JP3325686B2 - Fiber, production method thereof, and fiber product - Google Patents

Fiber, production method thereof, and fiber product

Info

Publication number
JP3325686B2
JP3325686B2 JP35034993A JP35034993A JP3325686B2 JP 3325686 B2 JP3325686 B2 JP 3325686B2 JP 35034993 A JP35034993 A JP 35034993A JP 35034993 A JP35034993 A JP 35034993A JP 3325686 B2 JP3325686 B2 JP 3325686B2
Authority
JP
Japan
Prior art keywords
fiber
fine particles
zno fine
zno
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35034993A
Other languages
Japanese (ja)
Other versions
JPH07197309A (en
Inventor
兼広 斉藤
巧 田中
信弘 野上
秋雄 濱元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Daito Kasei Kogyo Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Daito Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18409889&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3325686(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Osaka Cement Co Ltd, Daito Kasei Kogyo Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP35034993A priority Critical patent/JP3325686B2/en
Publication of JPH07197309A publication Critical patent/JPH07197309A/en
Application granted granted Critical
Publication of JP3325686B2 publication Critical patent/JP3325686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ropes Or Cables (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、紫外線遮蔽、及び抗菌
・防臭機能を有する繊維とその製造方法ならびに繊維製
品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber having ultraviolet shielding, antibacterial and deodorant functions, a method for producing the same, and a fiber product.

【0002】[0002]

【従来の技術】近年、繊維に特定の機能を持たせること
により、繊維の高付加価値化が図られ、特に、紫外線遮
蔽機能、抗菌・防臭機能を有する繊維が提案されてい
る。この紫外線遮蔽機能を有する繊維は、オゾンホール
の増大により、地上に到達する紫外線量が年々増加し、
人体に対する悪影響が指摘され、紫外線より皮膚を守る
目的で、その需要は増大しつつある。
2. Description of the Related Art In recent years, by adding a specific function to a fiber, the value of the fiber has been increased. In particular, a fiber having an ultraviolet shielding function and an antibacterial and deodorizing function has been proposed. The amount of ultraviolet rays that reach the ground increases year by year due to the increase in ozone holes,
The adverse effect on the human body is pointed out, and the demand for protecting the skin from ultraviolet rays is increasing.

【0003】一方、抗菌・防臭機能についても、各種菌
類が衣料上で繁殖した場合、衣料の繊維が脆化、劣化、
または黄変する原因になり、抗菌性は衣料の寿命を伸ば
すのに役立ち、さらに、各種菌類は、人体より発生する
分泌物を、悪臭を放つ成分に変質させる作用もあるの
で、繊維の抗菌・防臭性は、菌類の繁殖を抑えて衣料の
防臭に寄与することも認められている。このため、抗菌
・防臭繊維は、最近の清潔志向の風潮に合致し、その市
場は拡大しつつある。
[0003] On the other hand, as for the antibacterial and deodorant functions, when various fungi propagate on clothing, the fibers of the clothing become brittle, deteriorate,
Or it causes yellowing, antibacterial properties help extend the life of clothing, and various fungi also have the effect of transforming secretions generated from the human body into components that emit foul odors. It is also recognized that the deodorant property suppresses the growth of fungi and contributes to the deodorization of clothing. For this reason, antibacterial and deodorant fibers are meeting the recent trend of cleanliness, and the market is expanding.

【0004】このような紫外線遮蔽繊維と抗菌・防臭繊
維の製造について説明する。まず、紫外線遮蔽繊維を製
造するときは、繊維に対してベンゾフェノン、ベンゾト
リアゾール系等の有機系紫外線吸収剤を添加したり、T
iO2微粒子を添加することが行われている。有機系紫
外線吸収剤を有する繊維の製造は、繊維を構成する樹脂
を溶融し、これに有機系紫外線吸収剤を均一に溶解さ
せ、または、TiO2微粒子を分散させ、その後、紡糸
するものである。また、抗菌・防臭繊維を製造するとき
は、有機系抗菌剤を練り込んだり、銀イオン系、若しく
は銅イオン系の無機系抗菌剤を練り込む方法が考えられ
る。
[0004] The production of such ultraviolet shielding fibers and antibacterial and deodorant fibers will be described. First, when producing an ultraviolet shielding fiber, an organic ultraviolet absorbent such as benzophenone or benzotriazole is added to the fiber,
Addition of iO 2 fine particles has been performed. The production of fibers having an organic UV absorber involves melting the resin constituting the fibers, dissolving the organic UV absorber uniformly in the resin, or dispersing the TiO 2 fine particles, and then spinning. . When producing antibacterial and deodorant fibers, a method of kneading an organic antibacterial agent or kneading a silver ion-based or copper ion-based inorganic antibacterial agent can be considered.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、紫外線
遮蔽繊維に有機系紫外線吸収剤を用いる場合、樹脂の溶
融温度は、例えば、ポリエステル繊維やナイロン繊維で
200〜300℃と高いため、添加される有機系紫外線
吸収剤の耐熱温度を越えることがほとんどで、有機系紫
外線吸収剤は、昇華して揮散し、若しくは分解して消失
する。また、紫外線遮蔽繊維にTiO2微粒子を添加す
る場合は、TiO2は、屈折率が約2.6(ルチル型)
であり、ZnO微粒子の屈折率(約1.9)より大きい
ため、TiO2微粒子を練り混んだ繊維に光が入射した
場合、散乱光の割合が高くなり、つや消し効果が現れ、
TiO2微粒子を練り混んだ繊維を染色したとき、くす
んだ色調となりがちであり、商品設計としては不都合な
場合がある。
However, when an organic ultraviolet absorber is used for the ultraviolet shielding fiber, the melting temperature of the resin is high, for example, 200 to 300 ° C. for polyester fiber or nylon fiber. In most cases, the temperature exceeds the heat resistance temperature of the system-based UV absorber, and the organic-based UV absorber sublimates and volatilizes, or decomposes and disappears. When TiO 2 fine particles are added to the ultraviolet shielding fiber, TiO 2 has a refractive index of about 2.6 (rutile type).
Since the refractive index of the ZnO particles is larger than the refractive index (about 1.9), when light is incident on the fiber in which the TiO 2 particles are kneaded, the ratio of the scattered light increases, and a matting effect appears.
When dyeing fibers mixed with TiO 2 fine particles, they tend to have a dull color tone, which may be inconvenient for product design.

【0006】また、抗菌・防臭繊維に有機系抗菌剤を練
り込む場合は、繊維用樹脂を紡糸する際に、樹脂の溶融
温度が約200〜300℃と高いので、有機系抗菌剤の
耐熱性が問題になり、ほとんどの有機系抗菌剤は、熱分
解、若しくは昇華して消失してしまう。そして、抗菌・
防臭繊維に銀イオン系若しくは銅イオン系の無機系抗菌
剤を練り込む場合、銀イオン若しくは銅イオンは、酸化
によって黒褐色になる等変色し易いので、白色や淡色系
の繊維に使用し難いという問題がある。
In addition, when kneading an organic antibacterial agent into antibacterial and deodorant fibers, the heat resistance of the organic antibacterial agent is as high as about 200 to 300 ° C. when spinning the fiber resin. However, most of the organic antibacterial agents disappear by thermal decomposition or sublimation. And antibacterial
When kneading silver or copper ion-based inorganic antibacterial agents into deodorant fibers, silver ions or copper ions are liable to discolor, such as becoming dark brown by oxidation, and are difficult to use for white or light-colored fibers. There is.

【0007】そこで、本発明者の一部等は、以前にZn
O微粒子を人造繊維に練り込み、紫外線遮蔽、及び抗菌
・防臭性の両機能を有する繊維を製造する方法を提案し
た(特開平5−156510号公報)。すなわち、Zn
O微粒子には、優れた紫外線遮蔽性、及び抗菌・防臭性
があるので、このZnO微粒子という単一の材料を繊維
に練り込むことにより、これらの複合機能を一挙に付与
することができる。また、ZnO微粒子は、無機結晶で
あり、融点が1980℃(加圧下)であるため、耐熱性
が高く、繊維樹脂の溶融温度では何等問題がない。特
に、約300℃未満では、酸化等によって着色すること
もなく、ZnO微粒子を練り込んだ繊維の変色の心配が
ない。
Therefore, some of the present inventors have previously reported that Zn
A method has been proposed in which O fine particles are kneaded into artificial fibers to produce fibers having both functions of blocking ultraviolet rays and having antibacterial and deodorant properties (JP-A-5-156510). That is, Zn
Since the O fine particles have excellent ultraviolet shielding properties and antibacterial and deodorant properties, the kneading of a single material, such as ZnO fine particles, into fibers can provide these composite functions at once. Further, since the ZnO fine particles are inorganic crystals and have a melting point of 1980 ° C. (under pressure), they have high heat resistance and have no problem at the melting temperature of the fiber resin. In particular, when the temperature is lower than about 300 ° C., there is no coloring due to oxidation or the like, and there is no fear of discoloration of the fiber into which the ZnO fine particles are kneaded.

【0008】また、ZnO微粒子は、屈折率がTiO2
のそれに比べずっと低いため、光を散乱させることが少
なく、さらに、粒子径が0.1μm以下である場合、可
視光線を吸収せず透過してしまうので、ZnO微粒子を
練り込んだ繊維は、非常に透明性が高くなる。そして、
ZnOは、日本薬局方等にも使用が認められており、無
機結晶であることとあいまって安全性の高いものであ
り、皮膚に長期間に渡って接触しても、ほとんど悪影響
は与えない。
The ZnO fine particles have a refractive index of TiO 2
Since it is much lower than that of the above, light is less scattered. Further, when the particle diameter is 0.1 μm or less, visible light is not absorbed and transmitted, so that the fiber kneaded with ZnO fine particles is very Transparency increases. And
The use of ZnO is also recognized in the Japanese Pharmacopoeia, etc., and is highly safe in combination with being an inorganic crystal. Even if it is in contact with the skin for a long period of time, it has almost no adverse effect.

【0009】しかし、ZnO微粒子をポリエステルやナ
イロン等の人造繊維に練り込んだ場合、溶融された繊維
樹脂の中でZnO微粒子は再凝集する傾向があり、その
結果、繊維樹脂中でZnO微粒子は粗大化する。このZ
nO微粒子が粗大化した場合、引き続いて行われる紡糸
時に、溶融樹脂等を引き出すノズル、若しくはノズル背
面に設置されたメッシュが目詰まりし易く、長期間に渡
って安定した紡糸作業を行うのが困難になる。また、Z
nO微粒子が粗大化すると、ZnO微粒子の比表面積が
小さくなり、紫外線遮蔽性、及び抗菌・防臭性が低下す
る。さらに、ZnO微粒子には光触媒作用があり、Zn
O微粒子と直接接触している周囲の繊維樹脂の劣化を促
すので、ZnO微粒子を練り込んだ繊維は、ZnO微粒
子を添加してない繊維に比べ、耐光性の点で劣ることが
判明した。
However, when ZnO fine particles are kneaded into artificial fibers such as polyester and nylon, the ZnO fine particles tend to re-aggregate in the molten fiber resin, and as a result, the ZnO fine particles are coarse in the fiber resin. Become This Z
When the nO fine particles are coarsened, the nozzle for drawing the molten resin or the mesh installed on the back of the nozzle is easily clogged during the subsequent spinning, and it is difficult to perform a stable spinning operation for a long period of time. become. Also, Z
When the nO fine particles are coarsened, the specific surface area of the ZnO fine particles is reduced, and the ultraviolet shielding property and the antibacterial and deodorant properties are reduced. Furthermore, ZnO fine particles have a photocatalytic action,
It was found that the fiber kneaded with the ZnO fine particles was inferior in the light resistance to the fiber into which the ZnO fine particles were not added, because it promoted the deterioration of the surrounding fiber resin in direct contact with the O fine particles.

【0010】本発明は前記課題を有効に解決するもの
で、前述の紫外線遮蔽、抗菌・防臭機能を有するZnO
微粒子を繊維に分散させ、これの再凝集を防止させると
ともに、光触媒活性を抑えた繊維とその製造方法ならび
に繊維製品を提供することを目的とする。
The present invention effectively solves the above-mentioned problems, and has a ZnO having the above-mentioned ultraviolet shielding, antibacterial and deodorizing functions.
It is an object of the present invention to provide a fiber in which fine particles are dispersed in a fiber to prevent re-aggregation of the fine particle and to suppress the photocatalytic activity, a method for producing the fiber, and a fiber product.

【0011】[0011]

【課題を解決するための手段】請求項1記載の繊維は、
粒径が0.1μm以下で、且つその表面がシリコン化合
物で処理されたZnO微粒子を繊維の原料全体に対して
0.01〜50重量%含むことを前記課題の解決手段と
した。請求項2記載の繊維の製造方法は、粒径が0.1
μm以下で、且つその表面がシリコン化合物で処理され
たZnO微粒子を繊維の原料全体に対して0.01〜5
0重量%の割合で該繊維の原料に練り混み、この繊維の
原料を糸状に成形することを前記課題の解決手段とし
た。請求項3記載の繊維製品は、粒径が0.1μm以下
で、且つその表面がシリコン化合物で処理されたZnO
微粒子を繊維の原料全体に対して0.01〜50重量%
含む繊維を紡糸し、これを布状、ロープ状、または、織
物状に織り込ませたことを前記課題の解決手段とした。
前記シリコン化合物は、下記一般式(1)で示される化
合物の構造を有するとともに、前記ZnO微粒子の全量
に対して0.1〜30重量%添加されるのが好ましい。
The fiber according to claim 1 is:
The object of the present invention is to provide a method for solving the above-mentioned problem, in which ZnO fine particles having a particle diameter of 0.1 μm or less and whose surface is treated with a silicon compound are contained in an amount of 0.01 to 50% by weight with respect to the whole fiber material. The method for producing fiber according to claim 2, wherein the particle diameter is 0.1
μm or less, and the surface of which is treated with a silicon compound.
The means for solving the above problem was to knead and mix the raw material of the fiber at a ratio of 0% by weight and to form the raw material of the fiber into a thread. The fiber product according to claim 3, wherein the particle size is 0.1 μm or less, and the surface of which is treated with a silicon compound.
0.01 to 50% by weight of fine particles based on the whole fiber material
The solution to the above-mentioned problem is to spun the fibers containing the fibers and to weave them into a cloth, a rope or a woven fabric.
It is preferable that the silicon compound has a structure of a compound represented by the following general formula (1) and is added in an amount of 0.1 to 30% by weight based on the total amount of the ZnO fine particles.

【化4】 但し、n=整数 R=水素、アルキル基、フェニル基、アルコキシ基、フ
ルオロアルキル基から選ばれる置換基
Embedded image Where n = integer R = substituent selected from hydrogen, alkyl group, phenyl group, alkoxy group, and fluoroalkyl group

【0012】以下、本発明を詳細に説明する。前述した
ZnO微粒子の再凝集傾向及び光触媒活性を抑えるため
に、ZnO微粒子の表面をシリコン化合物で被覆したと
ころ、非常に改善効果があることがわかった。すなわ
ち、ZnO微粒子の表面がシリコン化合物で覆われる
と、ZnO微粒子同士の親和性を抑制でき、凝集による
粗大化の傾向を抑えることができるとともに、シリコン
化合物の被膜がZnO微粒子と繊維樹脂との間でバリア
層を形成し、ZnO微粒子の光触媒活性による繊維樹脂
の劣化を抑制することが可能になった。
Hereinafter, the present invention will be described in detail. When the surface of the ZnO fine particles was coated with a silicon compound in order to suppress the tendency of the ZnO fine particles to re-aggregate and suppress the photocatalytic activity, it was found that the ZnO fine particles had a remarkable improvement effect. That is, when the surface of the ZnO fine particles is covered with the silicon compound, the affinity between the ZnO fine particles can be suppressed, and the tendency of coarsening due to aggregation can be suppressed. Thus, it was possible to form a barrier layer, thereby suppressing deterioration of the fiber resin due to the photocatalytic activity of the ZnO fine particles.

【0013】ここで、シリコン化合物は、下記一般式
(1)で示される化合物の構造を有するものが特に好適
である。
Here, the silicon compound having a structure of a compound represented by the following general formula (1) is particularly preferable.

【化5】 但し、n=整数 R=水素、アルキル基、フェニル基、アルコキシ基、フ
ルオロアルキル基から選ばれる置換基 このシリコン化合物は、例えば、ジメチルポリシロキサ
ン、メチルハイドロジェンポリシロキサン、メチルフェ
ニルポリシロキサン、メチルプロピルポリシロキサン、
プロピルハイドロジェンポリシロキサン、パーフルオロ
ジメチルポリシロキサン等が挙げられるが、本願はこれ
に限定されるものでない。
Embedded image However, n = integer R = substituent selected from hydrogen, alkyl group, phenyl group, alkoxy group and fluoroalkyl group This silicon compound is, for example, dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, methylpropyl Polysiloxane,
Examples thereof include propyl hydrogen polysiloxane and perfluorodimethyl polysiloxane, but the present invention is not limited thereto.

【0014】これらシリコン化合物のZnO微粒子に対
する添加率としては、0.1重量%から30重量%が好
ましい。ZnO微粒子に対する添加率が0.1重量%以
下では、ZnO微粒子の再凝集性及び光触媒活性を抑制
するのに十分でない。また、ZnO微粒子に対する添加
率が30重量%以上では、これ以上添加量を増やしても
抑制効果が増進することなく、むしろZnO微粒子の抗
菌性を阻害し、逆効果である。
The addition ratio of these silicon compounds to the ZnO fine particles is preferably 0.1% by weight to 30% by weight. When the addition ratio to the ZnO fine particles is 0.1% by weight or less, it is not sufficient to suppress the re-aggregation property and photocatalytic activity of the ZnO fine particles. Further, when the addition ratio to ZnO fine particles is 30% by weight or more, even if the addition amount is further increased, the suppression effect is not enhanced, but rather the antibacterial property of ZnO fine particles is inhibited, which is an opposite effect.

【0015】ZnO微粒子の粒子径を0.1μm以下と
したのは、粒径が0.1μmを越えると、十分な紫外線
遮蔽性、及び抗菌・防臭性が得られず、また、溶融紡糸
の時ノズル、メッシュ等の目詰まりにより、紡糸性に著
しい不具合が生じるからである。さらに、ZnO微粒子
の粒径が0.1μmを越えると、低デニールの細い糸を
作る場合、これの物理的強度が低下するので好ましくな
い。粒径が0.1μm以下のZnO微粒子は、例えば、
特開平2−311314号公報に記載されている方法に
より製造することができる。
The reason why the particle diameter of the ZnO fine particles is set to 0.1 μm or less is that if the particle diameter exceeds 0.1 μm, sufficient ultraviolet ray shielding properties, antibacterial and deodorant properties cannot be obtained, and when melt spinning, This is because clogging of a nozzle, a mesh or the like causes a serious problem in spinnability. Further, when the particle diameter of the ZnO fine particles exceeds 0.1 μm, it is not preferable to produce a low-denier fine thread because the physical strength thereof is reduced. ZnO fine particles having a particle size of 0.1 μm or less, for example,
It can be produced by the method described in JP-A-2-313314.

【0016】ZnO微粒子を添加する繊維の種類として
は、例えば、ナイロン、ポリエステル、ポリエチレン、
ポリプロピレン、レーヨン、ビニロン、アセテート、ア
クリル、ポリビニルアルコール等の人造繊維(合成繊
維、半合成繊維、再生繊維、無機繊維)が挙げられる。
本願はこれらの繊維に限定されるものでなく、ZnO微
粒子を練り込むことが可能な繊維ならば、特に限定され
るものでない。
As the type of the fiber to which the ZnO fine particles are added, for example, nylon, polyester, polyethylene,
Man-made fibers (synthetic fibers, semi-synthetic fibers, regenerated fibers, inorganic fibers) such as polypropylene, rayon, vinylon, acetate, acrylic, and polyvinyl alcohol.
The present application is not limited to these fibers, and is not particularly limited as long as it is a fiber into which ZnO fine particles can be kneaded.

【0017】ZnO微粒子の添加量は繊維原料全体に対
し0.01〜50重量%であることが好ましく、添加量
が0.01重量%未満では繊維の紫外線遮蔽性、及び抗
菌・防臭性が十分でなく、一方、添加量が50重量%を
越えても、これ以上紫外線遮蔽性、及び抗菌・防臭性を
向上させることができない。そして、ZnO微粒子の添
加量が50重量%を越えると、繊維の物理的強度等は著
しく低下する。
The addition amount of the ZnO fine particles is preferably 0.01 to 50% by weight based on the whole fiber raw material. If the addition amount is less than 0.01% by weight, the ultraviolet ray shielding property and antibacterial and deodorant properties of the fiber are sufficient. On the other hand, if the addition amount exceeds 50% by weight, the ultraviolet ray shielding properties and the antibacterial and deodorant properties cannot be further improved. If the amount of the ZnO fine particles exceeds 50% by weight, the physical strength and the like of the fiber are significantly reduced.

【0018】[0018]

【実施例】以下、本発明の繊維とその製造方法ならびに
繊維製品の実施例について説明する。 実施例1 ジメチルポリシロキサン1重量部をn−ヘキサン100
重量部に溶解し、これにZnO微粒子(住友セメント
(株)社製、粒径0.02μm)を30重量部添加し、
30分間混合攪拌する。引き続いて、n−ヘキサンを蒸
発除去し、更に、180℃で5時間加熱し、その後、冷
却し、ボールミルで2時間粉砕する。
EXAMPLES Examples of the fiber of the present invention, a method for producing the fiber, and a fiber product will be described below. Example 1 1 part by weight of dimethylpolysiloxane was added to 100 parts of n-hexane.
To 30 parts by weight of ZnO fine particles (manufactured by Sumitomo Cement Co., Ltd., particle size: 0.02 μm).
Mix and stir for 30 minutes. Subsequently, n-hexane is removed by evaporation, and the mixture is further heated at 180 ° C. for 5 hours, then cooled and ground in a ball mill for 2 hours.

【0019】実施例2 メチルハイドロジェンポリシロキサン2重量部を1、
1、1−トリクロロエタン100重量部に溶解し、これ
に、実施例1と同様のZnO微粒子を25重量部添加
し、30分間混合攪拌する。次いで、1、1、1−トリ
クロロエタンを蒸発除去し、更に、180℃で4時間加
熱し、その後、冷却し、ボールミルで2時間粉砕する。
Example 2 1 part by weight of 2 parts by weight of methyl hydrogen polysiloxane
Dissolved in 100 parts by weight of 1,1-trichloroethane, 25 parts by weight of the same ZnO fine particles as in Example 1 were added thereto, and mixed and stirred for 30 minutes. Then, 1,1,1-trichloroethane is removed by evaporation, and further heated at 180 ° C. for 4 hours, then cooled, and ground by a ball mill for 2 hours.

【0020】実施例3 ヘンシェルミキサーに、実施例1と同様のZnO微粒子
を100重量部入れ、これを700rpmで攪拌しなが
ら、メチルフェニルポリシロキサンを5重量部徐々に滴
下し、更に、30分間攪拌する。次に、ZnO微粒子を
170℃で7時間加熱し、その後、冷却し、ボールミル
で2時間粉砕する。
Example 3 100 parts by weight of the same ZnO fine particles as in Example 1 were put into a Henschel mixer, and 5 parts by weight of methylphenylpolysiloxane was gradually added dropwise with stirring at 700 rpm, and further stirred for 30 minutes. I do. Next, the ZnO fine particles are heated at 170 ° C. for 7 hours, then cooled and pulverized by a ball mill for 2 hours.

【0021】実施例4 これら実施例1〜3で得られたシリコン化合物で表面処
理されたZnO微粒子をポリエステルチップに対し20
重量%添加し、ポリエステル繊維用マスターバッチを作
製する。次に、ポリエステル繊維製造工程中のポリエス
テルチップを300℃で加熱溶融する工程において、Z
nO微粒子の濃度が5重量%になるように、溶融したポ
リエステルに上記マスターバッチを添加し、溶融紡糸を
行う。そして、これを100℃で5倍に熱延伸し、19
0℃で後処理したフィラメントに対し紡績、製織を行
い、試験用布を作成する。
Example 4 ZnO fine particles surface-treated with the silicon compound obtained in Examples 1 to 3
% By weight to prepare a master batch for polyester fiber. Next, in the step of heating and melting the polyester chip at 300 ° C. in the polyester fiber manufacturing process, Z
The master batch is added to the melted polyester so that the concentration of the nO fine particles is 5% by weight, and melt spinning is performed. Then, this is thermally stretched 5 times at 100 ° C.
Spinning and weaving are performed on the filament post-treated at 0 ° C. to prepare a test cloth.

【0022】比較例1 次に、比較のために、シリコン化合物で表面処理をして
いない未処理のZnO微粒子を添加したポリエステルフ
ィラメントを作成する。実施例1と同様の未処理のZn
O微粒子を用い、このZnO微粒子を20重量%含有す
るポリエステル用マスターバッチを作成する。次に、こ
のマスターバッチを用い、実施例4と同様な方法でZn
O微粒子を5重量%含有したポリエステルフィラメント
を作成し、更に、紡績、製織して試験用布を作成する。
実施例4、及び比較例1で、ポリエステルフィラメント
を溶融紡糸した際の紡糸性の比較を表1に示す。
Comparative Example 1 Next, for comparison, a polyester filament to which untreated ZnO fine particles not surface-treated with a silicon compound was added was prepared. Untreated Zn similar to Example 1
Using O fine particles, a master batch for polyester containing 20% by weight of the ZnO fine particles is prepared. Next, using this master batch, Zn was produced in the same manner as in Example 4.
A polyester filament containing 5% by weight of O fine particles is prepared, and further spun and woven to prepare a test cloth.
Table 1 shows a comparison of spinnability when melt-spinning polyester filaments in Example 4 and Comparative Example 1.

【0023】[0023]

【表1】 [Table 1]

【0024】また、実施例4及び比較例1で作成した紡
績糸の耐光性試験を表2に示す。そして、実施例4及び
比較例1で作成した試験布の抗菌性試験結果を表3に示
す。また、実施例4及び比較例1で作成した試験布の分
光試験結果を表4に示す。さらに、耐光性試験、抗菌性
試験、分光性の試験の方法は次の通りである。
Table 2 shows the light resistance test of the spun yarns produced in Example 4 and Comparative Example 1. Table 3 shows the antibacterial test results of the test cloths prepared in Example 4 and Comparative Example 1. Table 4 shows the results of the spectroscopic tests of the test cloths prepared in Example 4 and Comparative Example 1. Further, the methods of the light resistance test, antibacterial test and spectral test are as follows.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】耐光性試験 フェードメーターを用いて各紡績糸の耐光性試験を行
う。ここで、一定時間毎に紡績糸の強度を測定し、保持
率を算出する。 抗菌性試験 a.試験菌体として、肺炎桿菌(Klebsiella pneumoia
e)、黄色ブドウ状球菌(Staphlylococcus aureus)を
用いる。 b.試験方法として、繊維製品衛生加工協議会規定のシ
ェークフラスコ法を採用する。 c.減菌率の計算方法として、以下の計算式を用いる。 S=減菌率(%) Ba=振盪前の生菌数の平均 Aa=振盪後の生菌数の平均 S={(Ba−Aa)/Ba}×100
Light Resistance Test A light resistance test is performed on each spun yarn using a fade meter. Here, the strength of the spun yarn is measured at regular time intervals, and the holding ratio is calculated. Antibacterial test a. As test cells, Klebsiella pneumoia
e), using Staphlylococcus aureus. b. As a test method, a shake flask method specified by the Textile Sanitation Processing Council is adopted. c. The following formula is used to calculate the sterilization rate. S = Bacteria reduction rate (%) Ba = Average number of viable cells before shaking Aa = Average number of viable cells after shaking S = {(Ba−Aa) / Ba} × 100

【0029】分光特性試験 a.測定装置として、日本分光(株)社製のU−bes
t50を用いる。 b.試験方法として、各試験布の365nm、550n
mの分光透過率を測定する。
Spectral Characteristics Test a. As a measuring device, U-bes manufactured by JASCO Corporation
Use t50. b. As a test method, 365 nm and 550 n of each test cloth were used.
The spectral transmittance of m is measured.

【0030】表1から明らかなように、ZnO微粒子に
各種シリコン処理を行うことで、ポリエステルフィラメ
ントを紡糸する際の紡糸性を大幅に向上でき、ZnO微
粒子の分散性を向上でき、再凝集も防止できることがわ
かる。また、表2より、未処理のZnO微粒子を練り込
むと、主にZnO微粒子の光触媒活性により、ポリエス
テルの耐光性が低下するのに対し、シリコン処理するこ
とで、この光触媒活性が抑制され、耐光性が向上するこ
とがわかる。
As is clear from Table 1, by subjecting the ZnO fine particles to various silicon treatments, the spinnability at the time of spinning the polyester filament can be greatly improved, the dispersibility of the ZnO fine particles can be improved, and reagglomeration can be prevented. We can see that we can do it. Also, as shown in Table 2, when the untreated ZnO fine particles are kneaded, the light resistance of the polyester is reduced mainly due to the photocatalytic activity of the ZnO fine particles. It can be seen that the properties are improved.

【0031】さらに、表3及び表4に示すように、各種
シリコン処理したZnO微粒子を練り込んだポリエステ
ル布は、抗菌性、紫外線遮蔽性が十分な性能になり、未
処理のZnO微粒子を添加したときよりも、分散性が向
上したため、更に良好な結果となった。
Further, as shown in Tables 3 and 4, the polyester cloth kneaded with various silicon-treated ZnO fine particles had sufficient antibacterial properties and ultraviolet shielding properties, and untreated ZnO fine particles were added. Since the dispersibility was improved as compared with the case where it was, a better result was obtained.

【0032】[0032]

【発明の効果】以上説明したように、本発明の繊維とそ
の製造方法ならびに繊維製品によれば、以下の効果を奏
することができる。本発明は、ZnO微粒子を繊維に練
り込み、この繊維に紫外線遮蔽性、抗菌・防臭性を付与
する際、このZnO微粒子を各種シリコン化合物で処理
することにより、ZnO微粒子の分散性を向上でき、再
凝集を防止できる。さらに、ZnO微粒子をシリコン処
理することで、ZnO微粒子の光触媒活性を抑制でき、
繊維の耐光性を向上できる。したがって、紫外線遮蔽
性、抗菌・防臭性の優れた繊維を得ることができる。
As described above, according to the fiber of the present invention, the method for producing the same, and the fiber product, the following effects can be obtained. The present invention can improve the dispersibility of ZnO microparticles by kneading ZnO microparticles into fibers and treating the fibers with various silicon compounds when imparting ultraviolet ray shielding properties and antibacterial and deodorant properties to the fibers, Reaggregation can be prevented. Further, by subjecting the ZnO fine particles to silicon treatment, the photocatalytic activity of the ZnO fine particles can be suppressed,
The light resistance of the fiber can be improved. Therefore, it is possible to obtain a fiber having excellent ultraviolet shielding properties and antibacterial and deodorant properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 信弘 大阪府大阪市旭区赤川1丁目6番28号 大東化成工業株式会社内 (72)発明者 濱元 秋雄 大阪府大阪市旭区赤川1丁目6番28号 大東化成工業株式会社内 (56)参考文献 特開 平5−156510(JP,A) 特開 平5−59613(JP,A) 特開 平1−250411(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 1/10 D01F 6/92 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Nobuhiro Nogami 1-6-28 Akagawa, Asahi-ku, Osaka-shi, Osaka Prefecture Daito Kasei Kogyo Co., Ltd. (72) Inventor Akio Hamamoto 1-6, Akakawa, Asahi-ku, Osaka-shi, Osaka No. 28 Daito Kasei Kogyo Co., Ltd. (56) References JP-A-5-156510 (JP, A) JP-A-5-59613 (JP, A) JP-A-1-250411 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) D01F 1/10 D01F 6/92

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒径が0.1μm以下で、且つその表面
がシリコン化合物で処理されたZnO微粒子を繊維の原
料全体に対して0.01〜50重量%含むことを特徴と
する繊維。
1. A fiber having a particle diameter of 0.1 μm or less and containing 0.01 to 50% by weight of ZnO fine particles whose surface is treated with a silicon compound, based on the whole raw material of the fiber.
【請求項2】 粒径が0.1μm以下で、且つその表面
がシリコン化合物で処理されたZnO微粒子を繊維の原
料全体に対して0.01〜50重量%の割合で該繊維の
原料に練り混み、この繊維の原料を糸状に成形すること
を特徴とする繊維の製造方法。
2. A method of kneading ZnO fine particles having a particle diameter of 0.1 μm or less and having a surface treated with a silicon compound at a rate of 0.01 to 50% by weight based on the whole fiber material. A method for producing a fiber, comprising mixing the raw material of the fiber into a thread.
【請求項3】 粒径が0.1μm以下で、且つその表面
がシリコン化合物で処理されたZnO微粒子を繊維の原
料全体に対して0.01〜50重量%含む繊維を紡糸
し、これを布状、ロープ状、または、織物状に織り込ま
せたことを特徴とする繊維製品。
3. Spinning a fiber having a particle diameter of 0.1 μm or less and containing 0.01 to 50% by weight of ZnO fine particles whose surface is treated with a silicon compound with respect to the whole raw material of the fiber; A textile product characterized by being woven into a shape, a rope shape, or a woven shape.
【請求項4】 前記シリコン化合物は、下記一般式
(1)で示される化合物の構造を有するとともに、前記
ZnO微粒子の全量に対して0.1〜30重量%添加さ
れてなることを特徴とする請求項1記載の繊維。 【化1】 但し、n=整数 R=水素、アルキル基、フェニル基、アルコキシ基、フ
ルオロアルキル基から選ばれる置換基
4. The method according to claim 1, wherein the silicon compound has a structure of a compound represented by the following general formula (1) and is added in an amount of 0.1 to 30% by weight based on the total amount of the ZnO fine particles. The fiber according to claim 1. Embedded image Where n = integer R = substituent selected from hydrogen, alkyl group, phenyl group, alkoxy group, and fluoroalkyl group
【請求項5】 前記シリコン化合物は、下記一般式
(1)で示される化合物の構造を有するとともに、前記
ZnO微粒子の全量に対して0.1〜30重量%添加さ
れてなることを特徴とする請求項2記載の繊維の製造方
法。 【化2】 但し、n=整数 R=水素、アルキル基、フェニル基、アルコキシ基、フ
ルオロアルキル基から選ばれる置換基
5. The silicon compound has a structure of a compound represented by the following general formula (1) and is added in an amount of 0.1 to 30% by weight based on the total amount of the ZnO fine particles. The method for producing a fiber according to claim 2. Embedded image Where n = integer R = substituent selected from hydrogen, alkyl group, phenyl group, alkoxy group, and fluoroalkyl group
【請求項6】 前記シリコン化合物は、下記一般式
(1)で示される化合物の構造を有するとともに、前記
ZnO微粒子の全量に対して0.1〜30重量%添加さ
れてなることを特徴とする請求項3記載の繊維製品。 【化3】 但し、n=整数 R=水素、アルキル基、フェニル基、アルコキシ基、フ
ルオロアルキル基から選ばれる置換基
6. The silicon compound has a structure of a compound represented by the following general formula (1), and is added in an amount of 0.1 to 30% by weight based on the total amount of the ZnO fine particles. The textile product according to claim 3. Embedded image Where n = integer R = substituent selected from hydrogen, alkyl group, phenyl group, alkoxy group, and fluoroalkyl group
JP35034993A 1993-12-28 1993-12-28 Fiber, production method thereof, and fiber product Expired - Fee Related JP3325686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35034993A JP3325686B2 (en) 1993-12-28 1993-12-28 Fiber, production method thereof, and fiber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35034993A JP3325686B2 (en) 1993-12-28 1993-12-28 Fiber, production method thereof, and fiber product

Publications (2)

Publication Number Publication Date
JPH07197309A JPH07197309A (en) 1995-08-01
JP3325686B2 true JP3325686B2 (en) 2002-09-17

Family

ID=18409889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35034993A Expired - Fee Related JP3325686B2 (en) 1993-12-28 1993-12-28 Fiber, production method thereof, and fiber product

Country Status (1)

Country Link
JP (1) JP3325686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304776A (en) * 2011-09-01 2012-01-04 钱洪星 Production method of radiation-resistant nano-ceramic modified polyester side-by-side drawn yarn

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3939997A (en) * 1996-07-17 1998-02-10 Akzo Nobel N.V. Use of textile flat shaped articles as protection against ultra-violet radiation
GB0603138D0 (en) * 2006-02-16 2006-03-29 Queen Mary & Westfield College Virucidal materials
AT508497A1 (en) * 2009-06-15 2011-01-15 Chemiefaser Lenzing Ag PROTECTION TISSUE AGAINST ULTRAVIOLETTE RADIATION BASED ON ARTIFICIAL CELLULOSE FIBERS
DE102012102920A1 (en) * 2011-11-16 2013-05-16 Käppler & Pausch GmbH Pool structure for fish moving assistance utilized with water swirl power plant, has segments connected with one another over frame scaffold comprising recesses in direction of middle point of base of structure for forming drain of pool
JP7209547B2 (en) * 2019-01-23 2023-01-20 株式会社クラレ UV shielding polyester fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250411A (en) * 1988-03-31 1989-10-05 Kuraray Co Ltd Antifungal formed product and production thereof
JPH0559613A (en) * 1991-08-30 1993-03-09 Kuraray Co Ltd Production of polyester fiber having uv ray-shielding performance
JPH05156510A (en) * 1991-11-29 1993-06-22 Sumitomo Cement Co Ltd Fiber and textile product and method for processing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304776A (en) * 2011-09-01 2012-01-04 钱洪星 Production method of radiation-resistant nano-ceramic modified polyester side-by-side drawn yarn

Also Published As

Publication number Publication date
JPH07197309A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
DE60117534T2 (en) COMPOSITION FOR REMOTE INFRARED RADIATION WITH EXCELLENT ANTISTATIC PROPERTIES AND FIBER AND TEXTILE PRODUCT BOTH THEREOF
US20170044691A1 (en) Fibers with improving anti-microbial performance
CN1293243C (en) Bamboo-charcoal viscose fiber and method for making same
JP3325686B2 (en) Fiber, production method thereof, and fiber product
JP5666450B2 (en) Functional cellulosic moldings
WO2008003243A1 (en) Calamine viscose fiber, its process for preparing and application
KR101112448B1 (en) Complex fiber and method of manufacturing the same
JPH05156510A (en) Fiber and textile product and method for processing them
JP2008111221A (en) Antibacterial dyed fabric
JP3756115B2 (en) Anti-mosquito composite fiber
CN209699991U (en) A kind of antibacterial ultraviolet-resistannanofiber line cloth
JP7209547B2 (en) UV shielding polyester fiber
KR101207457B1 (en) Fabric used in manufacturing hospital cloths with excellent infection proofing property and method of manufacturing the same
KR20010038624A (en) Method of making a synthetic fiber containing infrared energy power and synthetic textiles
KR950013481B1 (en) Polyester fiber having excellent ultraviolet screening and cooling effect
KR20100007450A (en) Silver-coated multi-functional thread and manufacturing method thereof
JPH0657522A (en) Viscose rayon having ultraviolet ray shielding ability
JPH09316728A (en) Ultraviolet light-shielding polyamide fiber
KR100544780B1 (en) Antibacterial sea-island polyester composite filament and precipitation thereof
KR20210013684A (en) Antibacterial, deodorant and far-infrared ray functional composition, yarn and fabric, method of the functional composition, yarn and fabric
KR101756911B1 (en) Process Of Producing Sheath/Core Type Synthetic Fiber Containing Sericite
WO2022124305A1 (en) Recycled cellulose fiber, method for manufacturing same, and fiber structure including same
JP2000136428A (en) Fiber containing swellable natural phyllosilicate
JP6931037B2 (en) Deodorant fiber
KR200380170Y1 (en) Nano silver particle is absorbed antibacterial towel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

LAPS Cancellation because of no payment of annual fees