JP3332197B2 - Method of manufacturing electrode wire for electric discharge machining - Google Patents

Method of manufacturing electrode wire for electric discharge machining

Info

Publication number
JP3332197B2
JP3332197B2 JP03927196A JP3927196A JP3332197B2 JP 3332197 B2 JP3332197 B2 JP 3332197B2 JP 03927196 A JP03927196 A JP 03927196A JP 3927196 A JP3927196 A JP 3927196A JP 3332197 B2 JP3332197 B2 JP 3332197B2
Authority
JP
Japan
Prior art keywords
wire
electric discharge
discharge machining
layer
electrode wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03927196A
Other languages
Japanese (ja)
Other versions
JPH09225748A (en
Inventor
正義 青山
幸一 田村
孝光 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP03927196A priority Critical patent/JP3332197B2/en
Publication of JPH09225748A publication Critical patent/JPH09225748A/en
Application granted granted Critical
Publication of JP3332197B2 publication Critical patent/JP3332197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ワイヤ放電加工に
用いられる放電加工用電極線の製造方法、特に、銅合金
による放電加工用電極線の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode wire for electric discharge machining used for wire electric discharge machining, and more particularly to a method for producing an electrode wire for electric discharge machining using a copper alloy.

【0002】[0002]

【従来の技術】ワイヤ放電加工は、電極線となる細い金
属ワイヤ(放電加工用電極線)を巻き取りつつ被加工物
に対して三次元の送りをかけ、金属ワイヤと被加工物と
の間に放電を行いながら被加工物を溶断して糸鋸式の加
工を行うもので、特定形状の電極を使用しないで高精度
に三次元形状の製品を創成することができる。特に、加
工の困難な超硬合金等の加工が高精度に行えるため、近
年、実用範囲が広がりつつある。
2. Description of the Related Art In wire electric discharge machining, a thin metal wire (electrode wire for electric discharge machining) serving as an electrode wire is wound up and three-dimensionally fed to a work to be wound. In this method, a workpiece is blown while performing electric discharge to perform a saw-tooth processing, and a three-dimensional product can be created with high accuracy without using an electrode having a specific shape. Particularly, since a hard metal or the like that is difficult to machine can be machined with high precision, the practical range has been expanding in recent years.

【0003】従来より用いられている放電加工用電極線
として、例えば、Cu−35重量%Zn黄銅電極線があ
る。「伸銅技術研究会誌」26、(1987)P181
(発表者:折茂、石橋、奥野)に記載のように、組成中
のZn濃度が高いほど、加工速度を向上できることが知
られている。ところが、Zn(亜鉛)の量が40重量%
を越えるとβ相が形成されるため、冷間圧延では伸線加
工が行えない。このように、加工性の問題から、Znを
含む放電加工用電極線においては、Cu−35重量%Z
n黄銅線が標準品と考えられている。
Conventionally used electrode wires for electrical discharge machining include, for example, Cu-35 wt% Zn brass electrode wires. "Journal of Copper and Copper Technology", 26, (1987) P181
(Presenters: Orimo, Ishibashi, Okuno) It is known that the higher the Zn concentration in the composition, the higher the processing speed can be. However, the amount of Zn (zinc) is 40% by weight.
If β exceeds, a β phase is formed, so that wire drawing cannot be performed by cold rolling. Thus, due to the problem of workability, in the electrode wire for electric discharge machining containing Zn, Cu-35% by weight Z
An n-brass wire is considered a standard product.

【0004】しかし、加工速度の向上は、生産性の向上
につながることから、Znを含みながら加工速度を高め
るための提案が種々なされている。例えば、50%以上
のZnを含む合金で芯材を被覆した電極線(特公昭57
−5648号公報)がある。更に、芯材上に被覆層を形
成する電極線として、例えば、銅合金にZn(又はZn
合金)を浸漬焼鈍させて表面にZn富化層を形成した電
極線(特開昭62−218026号公報)、鋼線に通電
性の良い金属を被覆した複合電極線(特公昭57−57
211号公報)、銅合金線の表面に所定の厚みのCu−
Zn合金層を設け、更にCu−Zn合金層の表面に所定
厚のZn層を設けた電極線(特開昭61−117021
号公報)等がある。また、銅被覆鋼線の表面に合金層を
設け、そのZnの濃度が外表面に向かって高くなるよう
にした電極線(特公平2−49849号公報)も提案さ
れている。
However, since an improvement in the processing speed leads to an improvement in productivity, various proposals have been made to increase the processing speed while containing Zn. For example, an electrode wire whose core material is coated with an alloy containing 50% or more of Zn (Japanese Patent Publication No.
-5648). Further, as an electrode wire for forming a coating layer on a core material, for example, Zn (or Zn
Alloy wire) in which a Zn-enriched layer is formed on the surface by immersion annealing (JP-A-62-218026) and a composite electrode wire in which a steel wire is coated with a metal having good electrical conductivity (Japanese Patent Publication No. 57-57).
No. 211), a predetermined thickness of Cu-
An electrode wire in which a Zn alloy layer is provided, and a Zn layer having a predetermined thickness is further provided on the surface of the Cu-Zn alloy layer (Japanese Patent Application Laid-Open No. 61-117021)
Publication). Also, an electrode wire (JP-B 2-49849) has been proposed in which an alloy layer is provided on the surface of a copper-coated steel wire so that the concentration of Zn increases toward the outer surface.

【0005】更に、Cr、Zr、Fe、Be、Co、T
i等のいずれか1つを0.03〜5.0重量%含む合金
を芯材に用い、この表面にZnを95%以上含む金属を
溶融メッキし、この後、5%以上の冷間加工を施した電
極線(特開昭59−134629号公報)も提案されて
いる。ところで、この提案において、芯材を構成する合
金の中でCu−Zr合金又はCu−Cr合金は、所望の
抗張力を得るためには溶体化処理が不可欠であるが、一
般にCu−Zr合金又はCu−Cr合金の溶体化処理
は、通常、8〜13mmφの線材に対し、950°C、
3時間の加熱処理後、急冷を行う方法で行われている。
Further, Cr, Zr, Fe, Be, Co, T
An alloy containing 0.03 to 5.0% by weight of any one of i and the like is used as a core material, and a metal containing 95% or more of Zn is hot-dip plated on the surface thereof, and then cold-worked to 5% or more. (JP-A-59-134629) has also been proposed. By the way, in this proposal, among the alloys constituting the core material, a Cu—Zr alloy or a Cu—Cr alloy requires a solution treatment in order to obtain a desired tensile strength. -Solution treatment of the Cr alloy is usually performed at 950 ° C. for a wire rod of 8 to 13 mmφ.
After the heat treatment for 3 hours, rapid cooling is performed.

【0006】[0006]

【発明が解決しようとする課題】このため、従来の放電
加工用電極線の製造方法として、Cu−Zr合金又はC
u−Cr合金の溶体化を、950°Cで3時間という条
件で行うとすれば、コストアップの原因になることは避
けられず、もし、走行溶体化が可能になれば、溶体化に
おけるコストダウンが可能になる。また、従来の放電加
工用電極線によれば、一応の加工速度及び加工特性は得
られるものの、更なる加工速度の向上、耐断線性の向上
が望まれている。
Therefore, as a conventional method for manufacturing an electrode wire for electric discharge machining, a Cu--Zr alloy or a C
If the solution of the u-Cr alloy is carried out at 950 ° C. for 3 hours, it is unavoidable that this will cause an increase in cost. Down becomes possible. Further, according to the conventional electrode wire for electric discharge machining, although a certain machining speed and machining characteristics can be obtained, it is desired to further improve the machining speed and the disconnection resistance.

【0007】そこで本発明は、加工速度及び加工特性の
向上を図りながら、走行溶体化を可能にする放電加工用
電極線の製造方法を提供することを目的としている。
Accordingly, an object of the present invention is to provide a method of manufacturing an electrode wire for electric discharge machining, which enables a running solution while improving the machining speed and machining characteristics.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、Zr又はCrを含む銅合金からなり、
走行溶体化が可能な中間サイズの線材を不活性ガス雰囲
気中で700〜950℃で加熱しながら走行させ、前記
不活性ガス雰囲気を通過した前記線材を直ちに水冷して
走行溶体化処理し、この走行溶体化処理の済んだ線材の
表面にZn層又はCu−Zn層による表面層を形成し、
この表面層を形成した線材に対して冷間伸線する方法に
している。
In order to achieve the above-mentioned object, the present invention comprises a copper alloy containing Zr or Cr ,
A medium-sized wire rod capable of running solution is run while being heated at 700 to 950 ° C. in an inert gas atmosphere, and the wire rod that has passed through the inert gas atmosphere is immediately cooled with water.
Running solution treatment, forming a surface layer of a Zn layer or Cu-Zn layer on the surface of the wire rod after the running solution treatment,
The wire having the surface layer is cold drawn.

【0009】この方法によれば、Zr又はCrを含む銅
合金を不活性ガス雰囲気中を走行しながら加熱し、加熱
直後に冷却を行うことにより走行溶体化処理が行われ、
前記銅合金が溶体化する。更に、溶体化処理した線材に
対し、Zn又はCu−Znによる加工速度を向上させる
ための表面層が線材を走行させながら形成される。この
結果、溶体化処理では電極線の耐熱性が向上し、表面層
の形成によって加工速度が向上する。
According to this method, a traveling solution heat treatment is performed by heating a copper alloy containing Zr or Cr while traveling in an inert gas atmosphere and cooling immediately after the heating.
The copper alloy turns into a solution. Further, a surface layer for improving the processing speed by Zn or Cu-Zn is formed on the solution-treated wire while the wire is running. As a result, in the solution treatment, the heat resistance of the electrode wire is improved, and the processing speed is improved by forming the surface layer.

【0010】前記表面層の形成は、Zn粉末、樹脂沈降
防止剤及び溶剤をスラリ状にして塗布した後に乾燥する
方法によって行うことができる。この方法によれば、表
面層を設けるための素材の形成が塗装手段を用い、かつ
線材を走行させながら行える。したがって、設備コスト
の低減が可能になる。前記表面層の形成は、電気メッキ
法又は溶融メッキ法を用いることができる。この形成方
法も線材を走行させながら行え、このための装置も簡単
に構成することができる。
The formation of the surface layer can be carried out by applying a slurry of a Zn powder, a resin anti-settling agent and a solvent, and then drying the slurry. According to this method, the material for forming the surface layer can be formed using the coating means and while the wire is running. Therefore, equipment cost can be reduced. The surface layer can be formed by an electroplating method or a hot-dip plating method. This forming method can be performed while running the wire rod, and an apparatus for this can be easily configured.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を基に説明する。図1は本発明による放電加工用
電極線の製造方法を達成するための製造設備を示す概略
構成図である。図1に示す製造設備は、走行溶体化処理
ラインAと粉末コーティングラインBから構成されてい
る。まず、走行溶体化処理ラインAの構成について説明
する。走行溶体化処理ラインAは、処理の流れ方向にペ
イオフ1、加熱電気炉2、冷却水槽3、定速巻取機4及
び整列巻取機5が順次直列的に配置された構成になって
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a manufacturing facility for achieving a method for manufacturing an electrode wire for electric discharge machining according to the present invention. The manufacturing equipment shown in FIG. 1 includes a traveling solution treatment line A and a powder coating line B. First, the configuration of the traveling solution heat treatment line A will be described. The traveling solution heat treatment line A has a configuration in which a payoff 1, a heating electric furnace 2, a cooling water tank 3, a constant-speed winding machine 4, and an alignment winding machine 5 are sequentially arranged in series in the processing flow direction. .

【0012】ペイオフ1は2つのプーリ6a,6bを備
え、加工後に放電加工用電極線となる線材7の巻き取り
やガイドに用いられている。加熱電気炉2は不図示のヒ
ータによって内部が加熱されており、両端には線材7を
挿通するための開口(不図示)が設けられている。そし
て、内部には線材7の表面に酸化等が生じるのを防止す
るための不活性(N2 、Ar等)ガスが供給され、この
不活性ガス雰囲気中にペイオフ1からの線材7(この線
材7の構成については後記する)が挿通される。不活性
ガスを流通させるために、加熱電気炉2にはガス供給口
8及びガス排出口9が設けられている。
The payoff 1 has two pulleys 6a and 6b, and is used for winding and guiding a wire 7 which becomes an electrode wire for electric discharge machining after machining. The inside of the heating electric furnace 2 is heated by a heater (not shown), and openings (not shown) for inserting the wires 7 are provided at both ends. An inert (N 2 , Ar, etc.) gas for preventing oxidation or the like from being generated on the surface of the wire 7 is supplied into the inside, and the wire 7 from the payoff 1 (this wire) is supplied in the inert gas atmosphere. 7 will be described later). The heating electric furnace 2 is provided with a gas supply port 8 and a gas discharge port 9 for flowing an inert gas.

【0013】冷却水槽3は内部に所定量の冷却水10が
満たされ、この冷却水10中を加熱電気炉2からの線材
7が通過できるように、ガイド用の複数のプーリ11
a,11b,11c,11dが設置されている。更に、
定速巻取機4は複数のプーリ12a,12bを内蔵し、
冷却水槽3からの線材7を後段に一定速度で送るための
機能を有している。整列巻取機5は、定速巻取機4から
の線材7をガイドするプーリ13及び線材7を巻き取る
プーリ(又は、リール)14を内蔵している。
The cooling water tank 3 is filled with a predetermined amount of cooling water 10 and a plurality of guide pulleys 11 so that the wire 7 from the heating electric furnace 2 can pass through the cooling water 10.
a, 11b, 11c, and 11d are provided. Furthermore,
The constant-speed winding machine 4 has a plurality of built-in pulleys 12a and 12b,
It has a function of sending the wire 7 from the cooling water tank 3 to the subsequent stage at a constant speed. The aligning winder 5 includes a pulley 13 that guides the wire 7 from the constant-speed winder 4 and a pulley (or reel) 14 that winds the wire 7.

【0014】次に、粉末コーティングラインBの構成に
ついて説明する。走行溶体化処理ラインAで溶体化処理
の済んだ線材15はプーリ14に巻き取られている。こ
のプーリ14から引き出された線材15は、ダイス1
7,18を備えた粉末コーティング容器16に導入され
る。ダイス17は粉末コーティング容器16の入り側に
設けられ、ダイス18は出側に設られている。粉末コー
ティング容器16の後段には、乾燥器19が設置されて
いる。粉末コーティング容器16は、Zn粉末(又は、
Cu−Zn粉末)、樹脂沈降防止剤及び溶剤の3種を混
ぜて粘度約1000cpsのスラリ状にしたものが封入
されている。
Next, the configuration of the powder coating line B will be described. The wire rod 15 that has been subjected to the solution treatment in the traveling solution treatment line A is wound around a pulley 14. The wire 15 pulled out from the pulley 14 is
It is introduced into a powder coating container 16 provided with 7,18. The die 17 is provided on the entrance side of the powder coating container 16, and the die 18 is provided on the exit side. A dryer 19 is provided downstream of the powder coating container 16. The powder coating container 16 contains Zn powder (or
A slurry having a viscosity of about 1000 cps obtained by mixing three kinds of Cu--Zn powder), a resin anti-settling agent and a solvent is enclosed.

【0015】更に、乾燥器19の後段には加熱電気炉2
0が設置されている。加熱電気炉20は、内部が中空構
造の炉体20a、この周囲に設けられて炉体内部を加熱
するヒータ20bを備えて構成されている。炉体20a
内には、不活性ガス(N2 ガス)が導入される。このた
めに、一端にガス供給口20cが設けられ、他端にはガ
ス排出口20dが設けられている。この加熱電気炉20
の後段には、表面酸化層除去装置21、ボビン22が順
次設置されている。
Further, a heating electric furnace 2 is provided downstream of the drying machine 19.
0 is set. The heating electric furnace 20 includes a furnace body 20a having a hollow structure inside, and a heater 20b provided around the furnace body 20a to heat the inside of the furnace body. Furnace body 20a
Inside, an inert gas (N 2 gas) is introduced. For this purpose, a gas supply port 20c is provided at one end, and a gas exhaust port 20d is provided at the other end. This heating electric furnace 20
At the subsequent stage, a surface oxide layer removing device 21 and a bobbin 22 are sequentially installed.

【0016】以上の構成において、走行溶体化処理ライ
ンAにおける加工対象の線材7は、例えば、0.9mm
φのCu−0.16重量%Zr(ジルコニウム)が用い
られる。Cu−Zr合金線を用いる理由は、放電加工の
際、電極線にアーク放電が生じ、このために放電時に熱
が発生し、加工時の張力に耐えられずに断線が生じるの
を防止するためである。
In the above configuration, the wire 7 to be processed in the traveling solution heat treatment line A is, for example, 0.9 mm.
φ Cu-0.16 wt% Zr (zirconium) is used. The reason for using the Cu-Zr alloy wire is to prevent arc discharge from being generated in the electrode wire during electric discharge machining, thereby generating heat at the time of electric discharge, and preventing disconnection due to withstanding the tension during machining. It is.

【0017】以上の如き構成の線材7はペイオフ1から
引き出され、加熱電気炉2の不活性ガス雰囲気中を1m
/分程度の搬送速度で走行させながら700°C〜95
0°Cに加熱して溶体化する。この溶体化処理により、
Zrを固溶させることができ、電極線に耐熱性を持たせ
ることが可能になる。加熱電気炉2で加熱された線材7
は、加熱電気炉2を出た直後に冷却水槽3に搬入され、
槽内の冷却水10で急冷される。この後、冷却された線
材7は定速巻取機4を経て整列巻取機5のプーリ14に
巻き取られる。
The wire 7 having the above-described structure is drawn out of the payoff 1 and moves 1 m in the inert gas atmosphere of the heating electric furnace 2.
700 ° C to 95 while running at a transport speed of about
Heat to 0 ° C to form a solution. By this solution treatment,
Zr can be dissolved as a solid solution, and the electrode wire can have heat resistance. Wire 7 heated by heating electric furnace 2
Is carried into the cooling water tank 3 immediately after leaving the heating electric furnace 2,
It is rapidly cooled by the cooling water 10 in the tank. Thereafter, the cooled wire 7 is wound on the pulley 14 of the aligning winder 5 via the constant speed winder 4.

【0018】Cu−Zr合金線は、従来、8〜13mm
φ程度の銅線に950°Cで3時間、その後に急冷する
溶体化熱処理を行って耐熱性を付加している。しかし、
このような従来方式の熱処理は費用及び時間がかかり、
放電加工用電極線の生産コストを低減することができな
い。そこで、本発明では、低コストで溶体化が可能な中
間サイズ(例えば、0.9mmφ)で700〜950°
Cの走行加熱後に水冷し、以上説明した様に、ライン中
の熱処理で耐熱性を付加できるようにした。
Conventionally, a Cu—Zr alloy wire is 8 to 13 mm.
A copper wire having a diameter of about φ is subjected to a solution heat treatment at 950 ° C. for 3 hours and then rapidly cooled to add heat resistance. But,
Such conventional heat treatment is costly and time consuming,
The production cost of the electrode wire for electric discharge machining cannot be reduced. Therefore, in the present invention, an intermediate size (e.g., 0.9 mmφ) capable of forming a solution at low cost is 700-950 °.
C was cooled with water after the traveling heating, so that heat resistance could be added by heat treatment in the line as described above.

【0019】次に、粉末コーティングラインBの処理に
ついて説明する。走行溶体化処理ラインAで溶体化熱処
理の完了した線材15(溶体化処理されたCu−Zr合
金線)は、プーリ14(走行溶体化処理ラインAから移
動、又は別のボビン等に巻き直したもの)から引き出さ
れ、ダイス17で絞り加工が施される。ついで、粉末コ
ーティング容器16を通過する過程で、線材15の表面
に均一に粉末コーティングが施される。更に、乾燥器1
9を通過する過程で粉末コーティングの乾燥(熱風乾
燥)が行われる。これにより、Cu−Zr合金線の表面
にZnを含む表面層が形成される。
Next, the processing of the powder coating line B will be described. The wire 15 (solution-treated Cu-Zr alloy wire) that has been subjected to the solution heat treatment at the traveling solution treatment line A is moved from the traveling solution treatment line A or rewound onto another bobbin or the like. ) And drawn by a die 17. Next, in the process of passing through the powder coating container 16, the surface of the wire 15 is uniformly coated with the powder. Furthermore, dryer 1
The drying of the powder coating (hot air drying) is performed in the process of passing through 9. Thereby, a surface layer containing Zn is formed on the surface of the Cu—Zr alloy wire.

【0020】更に、表面層が形成された線材23は加熱
電気炉20に送り込まれ、熱処理が行われる。加熱電気
炉20の炉体20a内はヒータ20bによって例えば8
00°Cに加熱されており、この炉内を1m/minの
速度で搬送しながら、不活性雰囲気中で加熱処理が行わ
れる。加熱電気炉20を出た線材23は、移動しながら
大気雰囲気で自然冷却され、その後に表面酸化層除去装
置21によって線材23の表面酸化層が機械的に除去さ
れる。この後、線材23はボビン22に巻き取られる。
更に、別のラインに送られ、冷間伸線が行われる。
Further, the wire 23 on which the surface layer is formed is sent to the heating electric furnace 20 and subjected to heat treatment. The inside of the furnace body 20a of the heating electric furnace 20 is, for example, 8
It is heated to 00 ° C., and is heated in an inert atmosphere while being conveyed in the furnace at a speed of 1 m / min. The wire 23 exiting the heating electric furnace 20 is naturally cooled in the atmosphere while moving, and thereafter, the surface oxide layer of the wire 23 is mechanically removed by the surface oxide layer removing device 21. Thereafter, the wire 23 is wound around the bobbin 22.
Furthermore, it is sent to another line and cold drawing is performed.

【0021】以上のような粉末コーティングラインBを
経た線材23には、Cu−Zr合金線の表面に、10〜
20μm程度のCu−(30〜40)重量%Zn合金層
が表面層として施されていた。このように、Cu−Zn
合金層が施されたことにより、加工速度を向上させるこ
とが可能になる。
The wire 23 passing through the powder coating line B as described above has a surface of 10 to 10
A Cu- (30-40) wt% Zn alloy layer of about 20 μm was applied as a surface layer. Thus, Cu-Zn
By applying the alloy layer, the processing speed can be improved.

【0022】[0022]

【実施例】本発明者らは、本発明方法により試作を行
い、放電加工性の評価を行った。被加工物として厚さ4
0mmのSKD−11を用いて断線限界速度を測定し
た。また、被加工物の表面粗さの評価も実施した。その
結果、0.02mmの線材を用い、放電電流を36Aに
し、オフ時間(電流休止時間)を一定(2.8μs)に
しながら、オン時間(電流印加時間)を変えて加工可能
な速度(ワイヤが切れない限界速度)を測定した。ま
た、本発明との比較のため、従来方法により0.2mm
φのCu−35重量%Zn電極線(比較例)を作成し
た。
EXAMPLES The present inventors made a prototype by the method of the present invention and evaluated the electric discharge machining property. Thickness 4 as work piece
The breaking limit speed was measured using 0 mm SKD-11. In addition, the surface roughness of the workpiece was evaluated. As a result, while using a 0.02 mm wire, the discharge current was set to 36 A, the off-time (current pause time) was kept constant (2.8 μs), and the on-time (current application time) was changed to enable processing (wire speed). (Limit speed at which the cut-off was not completed) was measured. For comparison with the present invention, 0.2 mm
A φ-35 wt% Zn electrode wire (comparative example) was prepared.

【0023】オン時間(電流印加時間)が0.8μsの
場合、Cu−35重量%Zn電極線(比較例)の加工速
度が1.53mm/minであったのに対し、本発明に
よる電極線は1.75mm/minであり、加工速度の
向上が確かめられた。また、電流印加時間を長くする
と、加工速度は増加するが、本発明による電極線は1.
2μsで断線した。これに対し、比較例では1.5μs
の電流印加時間で断線した。このことから、本発明によ
る電極線は耐断線性に優れていることが確かめられた。
When the ON time (current application time) was 0.8 μs, the processing speed of the Cu-35 wt% Zn electrode wire (Comparative Example) was 1.53 mm / min, whereas the electrode wire according to the present invention was Was 1.75 mm / min, and it was confirmed that the processing speed was improved. In addition, when the current application time is lengthened, the processing speed increases, but the electrode wire according to the present invention has the following disadvantages.
The wire was disconnected in 2 μs. On the other hand, in the comparative example, 1.5 μs
The wire was disconnected during the current application time. From this, it was confirmed that the electrode wire according to the present invention was excellent in disconnection resistance.

【0024】更に、比較例による被加工物の表面粗さは
1.35μmであったのに対し、本発明による電極線の
表面粗さは1.285μmであり、この点でも本発明に
よる電極線が優れていることが確かめられた。なお、表
面層を形成するに際し、図1においては粉末コーティン
グ法により設けるものとしたが、本発明は粉末コーティ
ング法に限定されるものではなく、他に電気メッキ法、
溶融メッキ法等を用いることができる。
Further, the surface roughness of the workpiece according to the comparative example was 1.35 μm, whereas the surface roughness of the electrode wire according to the present invention was 1.285 μm. Was found to be excellent. In forming the surface layer, in FIG. 1, it was provided by a powder coating method. However, the present invention is not limited to the powder coating method.
A hot-dip plating method or the like can be used.

【0025】また、芯材にCu−Zr合金線を用いた
が、同様な耐熱性を有するCu−Cr合金線、Cu−Z
r−Cr合金線等を用いることもできる。
Although a Cu—Zr alloy wire was used as the core material, a Cu—Cr alloy wire having the same heat resistance, Cu—Zr
An r-Cr alloy wire or the like can also be used.

【0026】[0026]

【発明の効果】以上より明らかな如く、本発明によれ
ば、Zr又はCrを含む銅合金による線材を不活性ガス
雰囲気中で加熱しながら走行させ、前記不活性ガス雰囲
気を通過した前記線材を直ちに水冷して溶体化処理し、
この線材の表面にZn層又はCu−Zn層による表面層
を形成し、更に、冷間伸線して放電加工用電極線を製造
する方法にしたので、溶体化処理により電極線の耐熱性
の向上及びコストダウンが図れ、表面層の形成によって
加工速度を向上させることができる。
As is clear from the above, according to the present invention, a wire made of a copper alloy containing Zr or Cr is run while heating in an inert gas atmosphere, and the wire passed through the inert gas atmosphere is moved. Immediately water-cooled and solution treated,
A surface layer of a Zn layer or a Cu-Zn layer is formed on the surface of this wire, and furthermore, a method of manufacturing an electrode wire for electric discharge machining by cold drawing is adopted. Improvement and cost reduction can be achieved, and the processing speed can be improved by forming the surface layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による放電加工用電極線の製造方法を達
成する製造設備を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a manufacturing facility for achieving a method for manufacturing an electrode wire for electric discharge machining according to the present invention.

【符号の説明】[Explanation of symbols]

1 ペイオフ 2 加熱電気炉 3 冷却水槽 4 整列巻取機 7 線材 10 冷却水 16 粉末コーティング容器 17,18 ダイス 19 乾燥器 20 加熱電気炉 21 表面酸化層除去装置 DESCRIPTION OF SYMBOLS 1 Payoff 2 Heating electric furnace 3 Cooling water tank 4 Alignment winding machine 7 Wire rod 10 Cooling water 16 Powder coating container 17, 18 Dice 19 Dryer 20 Heating electric furnace 21 Surface oxide layer removal apparatus

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−134624(JP,A) 特開 平4−176849(JP,A) 特開 昭62−4834(JP,A) 特開 平5−177443(JP,A) 特開 昭61−136733(JP,A) 特開 昭59−153805(JP,A) 特開 平3−68734(JP,A) 特開 昭61−197126(JP,A) 特開 平6−79535(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23H 7/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-134624 (JP, A) JP-A-4-176849 (JP, A) JP-A-62-4834 (JP, A) JP-A-5-134 177443 (JP, A) JP-A-61-136733 (JP, A) JP-A-59-153805 (JP, A) JP-A-3-68734 (JP, A) JP-A-61-197126 (JP, A) JP-A-6-79535 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23H 7/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Zr又はCrを含む銅合金からなり、走行
溶体化が可能な中間サイズの線材を不活性ガス雰囲気中
700〜950℃で加熱しながら走行させ、前記不活
性ガス雰囲気を通過した前記線材を直ちに水冷して走行
溶体化処理し、前記走行溶体化処理の済んだ線材の表面
にZn層又はCu−Zn層による表面層を形成し、前記
表面層を形成した線材を冷間伸線することを特徴とする
放電加工用電極線の製造方法。
1. A traveling device made of a copper alloy containing Zr or Cr.
A medium-sized wire rod capable of solution treatment is run while being heated at 700 to 950 ° C. in an inert gas atmosphere, and the wire rod that has passed through the inert gas atmosphere is immediately cooled with water and run. An electrode for electric discharge machining, wherein a surface layer of a Zn layer or a Cu-Zn layer is formed on the surface of the wire rod which has been subjected to the running solution treatment, and the wire rod having the surface layer is cold drawn. Wire manufacturing method.
【請求項2】前記表面層は、Zn粉末、樹脂沈降防止剤
及び溶剤をスラリ状にして塗布した後に乾燥することに
よって形成されることを特徴とする請求項1記載の放電
加工用電極線の製造方法。
2. The electrode wire for electric discharge machining according to claim 1, wherein said surface layer is formed by applying a slurry of a Zn powder, a resin settling inhibitor and a solvent in a slurry state and then drying the slurry. Production method.
【請求項3】前記表面層の形成は、電気メッキ法又は溶
融メッキ法によって形成されることを特徴とする請求項
1記載の放電加工用電極線の製造方法。
3. The method according to claim 1, wherein the surface layer is formed by an electroplating method or a hot-dip plating method.
JP03927196A 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining Expired - Fee Related JP3332197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03927196A JP3332197B2 (en) 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03927196A JP3332197B2 (en) 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining

Publications (2)

Publication Number Publication Date
JPH09225748A JPH09225748A (en) 1997-09-02
JP3332197B2 true JP3332197B2 (en) 2002-10-07

Family

ID=12548498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03927196A Expired - Fee Related JP3332197B2 (en) 1996-02-27 1996-02-27 Method of manufacturing electrode wire for electric discharge machining

Country Status (1)

Country Link
JP (1) JP3332197B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460699B1 (en) * 2002-08-01 2004-12-09 최병일 An electrode production method for a coating wire
JP2014050945A (en) * 2012-08-09 2014-03-20 Sodick Co Ltd Wire electrode
JP6124333B2 (en) * 2012-12-07 2017-05-10 株式会社ソディック Wire electrode manufacturing method and wire drawing die
KR102529451B1 (en) * 2018-07-10 2023-05-08 현대자동차주식회사 Filler wire for brazing aluminium and steel

Also Published As

Publication number Publication date
JPH09225748A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP4012895B2 (en) Structure of porous electrode wire for electric discharge machining
KR101284495B1 (en) Wire electrode for electro discharge machining and thesame methode
JPH10510883A (en) Wire making process
CA2093036A1 (en) Corrosion-resistant composite wire and method for manufacturing same
JP2014040656A (en) MANUFACTURING APPARATUS AND MANUFACTURING METHOD OF Al PLATED STEEL WIRE
JP3332197B2 (en) Method of manufacturing electrode wire for electric discharge machining
JPH04293757A (en) Production of flat square coated wire
US4661215A (en) Process for the production of tin-plated wires
EP0477029B1 (en) Process of producing a hot dipped wire
JP3005742B2 (en) Method for manufacturing tin-covered rectangular copper wire
JP3332196B2 (en) Method of manufacturing electrode wire for electric discharge machining
JP6265757B2 (en) Al-plated steel wire manufacturing apparatus and manufacturing method
EP0480739B1 (en) Process of producing a hot dipped wire
JP3332199B2 (en) Method of manufacturing electrode wire for electric discharge machining
JP3319497B2 (en) Method of manufacturing electrode wire for electric discharge machining
JP2717920B2 (en) Manufacturing method of tin-plated copper alloy spring wire
JPS6366892B2 (en)
JPH06154840A (en) Drawing method for electrode wire used for wire-electrical discharge machining
JPS59110516A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
KR20130016726A (en) Wire electrode for electro discharge machining and thesame methode
JPH09225747A (en) Electrode wire for electrical discharge machining
KR200309440Y1 (en) Zinc coated electrode wire for electric discharge processor using hot dip galvanizing process
JPH06154839A (en) Drawing method for electrode wire used for wire-electrical discharge machining
JPH11226817A (en) Manufacture of electrode wire for electric discharge machine
JPS5871032A (en) Electrode material for wire cut electric discharge machining

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees