JP3331707B2 - Optical scanning device - Google Patents
Optical scanning deviceInfo
- Publication number
- JP3331707B2 JP3331707B2 JP30423193A JP30423193A JP3331707B2 JP 3331707 B2 JP3331707 B2 JP 3331707B2 JP 30423193 A JP30423193 A JP 30423193A JP 30423193 A JP30423193 A JP 30423193A JP 3331707 B2 JP3331707 B2 JP 3331707B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- scanning
- optical
- curvature
- scanned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はレーザプリンタ等に用い
られる光走査装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device used for a laser printer or the like.
【0002】[0002]
【従来の技術】レーザプリンタに用いられる光走査装置
では、従来から走査レンズおよび回転多面鏡の組合せに
より、レーザ光を被走査面である感光ドラム面上に偏向
走査することが行われている。光走査装置の目的は、感
光ドラム面上においてレーザ光を解像度に応じた所定の
大きさに絞り込みかつ等速で走査することである。近
年、レーザプリンタに対し高解像度化、低価格化の要求
が高くなってきている。走査レンズとして単玉のFθレ
ンズを用いる場合、材質をプラスチック化することによ
り低価格化が可能である。2. Description of the Related Art In an optical scanning device used in a laser printer, a laser beam is deflectively scanned on a photosensitive drum surface, which is a surface to be scanned, by a combination of a scanning lens and a rotary polygon mirror. The purpose of the optical scanning device is to narrow down the laser beam to a predetermined size corresponding to the resolution and scan the laser beam on the photosensitive drum surface at a constant speed. In recent years, demands for higher resolution and lower cost of laser printers have been increasing. When a single Fθ lens is used as the scanning lens, the cost can be reduced by using a plastic material.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、走査レ
ンズを単玉プラスチックレンズとすると、環境温度の変
化に伴い走査垂直方向の像面湾曲が発生し結像特性が劣
化する。なぜなら、プラスチック材はガラスに比べて温
度による屈折率の変化が大きく、また単玉レンズでは走
査垂直方向の縦倍率がどうしても大きくなるためであ
る。なお、ここでは光軸上のデフォーカスも含めて像面
湾曲と称する。従って本発明の目的は、上記した従来技
術の欠点をなくし、高解像度で低価格な光走査装置を提
供することにある。However, if a single plastic lens is used as the scanning lens, a curvature of field in the scanning vertical direction occurs with a change in the environmental temperature, and the imaging characteristics are degraded. This is because the change in the refractive index due to the temperature of the plastic material is larger than that of the glass, and the vertical magnification in the scanning vertical direction of the single lens is inevitably increased. Note that, here, field curvature including defocus on the optical axis is also referred to. Accordingly, it is an object of the present invention to provide a high-resolution and low-cost optical scanning device that eliminates the above-mentioned disadvantages of the conventional technology.
【0004】[0004]
【課題を解決するための手段】上記目的を達成するため
に、本発明の走査レンズは2枚のレンズで構成し、光偏
向器側のレンズは、光偏向器の各偏向位置に対応して走
査垂直方向の曲率が走査方向に沿って連続的に変化する
形状を有する非球面レンズとし、被走査面側のレンズは
走査垂直方向にのみパワーを持つシリンドリカルレンズ
として、走査垂直方向の縦倍率を低減した。非球面レン
ズは、材質をプラスチック材として低価格化を図った。In order to achieve the above object, the scanning lens of the present invention comprises two lenses, and the lens on the optical deflector side corresponds to each deflection position of the optical deflector. The aspherical lens has a shape in which the curvature in the scanning vertical direction changes continuously along the scanning direction, and the lens on the surface to be scanned is a cylindrical lens having power only in the scanning vertical direction. Reduced. The price of the aspherical lens was reduced by using a plastic material.
【0005】また、非球面レンズの走査方向の形状は光
軸上の曲率半径をR、円錐定数をKとしたとき、(1)
式で与え、最大走査幅を与える光線が走査レンズの入射
側での光軸となす角度および出射側での光軸となす角度
をそれぞれV、V´、SIG(K)をKの符号としたと
き、(2)式を満たすようにした。When the radius of curvature on the optical axis is R and the conic constant is K, the shape of the aspherical lens in the scanning direction is as follows:
The angle formed by the light beam giving the maximum scanning width with the optical axis on the incident side of the scanning lens and the optical axis on the output side of the scanning lens are represented by V, V ′, and SIG (K), respectively, where K is the sign of K. At this time, the formula (2) was satisfied.
【0006】[0006]
【数1】 (Equation 1)
【0007】[0007]
【数2】 (Equation 2)
【0008】[0008]
【作用】図2に走査レンズを非球面プラスチックレンズ
1枚で構成し、常温から高温に環境温度が変わった場合
に、走査垂直方向像面湾曲が発生する様子を示す。図に
おいて、1は回転多面鏡、6は感光ドラム面、43は非
球面レンズ、92は常温でのビーム、93は高温でのビ
ーム、62は常温での走査垂直方向の像面、63は高温
での走査垂直方向の像面である。以下、曲率半径、像面
および像面湾曲は走査垂直方向について言及する。非球
面レンズ43は常温で像面湾曲が0になるように曲率半
径が偏向位置において連続的に変化しているため、曲率
半径に誤差がなければ像面62は感光ドラム面6に一致
する。特に、回転多面鏡の反射面の出入りも考慮して、
左右非対称な形状を持つ非球面レンズではこの効果が大
きい。一方、高温ではプラスチック材の屈折率が低下し
非球面レンズのパワーが減少するため、像面63は感光
ドラム面6から離れる。FIG. 2 shows the manner in which the scanning lens is composed of a single aspherical plastic lens, and when the ambient temperature changes from room temperature to a high temperature, scanning vertical field curvature occurs. In the figure, 1 is a rotating polygon mirror, 6 is a photosensitive drum surface, 43 is an aspherical lens, 92 is a beam at room temperature, 93 is a beam at high temperature, 62 is an image plane in the scanning vertical direction at room temperature, and 63 is a high temperature. Is the image plane in the scanning vertical direction. Hereinafter, the radius of curvature, the image plane, and the field curvature refer to the scanning vertical direction. Since the radius of curvature of the aspherical lens 43 changes continuously at the deflection position so that the curvature of field becomes zero at normal temperature, the image surface 62 coincides with the photosensitive drum surface 6 if there is no error in the radius of curvature. In particular, considering the entrance and exit of the reflecting surface of the rotating polygon mirror,
This effect is large in an aspheric lens having an asymmetric shape. On the other hand, at high temperatures, the refractive index of the plastic material decreases and the power of the aspherical lens decreases, so that the image surface 63 is separated from the photosensitive drum surface 6.
【0009】図3に走査レンズを共にプラスチック材か
らできている非球面レンズとシリンドリカルレンズの2
枚で構成して、常温から高温に環境温度が変わった場合
に、像面湾曲が発生する様子を示す。図において、44
は非球面レンズ、45はシリンドリカルレンズ、94は
常温でのビーム、95は高温でのビーム、64は常温で
の像面、65は高温での像面である。非球面レンズ44
は常温で像面湾曲が0になるように曲率半径が偏向位置
において連続的に変化しているため、曲率半径に誤差が
なければ像面64は感光ドラム面6に一致する。一方、
高温ではプラスチック材の屈折率が低下し、非球面レン
ズ44およびシリンドリカルレンズ45のパワーが減少
するため、像面65は感光ドラム面6から離れるが、そ
の量は図2における像面62および63の差に比べて小
さい。FIG. 3 shows an aspherical lens and a cylindrical lens, both of which are made of plastic material.
This figure shows how the image field curvature occurs when the ambient temperature changes from normal temperature to high temperature when the sheet is constituted by sheets. In the figure, 44
Is an aspheric lens, 45 is a cylindrical lens, 94 is a beam at room temperature, 95 is a beam at high temperature, 64 is an image surface at room temperature, and 65 is an image surface at high temperature. Aspheric lens 44
Since the radius of curvature changes continuously at the deflection position so that the curvature of field becomes zero at room temperature, the image surface 64 coincides with the photosensitive drum surface 6 if there is no error in the radius of curvature. on the other hand,
At a high temperature, the refractive index of the plastic material decreases, and the power of the aspherical lens 44 and the cylindrical lens 45 decreases, so that the image surface 65 is separated from the photosensitive drum surface 6. Smaller than the difference.
【0010】なお、以下走査レンズを非球面プラスチッ
クレンズ1枚で構成するタイプをAタイプ、走査レンズ
を非球面レンズとシリンドリカルレンズの2枚で構成す
るタイプをBタイプと称す。Hereinafter, a type in which the scanning lens is composed of one aspherical plastic lens is referred to as an A type, and a type in which the scanning lens is composed of two aspherical lenses and a cylindrical lens is referred to as a B type.
【0011】図4にAタイプの結像を示す。図5にBタ
イプの結像を示す。図において、15は非球面レンズ4
4とシリンドリカルレンズ45の合成主点を通り光軸に
垂直な面である。なお簡単のため、物側主点、像側主点
の間隔は無視して単一の主点で示す。非球面レンズ4
3、44およびシリンドリカルレンズ45のパワーをそ
れぞれP1、P20、Pcylとし、P20とPcylの合成パワ
ーをP2とする。Aタイプ、Bタイプとも回転多面鏡1
を物点、感光ドラム面6を像点とする光学的共役関係に
なっている。なお、Aタイプの非球面レンズ43とBタ
イプの非球面レンズ44の回転多面鏡1からの距離は同
じとし、合成主点15の位置は回転多面鏡1と感光ドラ
ム面6の概略中間であるとして、(5)〜(9)式のよ
うに定める。FIG. 4 shows an A-type image. FIG. 5 shows a B-type image. In the figure, 15 is an aspheric lens 4
4 is a plane perpendicular to the optical axis passing through the principal combination point of the cylindrical lens 45 and the cylindrical lens 45. For simplicity, the distance between the object-side principal point and the image-side principal point is disregarded and is indicated by a single principal point. Aspheric lens 4
3,44 and the power of the cylindrical lens 45, respectively P1, P 20, P cyl, the combined power of P 20 and P cyl and P2. A and B type rotating polygon mirror 1
Is an object point and the photosensitive drum surface 6 is an image point. The distance between the A-type aspherical lens 43 and the B-type aspherical lens 44 from the rotating polygon mirror 1 is the same, and the position of the combining principal point 15 is approximately intermediate between the rotating polygon mirror 1 and the photosensitive drum surface 6. Are determined as in equations (5) to (9).
【0012】 1/S1′=1/S1+P1 ・・・(5) 1/S2′=1/S2+P2 ・・・(6) −S1+S1′=−S2+S2′=L>0 ・・・(7) S2<S1<0 ・・・(8) −S2≒L/2 ・・・(9) ここで S+S′=L ・・・(10) としてPの極小値を与えるSを求める。(5)式より P=1/(L+S)−1/S ・・・(11) 1/P=−S(L+S)/L ・・・(12) Sについて、1次、2次微分をとる。1 / S1 ′ = 1 / S1 + P1 (5) 1 / S2 ′ = 1 / S2 + P2 (6) −S1 + S1 ′ = − S2 + S2 ′ = L> 0 (7) S2 < S1 <0 (8) −S2 ≒ L / 2 (9) Here, S + S ′ = L (10) is obtained as S that gives the minimum value of P. From equation (5), P = 1 / (L + S) −1 / S (11) 1 / P = −S (L + S) / L (12) First and second derivatives of S are obtained. .
【0013】 (1/P)′=−2S/L ・・・(13) (1/P)″=−2/L ・・・(14) 極値をとるSを求めるため (1/P)′=0 ・・・(15) とおくと S=−L/2 ・・・(16) となり、極小値をとる。従って、(7)、(8)式より P1>P2>0 ・・・(17) となる。幾何光学の定義より、 U1′=U1+H・P1 ・・・(18) U2′=U2+H・P2 ・・・(19) ここで非球面レンズ43、44およびシリンドリカルレ
ンズ45の材質であるプラスチック材の常温での屈折率
をN、高温での屈折率を(N−ΔN)として、 α=(N−ΔN)/N (0<α<1) ・・・(20) とおく。図6および図7にそれぞれAタイプおよびBタ
イプの高温時の結像を示す。ともに、回転多面鏡1と、
感光ドラム面6との光学的共役関係は成り立たなくな
る。(18)、(19)式はそれぞれ(21)、(2
2)式のように書き改められる。(1 / P) ′ = − 2S / L (13) (1 / P) ″ = − 2 / L (14) In order to obtain S having an extreme value (1 / P) ′ = 0 (15) S = −L / 2 (16) and takes a minimum value, and therefore, P1>P2> 0 from equations (7) and (8). From the definition of geometrical optics, U1 ′ = U1 + H · P1 (18) U2 ′ = U2 + H · P2 (19) Here, the materials of the aspheric lenses 43 and 44 and the cylindrical lens 45 Α = (N−ΔN) / N (0 <α <1) (20) where N is the refractive index of the plastic material at room temperature and (N−ΔN) is the refractive index at high temperature. 6 and 7 show images of the A type and the B type at a high temperature, respectively.
The optical conjugate relationship with the photosensitive drum surface 6 does not hold. Equations (18) and (19) are respectively (21) and (2)
2) It can be rewritten as in equation (2).
【0014】 U1′b=U1+H・αP1 ・・・(21) U2′b=U2+H・αP2 ・・・(22) (20)式より U1′b<U1′ ・・・(23) U2′b<U2′ ・・・(24) ここでUは小さいとして SinU=U ・・・(25) とすると、図4〜7より明らかなように S1=H/U1 ・・・(26) S1′=H/U1′ ・・・(27) S2=H/U2 ・・・(28) S2′=H/U2′ ・・・(29) であるので(7)、(8)、(27)〜(29)式よ
り、 U1<U2<0 ・・・(30) 0<U1′<U2′ ・・・(31) またU2′−U1=ΔUとおき、常温、高温時の比をA
タイプ、Bタイプで差をとり、これをδとおき、(1
7)〜(19)、(21)、(22)式を用いて変形す
る。U1′b = U1 + H · αP1 (21) U2′b = U2 + H · αP2 (22) From equation (20), U1′b <U1 ′ (23) U2′b < U2 '(24) Here, assuming that U is small, and SinU = U (25), as is clear from FIGS. 4 to 7, S1 = H / U1 (26) S1' = H / U1 ′ (27) S2 = H / U2 (28) S2 ′ = H / U2 ′ (29) Since (7), (8), (27) to (29) From the equation, U1 <U2 <0 (30) 0 <U1 ′ <U2 ′ (31) Also, U2′−U1 = ΔU, and the ratio at normal temperature and high temperature is A.
Type and B type, take this as δ, (1
7) to (19), (21), and (22).
【0015】 δ=U2′b/U2′−U1′b/U1′ >U2′b/U2′−(U1′b+ΔU)/(U1′+ΔU) =U2′b/U2′−(U1′b+ΔU)/U2′ =H(1−α)(P2−P1)/U2′ >0 ・・・(32) そして、(26)〜(29)、(32)式より S2′/S2′b−S1′/S1′b>0 ・・・(33) さらに ΔS1′=S1′b−S1′ ・・・(34) ΔS2′=S2′b−S2′ ・・・(35) とおいて(33)式に代入して変形すると S1′b/S1′−S2′b/S2′>0 (S1′+ΔS1′)/S1′−(S2′+ΔS2′)/S2′>0 ΔS1′/S1′−ΔS2′/S2′>0 ΔS1′−ΔS2′>0 ・・・(36) これにより、AタイプよりBタイプの方が環境温度変化
による結像位置ずれは小さいことがわかる。Δ = U2′b / U2′−U1′b / U1 ′> U2′b / U2 ′ − (U1′b + ΔU) / (U1 ′ + ΔU) = U2′b / U2 ′ − (U1′b + ΔU) /U2'=H(1-.alpha.)(P2-P1)/U2'>0 (32) Then, from equations (26) to (29) and (32), S2 '/ S2'b-S1' / S1'b> 0 (33) ΔS1 '= S1'b-S1' (34) ΔS2 '= S2'b-S2' (35) Substituting and deforming, S1'b / S1'-S2'b / S2 '> 0 (S1' +. DELTA.S1 ') / S1'-(S2 '+. DELTA.S2') / S2 '>0.DELTA.S1' / S1 '-. DELTA.S2' / S2 ′> 0 ΔS1′−ΔS2 ′> 0 (36) As a result, the image forming position of the B type is higher than that of the A type due to a change in environmental temperature. Shift it can be seen that is small.
【0016】また、非球面レンズ44の走査方向の形状
を上記(1)、(2)式のようにすることは、被走査面
上においてレーザ光を解像度に応じた所定の大きさに絞
り込み、かつ等速で走査するための条件である。1枚の
レンズの走査方向の形状が両面とも円では、光軸上に比
べ周辺部でビームが必要以上に曲げられるため、走査方
向の像面は回転多面鏡側(−)へ湾曲し、像高は中間像
高で大きく(+)なる。このため円錐定数;K=0であ
る円でなくK<0である双曲線として、レンズ周辺部で
ビームが必要以上に曲げられるのを抑制する必要があ
る。特に、(2)式を満たす場合にその効果は大きい。
下限を超えると走査方向像面湾曲は+になり、像高誤差
は中間像高で−になる。一方、上限を超えると走査方向
像面湾曲は−になり、像高誤差は中間像高で+になる。Further, by setting the shape of the aspherical lens 44 in the scanning direction as in the above formulas (1) and (2), the laser light is narrowed down to a predetermined size corresponding to the resolution on the surface to be scanned. This is a condition for scanning at a constant speed. If the shape of one lens in the scanning direction is circular on both sides, the beam is bent more than necessary at the periphery compared to the optical axis, so the image plane in the scanning direction is curved to the rotating polygon mirror side (-), The height is large (+) at the intermediate image height. For this reason, it is necessary to suppress the beam from being bent more than necessary at the periphery of the lens as a conic constant; not as a circle with K = 0 but as a hyperbola with K <0. In particular, when the expression (2) is satisfied, the effect is great.
Beyond the lower limit, the curvature of field in the scanning direction becomes +, and the image height error becomes-at the intermediate image height. On the other hand, when the value exceeds the upper limit, the curvature of field in the scanning direction becomes minus, and the image height error becomes plus at the intermediate image height.
【0017】[0017]
【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明による光走査装置の一実施例を示
す構成図である。図において、1は回転多面鏡、6は感
光ドラム面、8はシリンドリカルレンズ、12はコリメ
ータレンズ、22はレーザ光源、44は非球面レンズ、
45はシリンドリカルレンズ、91はビームである。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of the optical scanning device according to the present invention. In the figure, 1 is a rotating polygon mirror, 6 is a photosensitive drum surface, 8 is a cylindrical lens, 12 is a collimator lens, 22 is a laser light source, 44 is an aspheric lens,
45 is a cylindrical lens and 91 is a beam.
【0018】レーザ光源22からでたビーム91はコリ
メータレンズ12を通りほぼ平行なビームになる。シリ
ンドリカルレンズ8は走査垂直方向(Y方向)にのみ作
用するように配置され、回転多面鏡1の反射面近傍でY
方向にビームが収束されるようになっている。走査垂直
方向に関して前記反射面近傍と感光ドラム面6は幾何光
学的な共役関係にある。ビーム走査のための走査レンズ
は、ともにプラスチック材でできた非球面レンズ44と
シリンドリカルレンズ45で構成する。走査レンズの諸
元の例を表1に示す。The beam 91 emitted from the laser light source 22 passes through the collimator lens 12 and becomes a substantially parallel beam. The cylindrical lens 8 is arranged so as to act only in the scanning vertical direction (Y direction).
The beam is focused in the direction. In the scanning vertical direction, the vicinity of the reflection surface and the photosensitive drum surface 6 have a geometric conjugate relationship. A scanning lens for beam scanning is composed of an aspheric lens 44 and a cylindrical lens 45 both made of a plastic material. Table 1 shows examples of the specifications of the scanning lens.
【0019】[0019]
【表1】 [Table 1]
【0020】は回転多面鏡、〜はレンズ面、は
感光ドラム面である。Rは走査方向の曲率半径、rは走
査垂直方向の曲率半径、dは面間隔、nは屈折率であ
る。面の形状は面頂点を原点として(3)、(4)式
で与えられる。Is a rotary polygon mirror, is a lens surface, and is a photosensitive drum surface. R is the radius of curvature in the scanning direction, r is the radius of curvature in the scanning vertical direction, d is the surface interval, and n is the refractive index. The shape of the surface is given by equations (3) and (4) with the vertex of the surface as the origin.
【0021】[0021]
【数3】 (Equation 3)
【0022】[0022]
【数4】 (Equation 4)
【0023】ここでa、b、c、d、Kは定数であり、
Kは円錐定数と呼ばれる。またeは非対称項で表2に示
すようなサンプル点であり、この表に示されない任意の
位置については多項式近似で与えられる。Where a, b, c, d and K are constants,
K is called the conic constant. Further, e is an asymmetric term and is a sample point as shown in Table 2, and an arbitrary position not shown in this table is given by a polynomial approximation.
【0024】[0024]
【表2】 [Table 2]
【0025】図8に温度変化に対する走査垂直方向像面
湾曲量(光軸上)を示す。図において50は本発明の実
施例、60は従来例である。このように1/8程度に低
減される。FIG. 8 shows the amount of field curvature on the scanning vertical direction (on the optical axis) with respect to a temperature change. In the figure, 50 is an embodiment of the present invention, and 60 is a conventional example. In this way, it is reduced to about 1/8.
【0026】以上の説明では、走査レンズとして非球面
レンズおよびシリンドリカルレンズ共にプラスチック材
でできた場合について説明したが、非球面レンズがプラ
スチック材、シリンドリカルレンズがガラス材など、他
の光学的透明材料でそれぞれできている場合にも本発明
が適用できることは言うまでもない。In the above description, the case where both the aspherical lens and the cylindrical lens are made of a plastic material as the scanning lens has been described. However, the aspherical lens is made of a plastic material, and the cylindrical lens is made of another optically transparent material such as a glass material. It goes without saying that the present invention can also be applied to the case where each is completed.
【0027】[0027]
【発明の効果】本発明によれば、走査レンズを2枚のレ
ンズで構成し、光偏向器側のレンズは光偏向器の各偏向
位置に対応して走査垂直方向の曲率が走査方向に沿って
連続的に変化する形状を有し、被走査面側のレンズはシ
リンドリカルレンズとすることにより、ガラスに比べて
低価格なプラスチック材を用いても環境温度の変化によ
る走査垂直方向像面湾曲の発生の小さい、高解像度な光
走査装置が得られる。According to the present invention, the scanning lens is composed of two lenses, and the lens on the optical deflector side has a curvature in the scanning vertical direction along the scanning direction corresponding to each deflection position of the optical deflector. The lens on the surface to be scanned has a cylindrical lens, and even if a plastic material, which is less expensive than glass, is used, the curvature of field in the scanning vertical direction due to changes in environmental temperature can be reduced. An optical scanning device with a low generation and high resolution can be obtained.
【図面の簡単な説明】[Brief description of the drawings]
【図1】 本発明となる光走査装置の一実施例を示す構
成図である。FIG. 1 is a configuration diagram showing one embodiment of an optical scanning device according to the present invention.
【図2】 従来技術による光走査装置の温度変化による
像面湾曲の発生を示す図である。FIG. 2 is a diagram illustrating the occurrence of field curvature due to a temperature change of an optical scanning device according to the related art.
【図3】 本発明による光走査装置の温度変化による像
面湾曲の発生を示す図である。FIG. 3 is a diagram illustrating occurrence of curvature of field due to a temperature change of the optical scanning device according to the present invention.
【図4】 従来技術による光走査装置の常温時の結像を
示す図である。FIG. 4 is a diagram showing an image formed by an optical scanning device according to the related art at room temperature.
【図5】 本発明による光走査装置の高温時の結像を示
す図である。FIG. 5 is a diagram showing an image formed at a high temperature of the optical scanning device according to the present invention.
【図6】 従来技術による光走査装置の常温時の結像を
示す図である。FIG. 6 is a diagram showing an image formed by an optical scanning device according to the related art at room temperature.
【図7】 本発明による光走査装置の高温時の結像を示
す図である。FIG. 7 is a diagram showing an image formed at a high temperature of the optical scanning device according to the present invention.
【図8】 温度変化と光軸上像面湾曲の関係を示す図で
ある。FIG. 8 is a diagram showing a relationship between a temperature change and a curvature of field on the optical axis.
1は回転多面鏡、6は感光ドラム面、22はレーザ光
源、44は非球面レンズ、45はシリンドリカルレン
ズ、91はビームである。1 is a rotating polygon mirror, 6 is a photosensitive drum surface, 22 is a laser light source, 44 is an aspherical lens, 45 is a cylindrical lens, and 91 is a beam.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−23313(JP,A) 特開 平6−186492(JP,A) 特開 昭64−38709(JP,A) 特開 昭63−218916(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 13/00 G02B 26/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-23313 (JP, A) JP-A-6-186492 (JP, A) JP-A-64-38709 (JP, A) JP-A-63-63 218916 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 13/00 G02B 26/10
Claims (4)
び走査レンズを介して被走査面上に走査し、かつ、前記
光偏向器と前記被走査面を前記走査レンズを介して走査
垂直方向に関して概略共役な結像関係に配置した光走査
装置において、 前記走査レンズは2枚のレンズからなり、光偏向器側の
レンズは、前記光偏向器の各偏向位置に対応して走査垂
直方向の曲率が走査方向に沿って連続的に変化する形状
を有し、被走査面側のレンズは、環境温度変化による走
査垂直方向の結像位置のずれを低減するシリンドリカル
レンズであることを特徴とする光走査装置。1. A light beam from a laser light source is scanned on a surface to be scanned via an optical deflector and a scanning lens, and the optical deflector and the surface to be scanned are scanned in a vertical scanning direction via the scanning lens. In the optical scanning device arranged in a substantially conjugate imaging relationship with respect to the above, the scanning lens is composed of two lenses, and the lens on the optical deflector side in the scanning vertical direction corresponding to each deflection position of the optical deflector. has a shape curvature changes continuously in the scanning direction, the lens surface to be scanned side, run by environmental temperature changes
An optical scanning device comprising a cylindrical lens for reducing a shift of an image forming position in a vertical direction .
の曲率の変化は、走査方向に沿って光軸に対して非対称
であることを特徴とする請求項1記載の光走査装置。2. The optical scanning device according to claim 1, wherein a change in curvature of the lens on the optical deflector side in the scanning vertical direction is asymmetric with respect to the optical axis along the scanning direction.
状は光軸上の曲率半径をR、円錐定数をKとしたとき、
(1)式で与えられ、最大走査幅を与える光線が前記走査
レンズの入射側での光軸となす角度および出射側での光
軸となす角度をそれぞれV、V´、SIG(K)をKの符
号としたとき、(2)式を満たすことを特徴とする請求項
1又は2記載の光走査装置。 【数1】 【数2】 3. The shape of the lens on the optical deflector side in the scanning direction is as follows: R is a radius of curvature on the optical axis, and K is a conic constant.
The angles formed by the equation (1) and giving the maximum scanning width to the optical axis on the incident side and the optical axis on the output side of the scanning lens are denoted by V, V ', and SIG (K), respectively. 3. The optical scanning device according to claim 1, wherein when the code of K is satisfied, Expression (2) is satisfied. (Equation 1) (Equation 2)
チック材であることを特徴とする請求項1、2又は3記
載の光走査装置。4. The optical scanning device according to claim 1, wherein a material of the lens on the optical deflector side is a plastic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30423193A JP3331707B2 (en) | 1993-12-03 | 1993-12-03 | Optical scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30423193A JP3331707B2 (en) | 1993-12-03 | 1993-12-03 | Optical scanning device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07159686A JPH07159686A (en) | 1995-06-23 |
JP3331707B2 true JP3331707B2 (en) | 2002-10-07 |
Family
ID=17930585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30423193A Expired - Fee Related JP3331707B2 (en) | 1993-12-03 | 1993-12-03 | Optical scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3331707B2 (en) |
-
1993
- 1993-12-03 JP JP30423193A patent/JP3331707B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07159686A (en) | 1995-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7957047B2 (en) | Laser projection device | |
JP2969407B2 (en) | Post-objective scanning optical system and image forming apparatus | |
JP3193546B2 (en) | Reflective scanning optical system | |
US7463394B2 (en) | Linear optical scanner | |
US7009778B2 (en) | Imaging optical system, image display apparatus and imaging optical apparatus | |
WO2009019934A1 (en) | Light scanning device | |
US6859329B2 (en) | Scanning type display optical system and scanning type image display apparatus | |
US20090051995A1 (en) | Linear Optical Scanner | |
JP3363531B2 (en) | Laser scanning device | |
JP3331707B2 (en) | Optical scanning device | |
JP2623147B2 (en) | Optical system for light beam scanning | |
JPH10148755A (en) | Scanning optical device, and scanning optical lens therefor | |
JP4556112B2 (en) | Optical scanning device and image generation device | |
JPH07128604A (en) | Scanning optical device | |
JP4174288B2 (en) | Two-dimensional scanning device and scanning image display device | |
JP3453887B2 (en) | Beam scanning device | |
JP2626708B2 (en) | Scanning optical system | |
JP3381333B2 (en) | Optical scanning device | |
JP2010008735A (en) | Scanning type image projector | |
JP3411661B2 (en) | Scanning optical system | |
KR100558328B1 (en) | Gwangju Yarn Equipment | |
JP3016496B2 (en) | Scanning optical device | |
JP3594274B2 (en) | Optical scanning optical system and apparatus using this optical system | |
JP3458973B2 (en) | Optical scanning device | |
JPH07146437A (en) | Light beam scanning optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020625 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080726 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |