信号を出力する(S900,S
1100)。限界速度VshはS100Rにおける後輪の
共振周波数Fk (RR),Fk (RL)の検出精度等に
基づいて設定する。
Next, the vehicle speed V is compared with a limit speed Vsh which is an upper limit value (S700). If the vehicle speed V is equal to or lower than the limit speed Vsh , it is determined that there is no problem in detecting the resonance frequency, and the resonance frequency F of the rear wheel is determined. k (RR) and F k (RL) are respectively compared with predetermined values F sh (S800, S1000), and if they exceed F sh , a warning signal is output to the warning device 3 (S900, S900).
1100). Resonance frequency F k of the rear wheels at the limit speed V sh is S100R (RR), is set based on detection accuracy of the F k (RL).

【0033】続くS1200は共振周波数記憶部2fの
作動で、S100F,100Rにおいて算出され空気圧
低下の判定に用いられた各輪の共振周波数Fk (F
R),Fk (FL),Fk (RR),Fk (RL)をそ
れぞれ基準値Fk (*)std (ここで*:FR,FL,
RR,RL)として更新記憶する。
The subsequent S1200 is resonant at the operating frequency storage unit 2f, S100F, resonance frequencies of the respective wheels that are used to determine the calculated pressure drop in the 100R F k (F
R), F k (FL), F k (RR), and F k (RL) are respectively set to reference values F k (*) std (where *: FR, FL,
(RR, RL).

【0034】S1300は車輪速偏差値記憶部2iの作
動でS200において算出された車輪速偏差値Dを基準
値Dstd として更新記憶する。
In step S1300, the wheel speed deviation value D calculated in step S200 by the operation of the wheel speed deviation value storage unit 2i is updated and stored as a reference value D std .

【0035】S700において車速Vが限界速度Vsh
上であればS1400に進む。S1400は差圧判定値
演算サブルーチンで、差圧判定値演算部2gの作動であ
る。
The vehicle speed V in S700 proceeds to S1400 if the limit speed V sh above. S1400 is a differential pressure determination value calculation subroutine, which is an operation of the differential pressure determination value calculation unit 2g.

【0036】図7に差圧判定値演算サブルーチンの詳細
な流れを示す。S1410は回転状態値変化量演算手段
としての作動で、上記メモリに記憶された基準値Dstd
を読み出し、式(5)により差圧判定値ΔD’を演算す
る。 ΔD’=D−Dstd ・・・・(5)
FIG. 7 shows a detailed flow of the differential pressure determination value calculation subroutine. S1410 is an operation as a rotation state value change amount calculating means, and the reference value D std stored in the memory is used.
Is read, and the differential pressure determination value ΔD ′ is calculated by equation (5). ΔD ′ = DD std (5)

【0037】S1420は共振周波数変化量演算手段と
しての作動で、式(6)、(7)により前輪共振周波数
の経時低下量を演算する。 ΔFk (FR)=Fk (FR)std −Fk (FR)・・・・(6) ΔFk (FL)=Fk (FL)std −Fk (FL)・・・・(7)
Step S1420 is an operation as a resonance frequency change amount calculating means, which calculates a temporal decrease amount of the front wheel resonance frequency by the equations (6) and (7). ΔF k (FR) = F k (FR) std −F k (FR) (6) ΔF k (FL) = F k (FL) std −F k (FL) (7)

【0038】S1430およびS1440は補正手段と
しての作動で、S1430では、前輪差圧補正値FDC
を式(8)により演算する。式中、係数Cはタイヤ空気
圧が低下したときの共振周波数と車輪速偏差値とを換算
する係数であり、記憶手段たる上記メモリに記憶してお
く。係数Cは予め実走行状態を模した実験等により求め
ておく。例えばタイヤ空気圧が100kPa低下したと
きの差圧判定値が5/1000で共振周波数低下量が8
HzであればCは1600となる。
Steps S1430 and S1440 are operations as correction means. In step S1430, the front wheel differential pressure correction value FDC
Is calculated by Expression (8). In the equation, the coefficient C is a coefficient for converting the resonance frequency and the wheel speed deviation value when the tire air pressure decreases, and is stored in the memory as the storage means. The coefficient C is obtained in advance by an experiment or the like that simulates an actual running state. For example, when the tire pressure drops by 100 kPa, the differential pressure judgment value is 5/1000 and the resonance frequency drop amount is 8
If it is Hz, C becomes 1600.

【0039】[0039]

【数2】 (Equation 2)

【0040】上記式(8)の右辺は前輪の左右のタイヤ
空気圧差により生じる前輪の左右輪の車輪速の偏度の変
化量を表しており、右側前輪のタイヤの空気圧低下が大
きければ正、左側前輪のタイヤの空気圧低下が大きけれ
ば負となる。
The right side of the above equation (8) represents the amount of change in the deviation of the wheel speed of the left and right front wheels caused by the difference between the right and left tire air pressures. It becomes negative if the air pressure drop of the left front tire is large.

【0041】次いで差圧判定値ΔD’を前輪差圧補正値
FDCを用いて式(9)により補正する(S144
0)。式中、ΔDは補正後の差圧判定値である。 ΔD=ΔD’−FDC・・・・(9)
Next, the differential pressure determination value ΔD ′ is corrected by the equation (9) using the front wheel differential pressure correction value FDC (S144).
0). In the equation, ΔD is a corrected differential pressure determination value. ΔD = ΔD′−FDC (9)

【0042】前輪差圧補正値FDCは上記のごとく前輪
の左右のタイヤ空気圧差により生じる前輪の左右輪の車
輪速の偏度の変化量を表しているから、補正後の差圧判
定値ΔDは後輪のタイヤ空気圧の変化にのみ依存する。
As described above, the front wheel differential pressure correction value FDC represents the amount of change in the deviation of the wheel speed of the left and right front wheels caused by the difference between the right and left tire air pressures of the front wheels. It only depends on changes in the rear tire pressure.

【0043】S1500〜1900は空気圧低下判断部
2kのその他の作動である。S1500では、差圧判定
値ΔDの正負を判定する。差圧判定値ΔDは上記のよう
に後輪のタイヤ空気圧にのみ依存し、右側後輪のタイヤ
の空気圧が低下していれば負値をとり、左側後輪のタイ
ヤの空気圧が低下していれば正値をとる。しかしてΔD
が負であれば右側後輪のタイヤの空気圧の低下と判断し
てS1600に進む。
Steps S1500 to S1900 are other operations of the air pressure drop judging section 2k. In S1500, it is determined whether the differential pressure determination value ΔD is positive or negative. The differential pressure determination value ΔD depends only on the tire pressure of the rear wheel as described above, and takes a negative value if the tire pressure of the right rear tire is decreasing, and takes a negative value if the tire pressure of the left rear wheel is decreasing. If the value is positive. And ΔD
Is negative, it is determined that the air pressure of the right rear tire has decreased, and the flow proceeds to S1600.

【0044】S1600の前半は駆動輪共振周波数推定
手段としての作動で、右側後輪のタイヤ空気圧低下によ
る共振周波数の変化量を求める。タイヤ空気圧が低下し
たときの共振周波数と車輪速偏差値は上記係数Cにより
換算されるから、共振周波数の変化量はC・ΔDで与え
られる。共振周波数の変化の始点における共振周波数
は、メモリに記憶された共振周波数基準値Fk (RR)
std である。また右側後輪のタイヤの空気圧の低下では
ΔDが負値となる。しかして共振周波数基準値F k (R
R)std をメモリから読み出し、右側後輪の共振周波数
を、Fk (RR)std +C・ΔDと推定する。
In the first half of S1600, the drive wheel resonance frequency is estimated.
Operation as a means to reduce the tire pressure on the right rear wheel.
The amount of change in the resonance frequency is determined. Tire pressure drops
The resonance frequency and wheel speed deviation value at the time of
Therefore, the amount of change in the resonance frequency is given by C · ΔD
Can be Resonance frequency at the start of the change in resonance frequency
Is the resonance frequency reference value F stored in the memory.k(RR)
stdIt is. Also, when the air pressure of the right rear tire drops,
ΔD becomes a negative value. Thus, the resonance frequency reference value F k(R
R)stdFrom the memory, and the resonance frequency of the right rear wheel
And Fk(RR)std+ C · ΔD.

【0045】S1600の後半は空気圧低下判断部2k
の残りの部分の作動で、推定した共振周波数を所定値F
shと比較し、Fshを越えていれば警告装置3に警告信号
を出力する(S1700)。警告信号は、推定した共振
周波数に基づき車速Vが限界速度Vshを越えない低速域
の場合と同様に、空気圧の低下量が数値で出力される。
In the latter half of S1600, the air pressure drop judging unit 2k
In the operation of the remaining part of
In comparison with sh , if Fsh is exceeded, a warning signal is output to the warning device 3 (S1700). As the warning signal, the amount of decrease in air pressure is output as a numerical value in the same manner as in the case where the vehicle speed V does not exceed the limit speed Vsh in a low speed range based on the estimated resonance frequency.

【0046】また差圧判定値ΔDが正であれば左側後輪
のタイヤの空気圧の低下と判断してS1800に進む。
S1800は実質的に右側後輪から左側後輪に置き換え
てS1600における手順を実行するものであるが、左
側後輪のタイヤの空気圧の低下ではΔDが負値となるか
ら、左側後輪の共振周波数は、Fk (RL)std −C・
ΔDと推定する。左側後輪の共振周波数の推定値がFsh
を越えていれば、右側後輪の場合(S1700)と同様
に警告装置3に警告信号を出力する(S1900)。
If the differential pressure determination value ΔD is positive, it is determined that the air pressure of the left rear wheel tire has decreased, and the flow advances to S1800.
In S1800, the procedure in S1600 is executed by substantially replacing the right rear wheel with the left rear wheel. However, when the air pressure of the left rear tire decreases, ΔD becomes a negative value. Is F k (RL) std −C ·
Estimate as ΔD. The estimated value of the resonance frequency of the left rear wheel is F sh
Is exceeded, a warning signal is output to the warning device 3 as in the case of the right rear wheel (S1700) (S1900).

【0047】図8は共振周波数および車速の経時変化を
示すもので、パンク等によりタイヤ空気圧が低下すると
共振周波数も低下する。車速Vが限界速度Vshを越える
までは共振周波数を直接演算により求め、共振周波数を
警告スレッショルド値Fshと比較し、当該タイヤの空気
圧状態の異常を警告する(共振点方式)。車速Vが限界
速度Vshを越えると、後輪については、越える前の最後
の共振周波数を共振周波数基準値としてこれらと差圧判
定値ΔDに基づいて推定により求め、推定した共振周波
数を警告スレッショルド値Fshと比較し、当該タイヤの
空気圧状態の異常を警告する。
FIG. 8 shows changes over time in the resonance frequency and the vehicle speed. When the tire air pressure decreases due to puncture or the like, the resonance frequency also decreases. Until the vehicle speed V exceeds the limit speed Vsh , the resonance frequency is directly calculated, and the resonance frequency is compared with a warning threshold value Fsh to warn of an abnormal air pressure condition of the tire (resonance point method). When the vehicle speed V exceeds a limit speed V sh, the rear wheel is calculated by the estimation on the basis of these and difference pressure determination value ΔD last resonance frequency before the resonance frequency reference value exceeds a warning threshold resonance frequency estimated The value is compared with the value Fsh to warn of an abnormality in the air pressure state of the tire.

【0048】(第2実施形態)図9に本発明の第2実施
形態を示す。第1実施形態の図1において差圧判定値演
算部2jと空気圧低下判断部2kの間に後輪周波数存在
判断部2lを設けたもので、図2のS700において車
速Vが限界速度Vshを越えた時のフロー(S1400〜
1900)を別の、差圧判定値による空気圧低下判断・
警告サブルーチンに変更している(図10)。この差圧
判定値による空気圧低下判断・警告サブルーチンを図1
1に示す。図中、第1実施形態の説明で示した図3と同
一番号を付したステップについては実質的に同じ作動を
するので第1実施形態との相違点を中心に説明する。
(Second Embodiment) FIG. 9 shows a second embodiment of the present invention. Which was provided with a rear wheel frequency existence determining unit 2l between the differential pressure determination value calculation unit 2j and the air pressure drop judgment unit 2k in Figure 1 of the first embodiment, the vehicle speed V in S700 of FIG. 2 is a limit speed V sh Flow when exceeding (S1400
1900) is another judgment of air pressure drop based on a differential pressure judgment value.
It has been changed to a warning subroutine (FIG. 10). FIG. 1 shows a subroutine for determining / warning air pressure based on the differential pressure determination value.
It is shown in FIG. In the figure, steps denoted by the same reference numerals as those in FIG. 3 described in the first embodiment perform substantially the same operation, and therefore, the description will be focused on differences from the first embodiment.

【0049】図11において、S2010では前輪のタ
イヤの共振周波数Fk (FR)stdおよびFk (FL)
std が検出済みであるかどうかを判定し、検出されてい
なければS100Fで演算したFk (FR),Fk (F
L)をFk (FR)std およびFk (FL)std とする
(S2020)。
In FIG. 11, in S2010, the resonance frequencies F k (FR) std and F k (FL) of the front tires are set.
It is determined whether or not std has already been detected. If not, F k (FR) and F k (F
L) is defined as F k (FR) std and F k (FL) std (S2020).

【0050】続いて車輪速偏差値の基準値Dstd が検出
済みであるかどうかを判定し、検出されていなければS
200(図10)で演算した差圧判定値DをDstd とし
(S2040)、本ルーチンは終了する。
Subsequently, it is determined whether or not the reference value D std of the wheel speed deviation has been detected.
The differential pressure determination value D calculated in 200 (FIG. 10) is set to D std (S2040), and this routine ends.

【0051】差圧判定値の基準値Dstd が検出済みであ
れば(S2030)、第1実施形態と同様に差圧判定値
演算サブルーチン(S1400)が実行され、差圧判定
値ΔDを得る。
If the reference value D std of the differential pressure determination value has been detected (S2030), the differential pressure determination value calculation subroutine (S1400) is executed as in the first embodiment, and the differential pressure determination value ΔD is obtained.

【0052】続くS2050は後輪共振周波数存在判断
部2lの作動で、後輪のタイヤの共振周波数Fk (R
R)std およびFk (RL)std が検出済みであるかど
うかを判定する。走行直後のごく早いときには、後輪の
共振周波数を推定するのに必要な後輪の共振周波数基準
値は未だ記憶されていない。したがって例えばパーキン
グエリア等から走行車線に勢いよく加速して合流し車速
Vが限界車速Vshを越えた場合、車速Vが限界車速Vsh
を越える前の後輪の共振周波数が検出不能である。そこ
で後輪の共振周波数基準値が記憶されている場合と、記
憶されていない場合とで別の手順を実行する。後輪のタ
イヤの共振周波数Fk (RR)std およびFk (RL)
std が検出されていれば第1実施形態と同様にS150
0〜1900を実行する。
The subsequent step S2050 is the operation of the rear wheel resonance frequency existence judging unit 21 to determine the resonance frequency F k (R
R) Determine if std and F k (RL) std have been detected. At a very early stage immediately after traveling, the rear wheel resonance frequency reference value required for estimating the rear wheel resonance frequency has not yet been stored. Therefore, for example, when the vehicle speed V exceeds the limit vehicle speed Vsh when the vehicle speed V exceeds the limit vehicle speed Vsh by vigorously accelerating from the parking area or the like to the driving lane, the vehicle speed V becomes the limit vehicle speed Vsh.
, The resonance frequency of the rear wheel before being exceeded cannot be detected. Therefore, different procedures are executed depending on whether the rear-wheel resonance frequency reference value is stored or not. Rear tire resonance frequency F k (RR) std and F k (RL)
If std has been detected, S150 is performed in the same manner as in the first embodiment.
Execute 0-1900.

【0053】後輪のタイヤの共振周波数Fk (RR)
std およびFk (RL)std がまだ検出されていなけれ
ば(S2050)、S2060で差圧判定値ΔDの大き
さ|ΔD|をスレッショルド値Dshと比較する。差圧判
定値ΔDは後輪のタイヤ空気圧差の変化にのみ依存する
から、後輪のタイヤのいずれかの空気圧が低下していれ
ば正負何れかに大きく偏する。スレッショルド値Dsh
空気圧低下と判断し得る差圧判定値ΔDの値で、予め実
験等により設定し演算処理装置2のメモリに記憶してお
く。
The resonance frequency F k (RR) of the rear wheel tire
If std and F k (RL) std has not yet been detected (S2050), the magnitude of the difference pressure determination value [Delta] D in S2060 | comparing the threshold value D sh | ΔD. Since the differential pressure determination value ΔD depends only on the change in the tire pressure difference of the rear wheels, if any one of the tires of the rear wheels has a decreased pressure, it is largely biased to either positive or negative. Threshold value D sh is the value of the differential pressure determination value ΔD which may determine the pressure drop and stored in the memory of the processing unit 2 is preset by an experiment or the like.

【0054】|ΔD|がDshよりも大きいときは、ΔD
の符号を判定する(S2070)。右側後輪の空気圧が
低下していれば後輪左右車輪速比Rd は増加するから差
圧判定値ΔDは負値をとる。したがって差圧判定値ΔD
の符号が負であれば右側後輪の空気圧低下を警告する警
告信号を警告装置3に出力し(S2080)、逆に差圧
判定値ΔDの符号が正であれば左側後輪の空気圧低下を
警告する警告信号を警告装置3に出力する(S209
0)。
[0054] | ΔD | when is greater than D sh is, ΔD
Is determined (S2070). Rear left wheel speed ratio R d if the air pressure of the right rear wheel is only to decrease the difference pressure determination value ΔD from increasing takes a negative value. Therefore, the differential pressure determination value ΔD
If the sign of is negative, a warning signal for warning of a decrease in the air pressure of the right rear wheel is output to the warning device 3 (S2080). Conversely, if the sign of the differential pressure determination value ΔD is positive, the decrease in the air pressure of the left rear wheel is determined. A warning signal for warning is output to the warning device 3 (S209)
0).

【0055】なおS2060において、|ΔD|がDsh
よりも小さいときはタイヤ空気圧状態は正常と判断す
る。
[0055] In S2060, | ΔD | is D sh
If it is smaller, the tire pressure state is determined to be normal.

【0056】(第3実施形態)図12に本発明の第3実
施形態を示す。第2実施形態の図9において差圧判定値
演算部2jの前段に車輪速偏差値デフォルト判定部2m
を設けたもので、図11の差圧判定値による空気圧低下
判断・警告サブルーチンを別の、差圧判定値による空気
圧低下判断・警告サブルーチンに変更している。この差
圧判定値による空気圧低下判断・警告サブルーチンを図
13に示す。図中、第2実施形態の説明で示した図11
と同一番号を付したステップについては実質的に同じ作
動をするので第2実施形態との相違点を中心に説明す
る。
(Third Embodiment) FIG. 12 shows a third embodiment of the present invention. In FIG. 9 of the second embodiment, a wheel speed deviation default determination unit 2m is provided before the differential pressure determination value calculation unit 2j.
In this embodiment, the air pressure drop judgment / warning subroutine based on the differential pressure judgment value in FIG. 11 is changed to another air pressure drop judgment / warning subroutine using the differential pressure judgment value. FIG. 13 shows a subroutine for determining / warning the air pressure based on the differential pressure determination value. In the figure, FIG. 11 shown in the description of the second embodiment
The steps denoted by the same reference numerals perform substantially the same operation, and therefore, the description will focus on the differences from the second embodiment.

【0057】第2実施形態のタイヤ空気圧検知装置で
は、パーキングエリア等から走行車線に勢いよく加速し
て合流し車速Vが限界車速Vshを越え、後輪の共振周波
数が抽出不能であっても、差圧判定値ΔDを演算する
(図11のS1400)ことにより後輪各輪のタイヤ空
気圧状態が判定できる。しかし差圧判定値ΔDは2つの
時点におけるデータが必要であるから、あるタイヤの空
気圧が極めて低く大きな車輪速偏差を生じたままパーキ
ングエリア等から走行車線に勢いよく加速して合流し車
速Vが限界車速Vshを越えた場合、最初の差圧判定値Δ
Dが演算されるまでにタイムラグが生じ、後輪にパンク
等が生じていてもそれを早期に知ることができない。
In the tire pressure detecting device of the second embodiment, even if the vehicle speed V exceeds the limit vehicle speed Vsh due to vigorous acceleration from the parking area or the like to the traveling lane, the resonance frequency of the rear wheel cannot be extracted. By calculating the differential pressure determination value ΔD (S1400 in FIG. 11), the tire pressure state of each rear wheel can be determined. However, since the differential pressure determination value ΔD requires data at two time points, the tire pressure is extremely low and a large wheel speed deviation is generated, and the vehicle is accelerated vigorously from the parking area to the traveling lane to join the vehicle. exceeding the limit speed V sh, the first differential pressure determination value Δ
A time lag occurs before D is calculated, and even if a puncture or the like occurs on the rear wheel, it cannot be known early.

【0058】そこで本実施形態では、図13において、
車輪速偏差値の基準値Dstd がまだ検出されていないと
(S2030)、車輪速偏差値Dを基準値Dstd とした
(S2040)後、車輪速偏差値Dの大きさ|D|をデ
フォルト値Ddsh と比較し、デフォルト値Ddsh よりも
大きければ警告信号を警告装置3に発する(S302
0)。これにより走行開始時から後輪のいずれかのタイ
ヤの空気圧が低い状態で、走行開始後すぐ車速Vが限界
車速Vshを越えても早期にタイヤの空気圧状態の異常を
知ることができる。
Therefore, in this embodiment, in FIG.
If the reference value D std of the wheel speed deviation value has not been detected yet (S2030), the wheel speed deviation value D is set to the reference value D std (S2040), and the magnitude | D | compared with the values D dsh, an alarm signal is larger than the default value D dsh the warning device 3 (S302
0). As a result, when the air pressure of any one of the rear wheels is low from the start of traveling and the vehicle speed V exceeds the limit vehicle speed Vsh immediately after the start of traveling, an abnormality in the tire air pressure state can be known at an early stage .

【0059】なお、上記各実施形態では左右の車輪の回
転状態の偏度を車輪速比としたが、車輪加速度を、例え
ば前後する時点における車輪速の差分より求め、左右の
車輪の回転状態の偏度を車輪加速度比としてもよい。
In each of the above embodiments, the deviation of the rotation state of the left and right wheels is used as the wheel speed ratio. The bias may be the wheel acceleration ratio.

【0060】また回転状態値は、左右の車輪速比の前後
輪差で表した車輪速偏差値としたが、左右の車輪速比の
前後輪比等、左右の車輪の回転状態の偏度に依存し、旋
回による左右の車輪の回転状態の偏度の変化が相殺され
るような関数が用いられ得る。
The rotation state value is a wheel speed deviation value represented by a difference between the front and rear wheel speed ratio of the left and right wheel speed ratios. A function that depends on the rotation and cancels the change in the degree of rotation of the left and right wheels due to the turning can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1のタイヤ空気圧検知装置の構成図
である。
FIG. 1 is a configuration diagram of a first tire pressure detection device of the present invention.

【図2】本発明の第1のタイヤ空気圧検知装置の作動を
説明する第1のフローチャートである。
FIG. 2 is a first flowchart illustrating the operation of the first tire pressure detecting device of the present invention.

【図3】本発明の第1のタイヤ空気圧検知装置の作動を
説明する第2のフローチャートである。
FIG. 3 is a second flowchart illustrating the operation of the first tire pressure detecting device of the present invention.

【図4】本発明の第1のタイヤ空気圧検知装置の作動を
説明する第3のフローチャートである。
FIG. 4 is a third flowchart illustrating the operation of the first tire pressure detecting device of the present invention.

【図5】本発明の第1のタイヤ空気圧検知装置の作動を
説明する第4のフローチャートである。
FIG. 5 is a fourth flowchart illustrating the operation of the first tire air pressure detecting device of the present invention.

【図6】本発明の第1のタイヤ空気圧検知装置の作動を
説明する模式図である。
FIG. 6 is a schematic diagram for explaining the operation of the first tire pressure detecting device of the present invention.

【図7】本発明の第1のタイヤ空気圧検知装置の作動を
説明する第5のフローチャートである。
FIG. 7 is a fifth flowchart illustrating the operation of the first tire air pressure detecting device of the present invention.

【図8】本発明の第1のタイヤ空気圧検知装置の作動を
説明するグラフである。
FIG. 8 is a graph illustrating the operation of the first tire pressure detecting device of the present invention.

【図9】本発明の第2のタイヤ空気圧検知装置の構成図
である。
FIG. 9 is a configuration diagram of a second tire pressure detection device of the present invention.

【図10】本発明の第2のタイヤ空気圧検知装置の作動
を説明する第1のフローチャートである。
FIG. 10 is a first flowchart illustrating the operation of the second tire pressure detecting device of the present invention.

【図11】本発明の第2のタイヤ空気圧検知装置の作動
を説明する第2のフローチャートである。
FIG. 11 is a second flowchart illustrating the operation of the second tire pressure detecting device of the present invention.

【図12】本発明の第3のタイヤ空気圧検知装置の構成
図である。
FIG. 12 is a configuration diagram of a third tire pressure detection device of the present invention.

【図13】本発明の第3のタイヤ空気圧検知装置の作動
を説明するフローチャートである。
FIG. 13 is a flowchart illustrating the operation of the third tire pressure detecting device of the present invention.

【図14】従来の一のタイヤ空気圧検知装置の作動を説
明する第1のグラフである。
FIG. 14 is a first graph illustrating the operation of one conventional tire pressure detecting device.

【図15】従来の一のタイヤ空気圧検知装置の作動を説
明する第2のグラフである。
FIG. 15 is a second graph illustrating the operation of one conventional tire pressure detecting device.

【符号の説明】[Explanation of symbols]

1a〜1d 車輪速センサ(車輪速検出手段) 2 演算処理装置 2a 車輪速演算部(車輪速検出手段) 2b FFT演算部(共振周波数抽出手段) 2c 平均処理部(共振周波数抽出手段) 2d 移動平均処理部(共振周波数抽出手段) 2e 共振周波数演算部(共振周波数抽出手段) 2f 共振周波数記憶部 2g 車輪速偏差値演算部(回転状態値演算手段) 2h 車輪速偏差値平均処理部(回転状態値演算手段) 2i 車輪速偏差値記憶部 2j 差圧判定値演算部(回転状態値変化量演算手段、
記憶手段、補正手段) 2k 空気圧低下判断部(駆動輪共振周波数推定手段、
判定手段) 2l 後輪共振周波数存在判断部(判定手段) 2m 車輪速偏差値デフォルト判定部(判定手段)
1a to 1d Wheel speed sensor (wheel speed detecting means) 2 Arithmetic processing unit 2a Wheel speed calculating unit (wheel speed detecting means) 2b FFT calculating unit (resonant frequency extracting means) 2c Average processing unit (resonant frequency extracting means) 2d Moving average Processing unit (resonance frequency extraction unit) 2e Resonance frequency calculation unit (resonance frequency extraction unit) 2f Resonance frequency storage unit 2g Wheel speed deviation value calculation unit (rotation state value calculation unit) 2h Wheel speed deviation value average processing unit (rotation state value) Calculation means) 2i Wheel speed deviation value storage unit 2j Differential pressure judgment value calculation unit (Rotation state value change amount calculation means,
Storage unit, correction unit) 2k air pressure drop determining unit (drive wheel resonance frequency estimating unit,
Judgment unit) 2l Rear wheel resonance frequency existence judgment unit (judgment unit) 2m Wheel speed deviation default judgment unit (judgment unit)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 祐一 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (72)発明者 冨板 健治 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (72)発明者 深田 伸次郎 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (72)発明者 大橋 秀樹 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 梅野 孝治 愛知県愛知郡長久手町長湫横道41番地の 1 株式会社豊田中央研究所内 審査官 出口 昌哉 (56)参考文献 特開 平5−133831(JP,A) 特開 平6−328920(JP,A) 特開 平8−216636(JP,A) 特開 平8−156536(JP,A) 特開 平6−286432(JP,A) 特開 平7−178107(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60C 23/00 - 23/06 G01L 17/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yuichi Inoue 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Co., Ltd. 72) Inventor Shinjiro Fukada 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside DENSO Co., Ltd. 41, No. 41, Chuchu-Yokomichi, Nagakute-cho, Aichi-gun Examiner, Masaya Deguchi in Toyota Central Research Laboratory, Inc. (56) References JP-A-5-133383 (JP, A) JP-A-6-328920 (JP, A) JP-A-8-216636 (JP, A) JP-A-8-156536 (JP, A) JP-A-6-286432 (JP, A) JP-A-7-178107 (JP, A) ) (58) investigated the field (Int.Cl. 7, DB name) B60C 23/00 - 23/06 G01L 17/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車両の走行時に、各車輪の車輪速を逐次
検出する車輪速検出手段と、車輪速検出手段により検出
された各車輪速から各車輪に取り付けられたタイヤの共
振周波数を抽出する共振周波数抽出手段と、上記共振周
波数に基づいてタイヤの空気圧状態を判定する判定手段
とを具備するタイヤ空気圧検知装置において、上記車輪
速検出手段により検出された車輪速に基づいて、従動輪
における左右の車輪の回転状態の偏度と駆動輪における
左右の車輪の回転状態の偏度の差に依存する回転状態値
を演算する回転状態値演算手段と、予め、タイヤの空気
圧が変化したときの共振周波数と回転状態値の関係を記
憶する記憶手段と、車速が予め設定した上限値以上にな
ってからの回転状態値の経時変化量を演算する回転状態
値変化量演算手段と、車速が上記上限値以上になってか
らの従動輪の共振周波数の経時変化量を演算する共振周
波数変化量演算手段と、記憶手段に記憶された関係に基
づき、従動輪の共振周波数の経時変化量を回転状態値の
経時変化量に換算し、換算された経時変化量により回転
状態値の経時変化量を補正する補正手段と、車速が上記
上限値以上になると、記憶手段に記憶された関係に基づ
き、補正手段により補正された回転状態値経時変化量を
車速が上記上限値以上になってからの駆動輪の共振周波
数経時変化量に換算し、車速が上記上限値を越える前の
駆動輪の共振周波数および上記経時変化量から駆動輪の
共振周波数を推定する駆動輪共振周波数推定手段とを具
備し、上記判定手段はこれを、車速が上記上限値以上に
なると、駆動輪のタイヤ空気圧状態を、駆動輪共振周波
数推定手段により推定された共振周波数に基づいて判定
するように設定したことを特徴とするタイヤ空気圧検知
装置。
When a vehicle is running, a wheel speed detecting means for sequentially detecting a wheel speed of each wheel, and a resonance frequency of a tire attached to each wheel is extracted from each wheel speed detected by the wheel speed detecting means. In a tire pressure detecting device comprising: a resonance frequency extracting unit; and a determining unit that determines a tire air pressure state based on the resonance frequency, a left and right side of a driven wheel based on a wheel speed detected by the wheel speed detecting unit. A rotation state value calculating means for calculating a rotation state value dependent on a difference between the rotation degree deviation of the wheels and the rotation state deviations of the left and right wheels in the driving wheels, and a resonance when the tire air pressure changes in advance. storage means for storing a relationship between the frequency and the rotational state value, it equal to or greater than the upper limit of the vehicle speed is preset
A rotational state value change amount calculating means for calculating a temporal change amount of the rotational state value from the I or the vehicle speed is equal to or more than the upper limit value
The resonance frequency change amount calculating means for calculating the change amount of the resonance frequency of the driven wheel over time, and the change amount of the resonance frequency of the driven wheel over time to the change amount of the rotation state value based on the relationship stored in the storage means. converted, a correction means for correcting the amount of change over time in rotation state values with time variation that is converted, when the vehicle speed becomes equal to or higher than the <br/> upper limit, based on the stored relationship in the memory means, the correction means The corrected rotation state value over time
The resonance frequency of the drive wheel is converted into a change over time in the resonance frequency of the drive wheel after the vehicle speed exceeds the upper limit, and the resonance frequency of the drive wheel is estimated from the resonance frequency of the drive wheel before the vehicle speed exceeds the upper limit and the change over time. A driving wheel resonance frequency estimating unit that determines the tire pressure state of the driving wheel based on the resonance frequency estimated by the driving wheel resonance frequency estimating unit when the vehicle speed becomes equal to or higher than the upper limit value. A tire pressure detection device, wherein the setting is made to make a determination.
【請求項2】 請求項1記載のタイヤ空気圧検知装置に
おいて、上記偏度を車輪速比としたタイヤ空気圧検知装
置。
2. The tire pressure detecting device according to claim 1, wherein the deviation is a wheel speed ratio.
【請求項3】 請求項1記載のタイヤ空気圧検知装置に
おいて、上記偏度を車輪加速度比としたタイヤ空気圧検
知装置。
3. The tire pressure detecting device according to claim 1, wherein the deviation is a wheel acceleration ratio.
【請求項4】 請求項1ないし3いずれか記載のタイヤ
空気圧検知装置において、上記判定手段はこれを、車速
が上記上限値を越える前の駆動輪の共振周波数が抽出不
能のとき、駆動輪のタイヤ空気圧状態を、上記補正手段
により補正された回転状態値経時変化量に基づいて判定
するように設定したタイヤ空気圧検知装置。
4. The tire air pressure detecting device according to claim 1, wherein the determining means determines whether the resonance frequency of the driving wheel before the vehicle speed exceeds the upper limit value cannot be extracted. A tire pressure detecting device which is set so as to determine a tire pressure condition based on a rotational state value temporal change amount corrected by the correction means.
【請求項5】 請求項1ないし4いずれか記載のタイヤ
空気圧検知装置において、上記判定手段はこれを、上記
回転状態値経時変化量が演算不能のとき、上記回転状態
値演算手段により演算された回転状態値に基づいて駆動
輪のタイヤ空気圧状態を判定するように設定したタイヤ
空気圧検知装置。
5. The tire pressure detecting device according to claim 1, wherein the determination means calculates the tire pressure by the rotation state value calculation means when the rotation state value change with time cannot be calculated. A tire pressure detection device set to determine a tire pressure state of a drive wheel based on a rotation state value.
JP30134496A 1996-09-26 1996-10-25 Tire pressure detector Expired - Fee Related JP3333698B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30134496A JP3333698B2 (en) 1996-10-25 1996-10-25 Tire pressure detector
US08/939,048 US5982279A (en) 1996-09-26 1997-09-26 Tire air pressure detecting device
EP97116807A EP0832768B1 (en) 1996-09-26 1997-09-26 Tire air pressure detecting device
DE69714930T DE69714930T2 (en) 1996-09-26 1997-09-26 Device for tire pressure detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30134496A JP3333698B2 (en) 1996-10-25 1996-10-25 Tire pressure detector

Publications (2)

Publication Number Publication Date
JPH10129222A JPH10129222A (en) 1998-05-19
JP3333698B2 true JP3333698B2 (en) 2002-10-15

Family

ID=17895744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30134496A Expired - Fee Related JP3333698B2 (en) 1996-09-26 1996-10-25 Tire pressure detector

Country Status (1)

Country Link
JP (1) JP3333698B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2438100A1 (en) 2001-02-08 2002-08-15 Motonori Tominaga Tire pneumatic pressure detector
EP1364813A4 (en) 2001-02-08 2004-12-15 Nippon Soken Tire pneumatic pressure detector
JP3872367B2 (en) 2002-03-26 2007-01-24 トヨタ自動車株式会社 Tire quantity estimation device
JP5689105B2 (en) * 2012-11-09 2015-03-25 住友ゴム工業株式会社 Tire pressure drop detection device, method and program
KR101535856B1 (en) * 2013-12-12 2015-07-13 현대오트론 주식회사 Tire Pressure Monitoring Apparatus and Method

Also Published As

Publication number Publication date
JPH10129222A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP3333691B2 (en) Tire pressure detector
EP1767422B1 (en) Method and apparatus for evaluating a cornering stability of a wheel
EP0832768B1 (en) Tire air pressure detecting device
EP3800100B1 (en) Road surface condition estimation apparatus and road surface condition estimation method using the same
JP3333698B2 (en) Tire pressure detector
JPH10100621A (en) Tire pneumatic pressure lowering detecting method and device thereof
JP3948678B2 (en) Wheel turning stability evaluation method and wheel turning stability evaluation apparatus
US6584427B2 (en) Method and apparatus for estimating tire air pressure
JP3366584B2 (en) Apparatus and method for detecting decrease in tire air pressure
US7171297B2 (en) Road surface condition determination apparatus
JPH11235907A (en) Tire air pressure estimating device
JP3300572B2 (en) Tire pressure estimation device
JP3333693B2 (en) Tire pressure detector
JP3438599B2 (en) Tire pressure estimation device
JP3167278B2 (en) Method and apparatus for detecting decrease in tire air pressure
JP3328533B2 (en) Tire pressure abnormality judgment device
JP3095095B2 (en) Tire abnormal wear detection device
JP3772677B2 (en) Tire pressure detector
JP3333702B2 (en) Tire pressure detector
JPH06183231A (en) Tire pressure detecting device
JP3328534B2 (en) Tire pressure abnormality judgment device
JP3136772B2 (en) Tire pressure detector
JP3358323B2 (en) Tire pressure detector
JP2002234323A (en) Tire air pressure detector
JP2002234321A (en) Tire air pressure detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees