JP3329565B2 - Liquid crystal light modulator - Google Patents

Liquid crystal light modulator

Info

Publication number
JP3329565B2
JP3329565B2 JP04262794A JP4262794A JP3329565B2 JP 3329565 B2 JP3329565 B2 JP 3329565B2 JP 04262794 A JP04262794 A JP 04262794A JP 4262794 A JP4262794 A JP 4262794A JP 3329565 B2 JP3329565 B2 JP 3329565B2
Authority
JP
Japan
Prior art keywords
liquid crystal
resin
alignment
light
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04262794A
Other languages
Japanese (ja)
Other versions
JPH07248489A (en
Inventor
英夫 藤掛
國治 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP04262794A priority Critical patent/JP3329565B2/en
Publication of JPH07248489A publication Critical patent/JPH07248489A/en
Application granted granted Critical
Publication of JP3329565B2 publication Critical patent/JP3329565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は液晶を用いて、光強度
の変調を行う液晶光変調器に係り、特にメモリ性と高速
性が必要とされるディスプレイ用の液晶光変調器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal light modulator for modulating light intensity by using a liquid crystal, and more particularly to a liquid crystal light modulator for a display requiring a memory property and a high speed. .

【0002】[0002]

【従来の技術】液晶に電界を加えて、液晶分子の配列状
態を変化させるという液晶の電気光学効果を応用すると
光変調器が実現できる。液晶光変調器は、他の電気光学
効果を示す結晶に比べて低電圧で動作し、比較的大きな
面積のものを廉価に作ることができるため、ディスプレ
イ用の電気光学素子として近年注目されている。
2. Description of the Related Art An optical modulator can be realized by applying an electro-optic effect of a liquid crystal, which changes an alignment state of liquid crystal molecules by applying an electric field to the liquid crystal. Liquid crystal light modulators operate at a lower voltage than crystals that exhibit other electro-optic effects and can be made relatively inexpensively at a relatively large area. .

【0003】このような液晶光変調器の1つとして、自
発分極をもちカイラルスメクティックC相を示す強誘電
性液晶を、狭いギャップ(通常、3μm 以下)に充填
し、液晶分子の配向状態を双安定化した表面安定化強誘
電性液晶がある。この場合、液晶分子は、配向膜の面に
水平を保ちながら、配向膜の配向処理方向から、液晶材
料固有のチルト角(22.5°程度が望ましい) だけ傾いた
2つの安定な配列状態をもつ。この液晶光変調器は、輝
度向上に不可欠なメモリ機能(2値)と、高速応答をも
つためティスプレイに有用である。しかし、この液晶光
変調器は双安定な動作をもつため中間調表示が困難であ
る。それを克服する方法として、2値の液晶領域を分割
し、その面積比率に応じて中間調を実現する面積階調法
がある。これまでに、面積階調法を得る方法として、以
下に示すような素子が提案されている。
As one of such liquid crystal optical modulators, a ferroelectric liquid crystal having a spontaneous polarization and exhibiting a chiral smectic C phase is filled in a narrow gap (usually 3 μm or less) to change the alignment state of liquid crystal molecules. There is a stabilized surface stabilized ferroelectric liquid crystal. In this case, the liquid crystal molecules have two stable alignment states inclining from the alignment processing direction of the alignment film by a tilt angle inherent to the liquid crystal material (preferably about 22.5 °) while keeping the liquid crystal molecule horizontal. This liquid crystal light modulator is useful for displays because it has a memory function (binary) that is indispensable for improving luminance and a high-speed response. However, since this liquid crystal light modulator has a bistable operation, it is difficult to display a halftone. As a method of overcoming this, there is an area gradation method for dividing a binary liquid crystal region and realizing halftones according to the area ratio. So far, the following elements have been proposed as methods for obtaining the area gradation method.

【0004】従来例1 図6に示されるように、回転楕円体状の強誘電性液晶小
滴1が分散された合成樹脂3が透明電極4A,4B間に
挟まれ、駆動電源15の電圧の大きさにより光透過率が
制御される素子(文献: H. S. Kitzerow , H. Molsen
and G.Hepple ,Applied Physics Letters , Vol.60 , N
o.25 , pp.3093-3095 参照) 。従来例2 図7に示されるように、数nm径の微小球(TiO2) 16
が分散された強誘電性液晶1が、SiO配向膜2A,2
Bの付着した透明電極4A,4B間に挟まれ、駆動電源
15の電圧の大きさにより、光透過率が制御される素子
(文献: A.Yasuda , K.Nito , Y. Y. Bao , H.Takanis
hi and N.A.Clark , 4th International Conference on
Ferroelectric Liquid Crystals (FLC-93) Digest , N
o.P -137 , P.351-352 参照) 。従来例3 図8に示されるように、ラングミュア・ブロジェット法
で作成された超薄膜配向膜17A,17B(ポリイミ
ド、膜厚2nm程度)が付着した透明電極4A,4B間
に強誘電性液晶1が挟まれ、さらにダイオード18と可
変電気抵抗19を介して駆動電源15が接続され、電気
抵抗19の抵抗値により光透過率が制御される素子(文
献:木村宗弘、前田博己、C.M.ゴメス、小林駿介、
電子情報通信学会電子ディスプレイ研究会、No.EID 89-
43 , pp.13-18 参照)。
Conventional Example 1 As shown in FIG. 6, a synthetic resin 3 in which spheroidal ferroelectric liquid crystal droplets 1 are dispersed is sandwiched between transparent electrodes 4A and 4B. Devices whose light transmittance is controlled by size (Reference: HS Kitzerow, H. Molsen
and G. Hepple, Applied Physics Letters, Vol. 60, N
o.25, pp.3093-3095). Conventional Example 2 As shown in FIG. 7, microspheres (TiO 2 )
Is dispersed in the SiO alignment films 2A and 2A.
An element whose light transmittance is controlled by the magnitude of the voltage of the drive power supply 15 and is sandwiched between the transparent electrodes 4A and 4B to which B is attached (references: A. Yasuda, K. Nito, YY Bao, H. Takanis)
hi and NAClark, 4th International Conference on
Ferroelectric Liquid Crystals (FLC-93) Digest, N
oP-137, pp.351-352). Conventional Example 3 As shown in FIG. 8, a ferroelectric liquid crystal 1 is interposed between transparent electrodes 4A and 4B to which ultra-thin alignment films 17A and 17B (polyimide, about 2 nm thick) formed by the Langmuir-Blodgett method are attached. , A drive power supply 15 is connected via a diode 18 and a variable electric resistor 19, and the light transmittance is controlled by the resistance value of the electric resistor 19 (documents: Munehiro Kimura, Hiromi Maeda, CM. Gomez, Shunsuke Kobayashi,
IEICE Electronics Display Research Group, No.EID 89-
43, pp.13-18).

【0005】[0005]

【発明が解決しようとする問題点】前述の従来例1,2
および3の素子は、いずれも強誘電性液晶1を分割し、
ドメイン化することにより中間調が得られるが、以下に
述べるような問題点を抱えている。従来例1の素子で
は、2枚の基板5A,5Bをずらすことにより、強誘電
性液晶1を球状から回転楕円体状に変形し、液晶1の配
向を行なっているが、不完全な配向によるコントラスト
低下や光散乱による透過率低下が避けられない。従来例
2の素子では、微小球16が凝集しやすく、均一に分散
した一様な素子を作ることが困難であり、また、強誘電
性液晶1内に浮遊する微小球16の移動により、経時変
化による安定性が問題となる。従来例3の素子では、液
晶ドメインの大きさが自在に制御できないため、ドメイ
ンの微細化による解像度の向上が困難である。
PROBLEMS TO BE SOLVED BY THE INVENTION
And 3 each divide the ferroelectric liquid crystal 1,
Although halftone can be obtained by domaining, it has the following problems. In the device of Conventional Example 1, the ferroelectric liquid crystal 1 is deformed from a spherical shape to a spheroidal shape by shifting the two substrates 5A and 5B, and the liquid crystal 1 is aligned. A decrease in transmittance due to a decrease in contrast and light scattering is inevitable. In the device of Conventional Example 2, the microspheres 16 tend to agglomerate, making it difficult to produce a uniform device that is uniformly dispersed. In addition, the microspheres 16 floating in the ferroelectric liquid crystal 1 move with time, Stability due to change becomes a problem. In the device of Conventional Example 3, since the size of the liquid crystal domain cannot be freely controlled, it is difficult to improve the resolution by miniaturizing the domain.

【0006】そこで、本発明の目的は、前述の諸問題を
解決し、中間調のメモリ機能を有し、しかも、コントラ
スト、光透過率、解像度、面内均一性、安定性に優れた
液晶光変調器を提供せんとするものである。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a liquid crystal light having a halftone memory function and excellent in contrast, light transmittance, resolution, in-plane uniformity and stability. A modulator is not provided.

【0007】[0007]

【問題点を解決するための手段】この目的を達成するた
め、本発明液晶光変調器は、自発分極をもちカイラルス
メクティックC相を示す強誘電性液晶と入射光の波長以
下の太さの微細な3次元網目状の合成樹脂からなる液晶
・樹脂複合体と、当該液晶・樹脂複合体を挟み液晶分子
を配向膜の配向処理方向に配列させる前記配向膜と、前
記液晶・樹脂複合体と前記配向膜を挟む透明電極と、前
記液晶・樹脂複合体と前記配向膜と前記透明電極とを実
質的に挟む偏光方向が互いに直交関係にある偏光板と、
前記透明電極に電圧を印加する電圧印加手段とから構成
するとともに、前記透明電極に印加する前記電圧の極性
およびレベルを変えることにより、透明な配向を示す液
晶ドメインと不透明な配向を示す液晶ドメインとの比率
を任意所望に変化させて任意所望の強度の光変調を行い
得るようにしたことを特徴とするものである。
In order to achieve this object, a liquid crystal optical modulator according to the present invention comprises a ferroelectric liquid crystal having spontaneous polarization and exhibiting a chiral smectic C phase and a fine liquid crystal having a thickness smaller than the wavelength of incident light. Liquid crystal-resin composite made of a synthetic resin having a three-dimensional network shape, the alignment film sandwiching the liquid crystal-resin composite, and aligning liquid crystal molecules in the alignment treatment direction of the alignment film; A transparent electrode sandwiching the alignment film, and a polarizing plate in which the polarization directions substantially sandwiching the liquid crystal / resin composite, the alignment film and the transparent electrode are orthogonal to each other,
A voltage application means for applying a voltage to the transparent electrode, and by changing the polarity and level of the voltage applied to the transparent electrode, a liquid crystal domain showing a transparent alignment and a liquid crystal domain showing an opaque alignment. Can be arbitrarily changed to perform light modulation with an arbitrary desired intensity.

【0008】さらに本発明の実施例では、配向膜の配向
処理方向に伸張した形状の微細な網目状の合成樹脂が、
強誘電性液晶内に分散されているため、強誘電性液晶の
配向が乱れず、高いコントラストが得られる(従来例1
の素子の問題点を解決)。また、網目をなす樹脂繊維の
太さが、入射光の波長以下で極めて微細なため、光散乱
を生じず、光透過率の低下が生じない(従来例1の素子
の問題点を解決)。また、合成樹脂は網目状に結合して
おり、経時変化を生ぜず、高い安定性をもつ(従来例2
の素子の問題点を解決)。網目状合成樹脂が一様に形成
されるため、高い面内一様性が得られる(従来例2の素
子の問題点を解決)。また、合成樹脂の網目の大きさ
は、樹脂形成の速度を制御することにより、容易に制御
できるため、高い解像度の素子が製作できる(従来例3
の素子の問題点を解決)。
Further, in an embodiment of the present invention, a fine mesh-like synthetic resin having a shape elongated in the alignment treatment direction of the alignment film is provided.
Since the ferroelectric liquid crystal is dispersed in the ferroelectric liquid crystal, the orientation of the ferroelectric liquid crystal is not disturbed, and a high contrast is obtained.
To solve the problem of the element). In addition, since the thickness of the resin fibers forming the mesh is extremely fine below the wavelength of the incident light, light scattering does not occur and light transmittance does not decrease (the problem of the element of Conventional Example 1 is solved). Further, the synthetic resin is bonded in a mesh form, does not change with time, and has high stability (Conventional Example 2).
To solve the problem of the element). Since the network-like synthetic resin is formed uniformly, high in-plane uniformity is obtained (the problem of the element of Conventional Example 2 is solved). Further, the size of the mesh of the synthetic resin can be easily controlled by controlling the speed of resin formation, so that a high-resolution element can be manufactured (Conventional Example 3).
To solve the problem of the element).

【0009】[0009]

【実施例】以下添付図面を参照し実施例により本発明を
詳細に説明する。実施例の構成 図1は、本発明を適用した液晶光変調器の一実施例の模
式的構成の断面図を示す。本実施例の液晶光変調器で
は、カイラルスメクティックC相を示す強誘電性液晶1
の中に、配向膜2Aの配向処理方向に伸張した形状の網
目状の合成樹脂3を分散し、透明電極4A,4B上に付
着した配向膜2A,2B間に液晶1および樹脂3を挟ん
で配設する。さらに2つの透明電極4A,4Bは、ガラ
ス基板5A,5B上に付着され、リード線6とスイッチ
7を介して、3つの駆動用直流電圧源8A,8B,8C
のいずれかに接続される。入射光9は偏光板10Aによ
り液晶の分子の長軸方向に偏光された後、一方のガラス
基板5Aから入射し、液晶1と合成樹脂3からなる液晶
・樹脂複合体11で、偏光状態が制御され出射側の偏光
板10Bを透過した後、出射光12となる。2つの偏光
板10A,10Bの偏光方向は、直交関係にあり、また
2つ配向膜2A,2Bの配向処理方向は平行である。さ
らに偏光板10Aの偏光方向は、配向膜2A,2Bの配
向処理方向と液晶分子のチルト角だけ傾いている。2つ
のガラス基板5A,5Bは、周囲をシール用樹脂13に
より堅牢に固定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings. Configuration of the Embodiment FIG. 1 shows a cross-sectional view of a schematic configuration of an embodiment of a liquid crystal light modulator according to the present invention. In the liquid crystal light modulator of the present embodiment, the ferroelectric liquid crystal 1 showing a chiral smectic C phase is used.
, A network-like synthetic resin 3 extending in the alignment direction of the alignment film 2A is dispersed therein, and the liquid crystal 1 and the resin 3 are sandwiched between the alignment films 2A and 2B attached on the transparent electrodes 4A and 4B. Arrange. Further, two transparent electrodes 4A and 4B are attached on glass substrates 5A and 5B, and are connected via lead wire 6 and switch 7 to three driving DC voltage sources 8A, 8B and 8C.
Connected to either The incident light 9 is polarized in the major axis direction of the liquid crystal molecules by the polarizing plate 10A, and then enters from one glass substrate 5A, and the polarization state is controlled by the liquid crystal / resin composite 11 composed of the liquid crystal 1 and the synthetic resin 3. After being transmitted through the polarizing plate 10B on the emission side, the light becomes the emission light 12. The polarization directions of the two polarizing plates 10A and 10B are orthogonal to each other, and the alignment directions of the two alignment films 2A and 2B are parallel. Furthermore, the polarization direction of the polarizing plate 10A is inclined by the tilt angle of the liquid crystal molecules with respect to the alignment processing directions of the alignment films 2A and 2B. The periphery of the two glass substrates 5A and 5B is firmly fixed by a sealing resin 13.

【0010】液晶1は、網目状合成樹脂3により微細に
分割され微小なドメインを形成する。また、合成樹脂3
は網目状に結合しており、経時変化を生ぜず高い安定性
をもつ。液晶1と合成樹脂3からなる液晶・樹脂複合体
11は、液晶1および合成樹脂3の構成材料を混ぜ合わ
せて、加熱しながら均質溶媒にした後、光硬化、熱硬化
および反応硬化等の方法を用いて、合成樹脂3成分のみ
を硬化し、液晶1を析出・凝集させることで得られる。
この時、液晶・樹脂複合体中の樹脂3の含有率を10%
以下にし、液晶1が自発分極を失うネマチック相を示す
高い温度で、樹脂材料の分子(モノマー)を液晶分子と
共に、配向膜2A,2Bの配向処理方向に配列させ、樹
脂材料を硬化させることにより、配向膜2A,2Bの配
向処理方向に伸張した形状の網目状樹脂3を形成するこ
とができる。この網目状樹脂3は液晶1がカイラルスメ
クティックC相を示す室温に戻った場合でも、液晶1の
配向を乱すことが少なく、高いコントラスト比を維持す
ることが可能である。また、網目を形成する合成樹脂繊
維3の太さは、波長よりも小さいため光散乱を生ぜず高
い光透過率を示す。なお、合成樹脂3の網目の大きさ
は、合成樹脂3の硬化速度により容易に制御可能であ
る。また、微細な網目状合成樹脂3を形成することによ
り液晶光変調器の解像度を増すことが可能である。ま
た、合成樹脂3の形成速度を均一に制御すれば、網目状
樹脂3が一様に形成されるため高い面内一様性が得られ
る。
The liquid crystal 1 is finely divided by the network synthetic resin 3 to form fine domains. In addition, synthetic resin 3
Are connected in a network and have high stability without causing aging. The liquid crystal / resin composite 11 composed of the liquid crystal 1 and the synthetic resin 3 is prepared by mixing the constituent materials of the liquid crystal 1 and the synthetic resin 3 into a homogeneous solvent while heating, and then performing photo-curing, heat-curing, and reaction curing. Is used to cure only the three components of the synthetic resin to precipitate and aggregate the liquid crystal 1.
At this time, the content of the resin 3 in the liquid crystal / resin composite was reduced to 10%.
In the following, the molecules (monomer) of the resin material are arranged together with the liquid crystal molecules in the alignment processing direction of the alignment films 2A and 2B at a high temperature at which the liquid crystal 1 exhibits a nematic phase in which the spontaneous polarization is lost, and the resin material is cured Thus, it is possible to form the mesh resin 3 having a shape extending in the alignment processing direction of the alignment films 2A and 2B. Even when the liquid crystal 1 returns to room temperature at which the liquid crystal 1 exhibits the chiral smectic C phase, the network resin 3 does not disturb the alignment of the liquid crystal 1 and can maintain a high contrast ratio. In addition, the thickness of the synthetic resin fiber 3 forming the mesh is smaller than the wavelength, so that a high light transmittance is exhibited without causing light scattering. The size of the mesh of the synthetic resin 3 can be easily controlled by the curing speed of the synthetic resin 3. Further, the resolution of the liquid crystal light modulator can be increased by forming the fine network synthetic resin 3. Further, if the forming speed of the synthetic resin 3 is controlled uniformly, the in-plane uniformity can be obtained because the mesh resin 3 is formed uniformly.

【0011】入射光の偏光状態を大きく制御するために
は、液晶1の屈折率異方性Δn(=異常光屈折率ne−
常光屈折率no)が大きい方が有利である。そのため、
液晶1には、屈折率異方性の大きなシッフ塩基系強誘電
性液晶、アゾ系強誘電性液晶、アゾキシ系強誘電性液
晶、ビフェニル系強誘電性液晶、エステル系強誘電性液
晶、フェニルピリミジン系強誘電性液晶などが適してき
る。さらに、自発分極が大きな強誘電性液晶1を用いた
場合、高速応答と低電圧駆動が可能となる。
In order to largely control the polarization state of the incident light, the refractive index anisotropy Δn of the liquid crystal 1 (= the extraordinary light refractive index ne−
A higher ordinary light refractive index no) is advantageous. for that reason,
The liquid crystal 1 includes a Schiff base ferroelectric liquid crystal having a large refractive index anisotropy, an azo ferroelectric liquid crystal, an azoxy ferroelectric liquid crystal, a biphenyl ferroelectric liquid crystal, an ester ferroelectric liquid crystal, and phenylpyrimidine. A system ferroelectric liquid crystal or the like is suitable. Further, when the ferroelectric liquid crystal 1 having a large spontaneous polarization is used, high-speed response and low-voltage driving can be performed.

【0012】合成樹脂3には、透明なアクリル樹脂、エ
ポキシ樹脂、ウレタン樹脂または、それらの共重合体等
が最適である。また、配向膜2Aは、ラビング配向処理
されたポリイミド樹脂、ポリビニールアルコール膜、斜
方蒸着されたSiO、SiO2 もしくは、ラングミュア
・ブロジェット法で形成される超薄膜のポリイミド膜な
どが適当である。なお、液晶分子を配向膜2A,2Bの
面から僅かに傾斜(プレチルト角)させ、複合体11を
構成することも可能である。また、液晶分子が配向膜2
A,2Bの面で逆方向に僅かに傾き、液晶内部で分子配
向が折れ曲がった構造(シェブロン構造)の場合にも、
本方法は有効である。
As the synthetic resin 3, a transparent acrylic resin, epoxy resin, urethane resin, or a copolymer thereof is most suitable. The alignment film 2A is rubbing alignment treated polyimide resin, polyvinyl alcohol film, oblique vapor deposited SiO, SiO 2 or, are suitable, such as polyimide film of ultra-thin film formed by the Langmuir-Blodgett method . Note that it is also possible to configure the composite 11 by slightly tilting (pretilt angle) the liquid crystal molecules from the surfaces of the alignment films 2A and 2B. In addition, the liquid crystal molecules are
In the case of a structure (chevron structure) in which the molecules are slightly inclined in the opposite direction on the planes A and 2B and the molecular orientation is bent inside the liquid crystal,
This method is effective.

【0013】一例として試作した本実施例では、カイラ
ルスメクティックC相の強誘電性液晶1として、チッソ
社CS− 1014 (屈折率異方性Δn= 0.15 ) を使用し
た。また、合成樹脂3として、紫外線硬化性のアクリル
・ウレタン共重合体(ノーランドプロダクツ社 NOA-65
、屈折率ne= 1.524)を用いた。
In this example, which was produced as an example, CS-1014 (refractive index anisotropy Δn = 0.15) was used as the ferroelectric liquid crystal 1 having a chiral smectic C phase. Further, as the synthetic resin 3, an ultraviolet-curable acrylic / urethane copolymer (NOA-65 manufactured by Norland Products)
, Refractive index ne = 1.524).

【0014】製作方法は、以下の通りである。まず、ポ
リイミド膜2A(50nm厚) をスピンコート法により透明
電極4A(In2O3 : Sn、厚み72nm)付きのガラス基板5
A(3mm厚の青板ガラス) に塗布する。さらに、配向処
理として、このポリイミド膜2Aを微細なレーヨンブラ
シで一方向(ラビング方向)に摩擦する(ラビング処
理)。このような方法で作製した配向膜2A,2B付き
の2つのガラス基板5A,5Bの周辺部を、2μm の球
状スペーサ入りのシール用接着剤13で張り合わせる。
この場合、2枚の配向膜2A,2Bのラビング方向は、
平行である。
The manufacturing method is as follows. First, a polyimide film 2A (50 nm thick) is spin-coated on a glass substrate 5 with a transparent electrode 4A (In 2 O 3 : Sn, thickness 72 nm).
A (3 mm thick blue plate glass). Further, as an alignment treatment, the polyimide film 2A is rubbed in one direction (rubbing direction) with a fine rayon brush (rubbing treatment). The peripheral portions of the two glass substrates 5A and 5B provided with the alignment films 2A and 2B manufactured by such a method are bonded together with a sealing adhesive 13 containing a 2 μm spherical spacer.
In this case, the rubbing directions of the two alignment films 2A and 2B are as follows.
Parallel.

【0015】次に、液晶1と合成樹脂3材料を 100℃ま
で加熱して混合し、均質溶液を作製する。この均質溶液
を前述の配向膜2A,2B間のギャップ(約2μm )
に、100 ℃に保ったまま注入する。さらに、ネマティッ
ク相を示す75℃まで冷却し、ガラス基板5Aを通し
て、強度40mW/cm2の紫外線(波長365 nm) を照射し、
網目状樹脂3を形成する。その後、室温まで徐冷する。
Next, the liquid crystal 1 and the synthetic resin 3 are heated to 100 ° C. and mixed to form a homogeneous solution. This homogeneous solution is filled with a gap (about 2 μm) between the alignment films 2A and 2B.
While maintaining the temperature at 100 ° C. Further, it is cooled to 75 ° C. showing a nematic phase, and irradiated with ultraviolet light (wavelength 365 nm) having an intensity of 40 mW / cm 2 through a glass substrate 5A.
The network resin 3 is formed. Then, it is cooled slowly to room temperature.

【0016】このような方法で試作された本実施例の液
晶光変調器の有効面積は、20×20 mm2である。な
お、実用的なコントラスト比を得るためには、1〜10
μmの厚みの複合体11が必要となる。実施例の動作 次に、図1に示す本実施例の液晶光変調器の動作を、図
面を用いて説明する。
The effective area of the liquid crystal light modulator according to the present embodiment, which is experimentally manufactured by such a method, is 20 × 20 mm 2 . In order to obtain a practical contrast ratio, 1 to 10
A composite 11 having a thickness of μm is required. Next, the operation of the liquid crystal light modulator of the present embodiment shown in FIG. 1 will be described with reference to the drawings.

【0017】図1のスイッチ7により、電源8Aの負の
電圧が上面の透明電極4Aに印加されるようにした場
合、液晶分子の自発分極が上方(透明電極4Aの方向)
を向く。それに伴い液晶分子14Aは、基板面に水平方
向を維持したまま、図2の動作図に示すように、配向膜
2A,2Bのラビング方向からチルト角だけ傾き配列す
る。この時、偏光板10Aを透過した光の偏光方向が液
晶分子14Aの長軸と一致するため、複屈折効果が現れ
ず、光の偏光状態が変化しない。そのため、複合体11
を透過した光は出射側の偏光板10Bで吸収され、透過
することができない(不透明状態)。
When the negative voltage of the power supply 8A is applied to the upper transparent electrode 4A by the switch 7 in FIG. 1, the spontaneous polarization of the liquid crystal molecules is increased (toward the transparent electrode 4A).
Turn to. Along with this, the liquid crystal molecules 14A are tilted and arranged by a tilt angle from the rubbing direction of the alignment films 2A, 2B while maintaining the horizontal direction on the substrate surface, as shown in the operation diagram of FIG. At this time, since the polarization direction of the light transmitted through the polarizing plate 10A coincides with the long axis of the liquid crystal molecules 14A, the birefringence effect does not appear, and the polarization state of the light does not change. Therefore, the complex 11
Is transmitted through the polarizing plate 10B on the emission side and cannot be transmitted (opaque state).

【0018】次に、図1のスイッチ7により、電源8B
の比較的小さな正の電圧を上方の透明電極4Aに印加す
る。この場合、網目状合成樹脂3で分割された液晶ドメ
インは、個々に異なるしきい値電圧をもつため、一部の
液晶ドメインで、液晶分子14Bの自発分極が下方(透
明電極4Bの方向)に向く。この液晶ドメインの液晶分
子14Bは、図3に示すように配向膜2A,2Bの配向
処理方向に対して、チルト角だけ逆方向に傾き配列す
る。この液晶ドメインでは、入射光の偏光軸に対して、
分子14B長軸がチルト角の2倍傾くため、光の2つの
直交偏波成分に位相差が生じるため、出射光の偏光状態
が変化する。あらかじめ、180 °の位相差が生じるよう
に、液晶・樹脂複合体11の膜厚と液晶1の屈折率異方
性を調整しておくことにより、液晶・樹脂複合体11か
ら出射する光を、出射側の偏光板10Bと平行な直線偏
光にすることができる。そのため、この液晶ドメインを
透過した光は、出射側の偏光板10Bに吸収されずに透
過することができる。この時、透明な配向を示す液晶ド
メインと不透明な配向を示す液晶ドメインが混在するこ
とになり、それらの面積比率で中間調が得られることに
なる。
Next, the switch 8 shown in FIG.
Is applied to the upper transparent electrode 4A. In this case, the liquid crystal domains divided by the mesh-shaped synthetic resin 3 have different threshold voltages, so that in some liquid crystal domains, the spontaneous polarization of the liquid crystal molecules 14B is downward (toward the transparent electrode 4B). Turn around. As shown in FIG. 3, the liquid crystal molecules 14B in the liquid crystal domain are arranged in a tilt direction opposite to the direction of the alignment treatment of the alignment films 2A and 2B by a tilt angle. In this liquid crystal domain, with respect to the polarization axis of the incident light,
Since the major axis of the molecule 14B is tilted twice as large as the tilt angle, a phase difference occurs between the two orthogonal polarization components of the light, so that the polarization state of the emitted light changes. By adjusting the film thickness of the liquid crystal / resin composite 11 and the refractive index anisotropy of the liquid crystal 1 in advance so that a phase difference of 180 ° occurs, light emitted from the liquid crystal / resin composite 11 can be adjusted. The light can be converted to linearly polarized light parallel to the exit-side polarizing plate 10B. Therefore, the light transmitted through the liquid crystal domain can be transmitted without being absorbed by the polarizing plate 10B on the emission side. At this time, a liquid crystal domain showing a transparent alignment and a liquid crystal domain showing an opaque alignment are mixed, and a halftone can be obtained by the area ratio of these.

【0019】さらに、図1のスイッチ7により、電源8
Cの大きな正の直流電圧を上方の透明電極4Aに印加し
た場合、図4に示すように、すべての液晶ドメインで、
透明状態を示す配向となる。この場合、入射光の大部分
が偏光板10Bで吸収されずに出射され透明状態にな
る。このような不透明状態、中間調状態、透明状態は,
印加電圧をゼロにした状態でも、液晶分子の配向がメモ
リ性を示すため保持される。それにより、中間調をもつ
メモリ動作が実現できる。
Further, the switch 8 in FIG.
When a positive DC voltage having a large C is applied to the upper transparent electrode 4A, as shown in FIG.
The orientation indicates a transparent state. In this case, most of the incident light is emitted without being absorbed by the polarizing plate 10B, and becomes a transparent state. Such opaque, half-tone, and transparent states are:
Even when the applied voltage is set to zero, the orientation of the liquid crystal molecules is maintained because it exhibits a memory property. Thereby, a memory operation having halftone can be realized.

【0020】本実施例の一例として試作した上述の液晶
光変調器に、レベルの異なる正の電圧パルスを一時的に
印加し、単色入射光9(波長 633 nm のヘリウムネオン
レーザ光) を入射した場合の出射光の強度変化を図5に
示す。電圧パルスの強度に応じて、中間調の透過率が印
加電圧がゼロになった場合にも保持されることが確認で
きる。さらに、負の電圧パルスにより、出射光強度が低
レベルになるリセット動作が得られている。なお、本素
子の応答時間は、20Vの印加時に、200 μsと高速で
あった。自発分極の大きな液晶1を用いることにより、
さらに高速化が可能である。
A positive voltage pulse having a different level was temporarily applied to the above-mentioned liquid crystal light modulator produced as an example of this embodiment, and monochromatic incident light 9 (helium neon laser light having a wavelength of 633 nm) was incident. FIG. 5 shows a change in the intensity of the emitted light in this case. It can be confirmed that the halftone transmittance is maintained even when the applied voltage becomes zero, according to the intensity of the voltage pulse. Further, a reset operation in which the intensity of the emitted light becomes low due to the negative voltage pulse is obtained. The response time of this device was as fast as 200 μs when 20 V was applied. By using the liquid crystal 1 having a large spontaneous polarization,
Further speedup is possible.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
配向膜2A,2Bの配向処理方向に伸張した形状の微細
な網目状合成樹脂3を強誘電性液晶1内に分散すること
により、面積階調に基づく中間調メモリ機能が得られ、
しかも、コントラスト、光透過率、解像度、面内均一
性、安定性に優れた液晶光変調器を提供することができ
る。従って、本発明の液晶光変調器は、ディスプレイに
好適に応用が可能であり、本発明を用いた場合、強誘電
性液晶を用いて中間調のメモリ動作が可能となり、コン
トラスト、光透過率、解像度、面内均一性、安定性に優
れたディスプレイを実現できる。
As described above, according to the present invention,
By dispersing in the ferroelectric liquid crystal 1 a fine network synthetic resin 3 having a shape elongated in the alignment processing direction of the alignment films 2A and 2B, a halftone memory function based on area gradation is obtained.
Moreover, it is possible to provide a liquid crystal light modulator excellent in contrast, light transmittance, resolution, in-plane uniformity, and stability. Therefore, the liquid crystal light modulator of the present invention can be suitably applied to a display, and when the present invention is used, a halftone memory operation can be performed using a ferroelectric liquid crystal, and contrast, light transmittance, A display with excellent resolution, in-plane uniformity, and stability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の液晶光変調器の一実施例を示す
構成図、
FIG. 1 is a configuration diagram showing one embodiment of a liquid crystal light modulator of the present invention;

【図2】図2は図1に示した液晶光変調器の不透明状態
を示す動作図、
FIG. 2 is an operation diagram showing an opaque state of the liquid crystal light modulator shown in FIG. 1;

【図3】図3は図1に示した液晶光変調器の中間調状態
を示す動作図、
FIG. 3 is an operation diagram showing a halftone state of the liquid crystal light modulator shown in FIG. 1;

【図4】図4は図1に示した液晶光変調器の透明状態を
示す動作図、
FIG. 4 is an operation diagram showing a transparent state of the liquid crystal light modulator shown in FIG. 1,

【図5】図5は図1に示した液晶光変調器のパルス電圧
強度と出射光強度の波形を示す図、
FIG. 5 is a diagram showing waveforms of a pulse voltage intensity and an emission light intensity of the liquid crystal light modulator shown in FIG. 1;

【図6】図6は液晶光変調器の従来例1の構成を示す
図、
FIG. 6 is a diagram showing a configuration of a conventional example 1 of a liquid crystal light modulator;

【図7】図7は液晶光変調器の従来例2の構成を示す
図、
FIG. 7 is a diagram showing a configuration of a second conventional example of the liquid crystal light modulator;

【図8】図8は液晶光変調器の従来例3の構成を示す
図、
FIG. 8 is a diagram showing a configuration of a conventional example 3 of a liquid crystal optical modulator;

【符号の説明】[Explanation of symbols]

1 強誘電性液晶 2A,2B 配向膜 3 合成樹脂 4A,4B 透明電極 5A,5B ガラス基板 6 リード線 7 スイッチ 8A,8B,8C 直流電圧源 9 入射光 10A,10B 偏光板 11 液晶・樹脂複合体 12 出射光 13 シール樹脂 14A,14B 液晶分子 15 電源 16 微小球 17A,17B 超薄膜配向膜 18 ダイオード 19 可変電気抵抗 DESCRIPTION OF SYMBOLS 1 Ferroelectric liquid crystal 2A, 2B Alignment film 3 Synthetic resin 4A, 4B Transparent electrode 5A, 5B Glass substrate 6 Lead wire 7 Switch 8A, 8B, 8C DC voltage source 9 Incident light 10A, 10B Polarizer 11 Liquid crystal / resin composite DESCRIPTION OF SYMBOLS 12 Outgoing light 13 Seal resin 14A, 14B Liquid crystal molecule 15 Power supply 16 Microsphere 17A, 17B Ultra-thin alignment film 18 Diode 19 Variable electric resistance

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−88150(JP,A) 特開 平5−150229(JP,A) 特開 平4−119320(JP,A) 特開 平4−250427(JP,A) 特開 平4−318812(JP,A) 特開 平4−318518(JP,A) 特開 平5−264953(JP,A) 特開 平4−281425(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1337 510 G02F 1/1334 G02F 1/141 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-88150 (JP, A) JP-A-5-150229 (JP, A) JP-A-4-119320 (JP, A) JP-A-4-119 250427 (JP, A) JP-A-4-318812 (JP, A) JP-A-4-318518 (JP, A) JP-A-5-264953 (JP, A) JP-A-4-281425 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) G02F 1/1337 510 G02F 1/1334 G02F 1/141

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 自発分極をもちカイラルスメクティック
C相を示す強誘電性液晶と入射光の波長以下の太さの
細な3次元網目状の合成樹脂からなる液晶・樹脂複合体
と、当該液晶・樹脂複合体を挟み液晶分子を配向膜の配
向処理方向に配列させる前記配向膜と、前記液晶・樹脂
複合体と前記配向膜を挟む透明電極と、前記液晶・樹脂
複合体と前記配向膜と前記透明電極とを実質的に挟む偏
光方向が互いに直交関係にある偏光板と、前記透明電極
に電圧を印加する電圧印加手段とから構成するととも
に、前記透明電極に印加する前記電圧の極性およびレベ
ルを変えることにより、透明な配向を示す液晶ドメイン
と不透明な配向を示す液晶ドメインとの比率を任意所望
に変化させて任意所望の強度の光変調を行い得るように
したことを特徴とする液晶光変調器。
1. A liquid crystal / resin composite comprising a ferroelectric liquid crystal having a spontaneous polarization and exhibiting a chiral smectic C phase and a fine three-dimensional network-like synthetic resin having a thickness equal to or less than the wavelength of incident light. If, distribution of the orientation film of the liquid crystal molecules sandwiched between the liquid crystal-polymer composite material
And the alignment layer to be arranged in the direction the process direction, and transparent electrodes sandwiching said orientation films and said liquid crystal-polymer composite material, the liquid crystal-resin
The bias that substantially sandwiches the composite, the alignment film, and the transparent electrode
A polarizing plate whose light directions are orthogonal to each other, and the transparent electrode
And voltage applying means for applying a voltage to
The polarity and level of the voltage applied to the transparent electrode
Liquid crystal domains that exhibit transparent alignment by changing
Arbitrary ratio between liquid crystal domain and opaque alignment
So that light modulation of any desired intensity can be performed.
Liquid crystal light modulator, characterized in that the.
【請求項2】 前記合成樹脂の含有率が前記液晶・樹脂
複合体の10重量%以下であることを特徴とする請求項
1記載の液晶光変調器。
2. The liquid crystal optical modulator according to claim 1, wherein the content of the synthetic resin is not more than 10% by weight of the liquid crystal / resin composite.
【請求項3】 前記合成樹脂の網目が前記配向膜の配向
処理方向に伸張した形状であることを特徴とする請求項
1または2記載の液晶光変調器。
3. The liquid crystal light modulator according to claim 1, wherein the mesh of the synthetic resin has a shape extending in the alignment processing direction of the alignment film.
【請求項4】 前記液晶がネマティック相を示す温度で
前記合成樹脂が形成されていることを特徴とする請求項
1から3いずれか1項に記載の液晶光変調器。
4. The liquid crystal optical modulator according to claim 1, wherein the synthetic resin is formed at a temperature at which the liquid crystal exhibits a nematic phase.
【請求項5】 前記合成樹脂が、光硬化、熱硬化または
反応硬化により形成されるアクリル樹脂、エポキシ樹
脂、ウレタン樹脂、またはそれらの共重合体であること
を特徴とする請求項1から4いずれか1項に記載の液晶
光変調器。
5. The method according to claim 1, wherein the synthetic resin is an acrylic resin, an epoxy resin, a urethane resin, or a copolymer thereof formed by light curing, heat curing, or reaction curing. 2. The liquid crystal light modulator according to claim 1.
【請求項6】 前記配向膜が、ラビング配向処理された
ポリイミド樹脂、ポリビニルアルコール樹脂、斜方蒸着
されたSiO、SiO2 、ラングミュア・ブロジェット
法により形成されるポリイミド樹脂のいずれかであるこ
とを特徴とする請求項1から5いずれか1項に記載の液
晶光変調器。
6. The method according to claim 1, wherein the alignment film is any one of a rubbed alignment-treated polyimide resin, a polyvinyl alcohol resin, obliquely deposited SiO, SiO 2 , and a polyimide resin formed by a Langmuir-Blodgett method. The liquid crystal light modulator according to any one of claims 1 to 5, characterized in that:
【請求項7】 前記液晶が、シッフ塩基系強誘電性液
晶、アゾ系強誘電性液晶、アゾキシ系強誘電性液晶、ビ
フェニル系強誘電性液晶、エステル系強誘電性液晶、ま
たはフェニルピリミジン系強誘電性液晶であることを特
徴とする請求項1から6いずれか1項に記載の液晶光変
調器。
7. The liquid crystal is a Schiff base ferroelectric liquid crystal, an azo ferroelectric liquid crystal, an azoxy ferroelectric liquid crystal, a biphenyl ferroelectric liquid crystal, an ester ferroelectric liquid crystal, or a phenylpyrimidine ferroelectric liquid crystal. 7. The liquid crystal optical modulator according to claim 1, wherein the modulator is a dielectric liquid crystal.
JP04262794A 1994-03-14 1994-03-14 Liquid crystal light modulator Expired - Fee Related JP3329565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04262794A JP3329565B2 (en) 1994-03-14 1994-03-14 Liquid crystal light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04262794A JP3329565B2 (en) 1994-03-14 1994-03-14 Liquid crystal light modulator

Publications (2)

Publication Number Publication Date
JPH07248489A JPH07248489A (en) 1995-09-26
JP3329565B2 true JP3329565B2 (en) 2002-09-30

Family

ID=12641261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04262794A Expired - Fee Related JP3329565B2 (en) 1994-03-14 1994-03-14 Liquid crystal light modulator

Country Status (1)

Country Link
JP (1) JP3329565B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118512A (en) * 1995-12-27 2000-09-12 Sharp Kabushiki Kaisha Manufacturing method of a liquid crystal display element
TW400452B (en) 1995-12-27 2000-08-01 Sharp Kk Liquid crystal display element and a manufacturing method thereof as well as a liquid crystal display
GB2320103A (en) * 1996-12-05 1998-06-10 Sharp Kk Liquid crystal devices
US5949508A (en) * 1997-12-10 1999-09-07 Kent State University Phase separated composite organic film and methods for the manufacture thereof
JP4674738B2 (en) * 2001-01-31 2011-04-20 駿介 小林 Manufacturing method of liquid crystal display element
JP2003066429A (en) * 2001-08-29 2003-03-05 Chisso Corp Liquid crystal display element having memory function
US6989857B2 (en) * 2003-06-30 2006-01-24 Emhart Glass S.A. Container inspection machine
KR101593757B1 (en) * 2012-12-14 2016-02-18 주식회사 엘지화학 Preparation method for Liquid Crystal Device

Also Published As

Publication number Publication date
JPH07248489A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
JP3086718B2 (en) Liquid crystal display device
JP3078623B2 (en) Liquid crystal electro-optical device and manufacturing method thereof
KR20010024689A (en) Phase separated composite organic film and methods for the manufacture thereof
JP2002277862A (en) Liquid crystal light modulator and display device using the same
JPH09160041A (en) Liquid crystal display element
JPH08211366A (en) Liquid crystal display device and its production
JP3329565B2 (en) Liquid crystal light modulator
KR960002689B1 (en) Liquid crystal electro-optic device
JP2006234885A (en) Manufacturing method of liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display
JP4220748B2 (en) Liquid crystal display element, method for manufacturing liquid crystal display element, and liquid crystal display device
JP4220810B2 (en) Method for manufacturing liquid crystal light modulation film, liquid crystal light modulation film, and liquid crystal light modulator
JP3328444B2 (en) Liquid crystal element and manufacturing method thereof
JP4740784B2 (en) Liquid crystal light modulator manufacturing method, liquid crystal light modulator, and liquid crystal display device
JP4223107B2 (en) Liquid crystal light modulator
JP3225932B2 (en) Manufacturing method of liquid crystal display element
JP4252202B2 (en) Liquid crystal light modulator using ferroelectric liquid crystal and manufacturing method thereof
JP4220729B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP2007065270A (en) Liquid crystal optical modulator and liquid crystal display device using the same
JP2753206B2 (en) Guest-host type liquid crystal display
JP3757365B2 (en) Ferroelectric smectic liquid crystal dispersed in polymer
JP4399212B2 (en) Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JP2693558B2 (en) Light modulation element
JPH10260388A (en) Reflection type liquid crystal display element and its driving method
JP2006267562A (en) Method for manufacturing liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display device
JP2692673B2 (en) Optical shutter device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees