JP6931037B2 - Deodorant fiber - Google Patents

Deodorant fiber Download PDF

Info

Publication number
JP6931037B2
JP6931037B2 JP2019231668A JP2019231668A JP6931037B2 JP 6931037 B2 JP6931037 B2 JP 6931037B2 JP 2019231668 A JP2019231668 A JP 2019231668A JP 2019231668 A JP2019231668 A JP 2019231668A JP 6931037 B2 JP6931037 B2 JP 6931037B2
Authority
JP
Japan
Prior art keywords
deodorant
powder
deodorant fiber
mother particles
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019231668A
Other languages
Japanese (ja)
Other versions
JP2020105686A (en
Inventor
▲徳▼超 廖
▲徳▼超 廖
崇智 ▲蘇▼
崇智 ▲蘇▼
佳昇 ▲頼▼
佳昇 ▲頼▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nan Ya Plastics Corp
Original Assignee
Nan Ya Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nan Ya Plastics Corp filed Critical Nan Ya Plastics Corp
Publication of JP2020105686A publication Critical patent/JP2020105686A/en
Application granted granted Critical
Publication of JP6931037B2 publication Critical patent/JP6931037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/005Compositions containing perfumes; Compositions containing deodorants
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は消臭繊維に関し、特に複数回に水洗されても、依然として消臭性を備える消臭繊維、及び当該消臭繊維に用いられる消臭母粒子に関するものである。 The present invention relates to deodorant fibers, and particularly to deodorant fibers that still have deodorant properties even after being washed with water a plurality of times, and deodorant mother particles used in the deodorant fibers.

近年、消費者において紡績物を選択するに当たっては、特に使用上の快適性、例えば吸湿速乾、蓄熱保温、清涼触感、及び抗菌消臭を重視し、これに対し、多くの機能性繊維が市場需要により開発されつつある。アウトドア・スポーツに関連する衣類のニーズが増えつつあり、そうした中で、スポーツ活動による衣類に残留された異臭の除去が、消費者による訴求の中で極めて重要な一環となる。この他、紡績物に付加した機能により、人体から発散じた体臭を消去することも消費者の要望の一つになっている。 In recent years, when selecting spun products by consumers, emphasis has been placed on comfort in use, such as moisture absorption and quick drying, heat storage and heat retention, refreshing tactile sensation, and antibacterial deodorization, whereas many functional fibers are on the market. It is being developed by demand. The need for clothing related to outdoor sports is increasing, and the removal of offensive odors remaining on clothing through sports activities is an extremely important part of consumer appeal. In addition, it is one of the demands of consumers to eliminate the body odor emitted from the human body by the function added to the spun product.

消臭繊維の既存技術によれば、活性炭素材の例えば竹炭、ヤシガラ炭等の多孔質材料が添加された繊維の表面に臭気を吸着させることにより、除臭の効果を達成している。 According to the existing technology of deodorant fiber, the deodorizing effect is achieved by adsorbing the odor on the surface of the fiber to which the activated carbon material such as bamboo charcoal or coconut charcoal is added.

消臭材料による消臭の原理は、多孔質材料により吸着効果を達成しているものの、この多孔質材料による吸着能力に限界があるため、化学反応による中和、即ち係る材料での化学反応を利用して臭気を中和させ、その後水洗により消臭材料を元来の機能に回復させることが望ましい。 The principle of deodorization by deodorant material is that although the adsorption effect is achieved by the porous material, the adsorption capacity by this porous material is limited. It is desirable to use it to neutralize the odor and then wash it with water to restore the deodorant material to its original function.

係る消臭繊維について、中国特許公報であるCN102822411A(引用文献1)により、ポリエステル繊維をヒドロキシ酸水溶液に浸漬し、更に熱処理した場合、水による洗濯に対する耐久性及び消臭効果を兼ね備えるものとなることが開示された。 Regarding such deodorant fibers, according to CN102822411A (Cited Document 1), which is a Chinese patent gazette, when polyester fibers are immersed in an aqueous hydroxy acid solution and further heat-treated, they have both durability against washing with water and a deodorizing effect. Was disclosed.

これに類する方法として、中国特許公報であるCN103343456A(引用文献2)により、織物を二酸化チタン水溶液に浸漬し、UVで照射した後、更に熱処理を施し、二酸化チタンが有する光触媒特性を当該織物に持たせ、抗菌・除臭等の効果を達成することが開示された。 As a method similar to this, according to CN103334456A (Reference 2), which is a Chinese patent publication, the woven fabric is immersed in an aqueous solution of titanium dioxide, irradiated with UV, and then further heat-treated to give the woven fabric the photocatalytic properties of titanium dioxide. It was disclosed that the effects such as antibacterial and deodorant were achieved.

また、中国特許公報であるCN1756870A(引用文献3)により、粒径が0.1〜1.5μmの消臭微粒子をバインダ用樹脂により繊維に付着させた後、更に熱処理、乾燥及び水洗を施すことが開示された。しかしながら、バインダの使用により、織物の手触り感が悪くなったり、後加工処理である水洗の後に消臭効果が低下したりすることが開示された。 Further, according to CN1756870A (Cited Document 3), which is a Chinese patent gazette, deodorant fine particles having a particle size of 0.1 to 1.5 μm are attached to fibers with a binder resin, and then heat-treated, dried and washed with water. Was disclosed. However, it has been disclosed that the use of a binder deteriorates the feel of the woven fabric and reduces the deodorizing effect after washing with water, which is a post-processing treatment.

中国特許公報であるCN102978727A(引用文献4)により、抗菌剤を用いて製作された母粒子を紡糸してなる繊維織物に対し、抗菌剤によるポスト加工をすることで、抗菌効果を向上させることが開示された。 According to CN1029787727A (Cited Document 4), which is a Chinese patent gazette, it is possible to improve the antibacterial effect by post-processing a fiber woven fabric made by spinning mother particles produced by using an antibacterial agent with an antibacterial agent. Disclosed.

CN102822411ACN102822411A CN103343456ACN103343456A CN1756870ACN1756870A CN102978727ACN1029787727A

上述した既存技術の問題を解決するために、本発明の一つの目的としては、繊維での消臭粉体の分散性を向上できる改質剤により改質された消臭粉体を樹脂に分散させる技術を提供することである。この改質消臭粉体は、熱安定性に優れた無機粉体であって、Al、Ti、Zn、Si、Fe、Zrの酸化物、これらの複合酸化物から選ばれる少なくとも1種であり、且つ粒径が1μm以下のものである、無機粉体を含む。 In order to solve the above-mentioned problems of the existing technology, one object of the present invention is to disperse the deodorant powder modified by a modifier capable of improving the dispersibility of the deodorant powder in the fiber in the resin. It is to provide the technology to make it. This modified deodorant powder is an inorganic powder having excellent thermal stability, and is at least one selected from oxides of Al, Ti, Zn, Si, Fe, and Zr, and composite oxides thereof. And contains an inorganic powder having a particle size of 1 μm or less.

本発明の改質消臭粉体全体の重量を100wt%とした場合、改質消臭粉体は、シランカップリング剤又はフタル酸エステル系改質剤0.1〜20wt%を含有し、好ましくは、3−アクリロキシプロピルトリメトキシシラン又はステアロイルチタネート1〜10wt%を含有する。 When the total weight of the modified deodorant powder of the present invention is 100 wt%, the modified deodorant powder contains 0.1 to 20 wt% of a silane coupling agent or a phthalate ester-based modifier, and is preferable. Contains 1-10 wt% 3-acryloxypropyltrimethoxysilane or stearoyl titanate.

本発明のもう1つの目的としては、熱可塑性樹脂(高分子樹脂)50〜95wt%と、改質消臭粉体1〜30wt%と、酸化防止剤0.01〜5wt%を含有する消臭母粒子を提供することである。前記改質消臭粉体が樹脂に均一に分散されているので、樹脂に対する結合性を向上することができ、また、前記消臭母粒子のフィルター通過時の圧力損失の上昇値が0.5bar/g以下であり、紡糸して得られる消臭繊維の水洗前後の消臭効果を70%以上に維持することができるので、良好な消臭効果を有すると言える。 Another object of the present invention is deodorization containing 50 to 95 wt% of a thermoplastic resin (polymer resin), 1 to 30 wt% of modified deodorant powder, and 0.01 to 5 wt% of an antioxidant. It is to provide the mother particle. Since the modified deodorant powder is uniformly dispersed in the resin, the bondability to the resin can be improved, and the increase value of the pressure loss when the deodorant mother particles pass through the filter is 0.5 bar. It can be said that it has a good deodorizing effect because it is less than / g and the deodorizing effect of the deodorizing fiber obtained by spinning can be maintained at 70% or more before and after washing with water.

本発明の酸化防止剤は、ヒンダードフェノール系又は亜リン酸エステル系酸化防止剤であってもよく、ビス(2,6−ジ−tert-ブチル−4−メチルフェニル)ペンタエリトリトールジフォスファイトであることが好ましい。 The antioxidant of the present invention may be a hindered phenol-based or phosphite ester-based antioxidant, and is bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite. It is preferable to have.

本発明の他の目的としては、特に低濃度の消臭剤を用いた場合でも、消臭効果を有し、即ち2時間消臭処理した場合、臭い気体の70%以上を除去可能な消臭繊維を提供することである。
本発明の消臭繊維を水洗した場合、水洗前後の消臭効果は共に良好である。
Another object of the present invention is to have a deodorizing effect even when a low-concentration deodorant is used, that is, a deodorizing substance capable of removing 70% or more of an odorous gas when deodorized for 2 hours. To provide fiber.
When the deodorant fiber of the present invention is washed with water, the deodorizing effect before and after washing with water is good.

本発明の消臭粉体は優れた熱安定性を有する無機粉体であり、Al、Ti、Zn、Si、Fe、Zrの酸化物及びこれらの複合酸化物から選ばれる少なくとも1種を用いることができ、この無機粉体の粒径が1μm以下である。また、無機粉体の表面に、シランカップリング剤又はフタル酸エステル等の改質剤による改質が施される。前記改質剤の使用量は、改質された無機粉体(改質無機粉体)100wt%に、0.1〜20wt%を占め、好ましくは1〜10wt%を占める量である。 The deodorant powder of the present invention is an inorganic powder having excellent thermal stability, and at least one selected from oxides of Al, Ti, Zn, Si, Fe, Zr and composite oxides thereof should be used. The particle size of this inorganic powder is 1 μm or less. Further, the surface of the inorganic powder is modified with a modifier such as a silane coupling agent or a phthalate ester. The amount of the modifier used is 0.1 to 20 wt%, preferably 1 to 10 wt%, based on 100 wt% of the modified inorganic powder (modified inorganic powder).

本発明のシランカップリング剤としては、ビニルシリコクロロホルム、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エチルトリ(β−メソキシエトキシ)シラン、β−(3、4−エポキシクロヘキシル)エチルトリメトキシシラン、γ−(2−アジリジン)アミノプロピルトリメトキシシラン、γ−エポキシプロピロキシプロピルトリメトキシシラン、γ−エポキシプロピロキシプロピルトリメチルジエトキシシラン、γ−エポキシプロピロキシプロピルトリエトキシシラン、γ−メチルプロペニルプロピルメチルジメトキシシラン、γ−メチルプロペニルプロピルトリメトキシシラン、γ−メチルプロペニルプロピルメチルジエトキシシラン、γ−メチルプロペニルプロピルトリエトキシシラン、N−β(アジリジン)γ−アミノプロピルメチルジメトキシシラン、N−β(アジリジン)γ−アミノプロピルトリメトキシシラン、N−β(アジリジン)γ−アミノプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3 −アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、ジ−(3−[トリエトキシシリル]−プロピル)−テトラスルフィド(TESPT)又はジ−(3−[トリエトキシシリル]−プロピル)−ジスルフィドから選ばれるものを用いることができ、好ましくは、3−アクリロキシプロピルトリメトキシシランを用いる。 Examples of the silane coupling agent of the present invention include vinyl silicochlorochloro, vinyltrimethoxysilane, vinyltriethoxysilane, ethyltri (β-mesoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ. -(2-Aziridine) Aminopropyltrimethoxysilane, γ-epoxypropyroxypropyltrimethoxysilane, γ-epoxypropyroxypropyltrimethyldiethoxysilane, γ-epoxypropyroxypropyltriethoxysilane, γ-methylpropenylpropylmethyldimethoxy Silane, γ-methylpropenylpropyltrimethoxysilane, γ-methylpropenylpropylmethyldiethoxysilane, γ-methylpropenylpropyltriethoxysilane, N-β (aziridine) γ-aminopropylmethyldimethoxysilane, N-β (aziridine) γ-Aminopropyltrimethoxysilane, N-β (aziridine) γ-aminopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl -Γ-Aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, di- (3- [triethoxysilyl] -propyl) -tetrasulfide (TESPT) or di- (3-) [Triethoxysilyl] -propyl) -disulfide can be used, and 3-acryloxypropyltrimethoxysilane is preferably used.

本発明のチタン酸エステルとしては、イソステアリルチタネート、ステアロイルチタネート、オレイルチタネート又はピロリン酸チタネートから選ばれるものを用いることができ、好ましくは、ステアロイルチタネートを用いる。 As the titanium acid ester of the present invention, those selected from isostearyl titanate, stearoyl titanate, oleyl titanate and pyrophosphate titanate can be used, and stearyl titanate is preferably used.

本発明の消臭粉体を改質する手順としては、まず、攪拌羽根としてフェンス式羽根を用いた攪拌槽に消臭粉体を入れ、回転速度250rpmで攪拌を行い、そして、改質後の消臭粉体(改質消臭粉体)100wt%に1〜10wt%を占めるとなるように改質剤である3−アクリロキシプロピルトリメトキシシランを秤量し、体積比で改質剤:イソプロピルアルコール=1:6となるように改質剤をイソプロピルアルコール溶媒で希釈溶解し、その得られた希釈液を1ml/minの滴下速率で消臭粉体に徐々に滴下しながら、攪拌槽による攪拌速率を1000rpmに調整した。滴下終了後、攪拌槽の温度を120℃に昇温し、2時間の攪拌を行うことにより、イソプロピルアルコールを揮発させ、改質された消臭粉体を得た。 As a procedure for modifying the deodorant powder of the present invention, first, the deodorant powder is put into a stirring tank using a fence type blade as a stirring blade, stirred at a rotation speed of 250 rpm, and after the modification. Weigh the modifier 3-acryloxypropyltrimethoxysilane so that 100 wt% of the deodorant powder (modified deodorant powder) occupies 1 to 10 wt%, and the modifier: isopropyl in terms of volume ratio. The modifier was diluted and dissolved with an isopropyl alcohol solvent so that alcohol = 1: 6, and the obtained diluted solution was gradually added dropwise to the deodorant powder at a dropping rate of 1 ml / min, and the mixture was stirred by a stirring tank. The speed was adjusted to 1000 rpm. After completion of the dropping, the temperature of the stirring tank was raised to 120 ° C., and the mixture was stirred for 2 hours to volatilize isopropyl alcohol to obtain a modified deodorant powder.

本発明の消臭母粒子の調製方法としては、まず、原料として、前記改質された消臭粉体1〜30wt%と、ポリエステル粉又はポリエステル顆粒から構成され、固有粘度(IV)が0.2〜2.0、好ましくは0.8である熱可塑性高分子50〜95wt%と、酸化防止剤0.01〜5wt%を均一に混合し、粉体混合物になった後、二軸スクリュー押出機を用い、混練温度180〜280℃、混練速度250rpmの条件で混練を行うことにより、熱可塑性高分子(樹脂)が溶融状態となり、その際、前記消臭粉体での改質剤が有する末端基の、樹脂との相溶性が非常に高いので、樹脂中に消臭粉体を均一に分散することができ、そして、水冷・乾燥後、ペレット化し、更に、温度140℃で4〜6時間の乾燥を行うことにより、本発明の消臭母粒子を得た。 In the method for preparing the deodorant mother particles of the present invention, first, the modified deodorant powder is composed of 1 to 30 wt% of the modified deodorant powder and the polyester powder or the polyester granules as raw materials, and the intrinsic viscosity (IV) is 0. 50 to 95 wt% of thermoplastic polymer, which is 2 to 2.0, preferably 0.8, and 0.01 to 5 wt% of antioxidant are uniformly mixed to form a powder mixture, and then a twin-screw screw extrusion is performed. By kneading under the conditions of a kneading temperature of 180 to 280 ° C. and a kneading speed of 250 rpm using a machine, the thermoplastic polymer (resin) is in a molten state, and at that time, the modifier with the deodorant powder has. Since the end group has very high compatibility with the resin, the deodorant powder can be uniformly dispersed in the resin, and after water cooling and drying, it is pelletized, and further, 4 to 6 at a temperature of 140 ° C. The deodorant mother particles of the present invention were obtained by drying for a long time.

更に詳しく説明すると、本発明の無機材料で構成された消臭粉体の表面が改質されているため、樹脂に対する分散性を向上することができ、消臭粉体をより完全に樹脂に分散することができた。従って、本発明の消臭母粒子を用いる紡糸過程において、フィルター通過時の圧力損失の上昇が少なく、長時間に渡って良好な紡糸を行うことができる。 More specifically, since the surface of the deodorant powder composed of the inorganic material of the present invention is modified, the dispersibility in the resin can be improved, and the deodorant powder is more completely dispersed in the resin. We were able to. Therefore, in the spinning process using the deodorant mother particles of the present invention, the increase in pressure loss when passing through the filter is small, and good spinning can be performed over a long period of time.

本発明の酸化防止剤としては、ヒンダードフェノール系酸化防止剤(Hinderedphenol Antioxidants)又は亜リン酸エステル系酸化防止剤(Phosphite Antioxidants)から選ばれるものを用いることができる。 As the antioxidant of the present invention, one selected from a hindered phenolic antioxidant or a phosphite ester antioxidant can be used.

前記亜リン酸エステル系酸化防止剤としては、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジメチル、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジエチル、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジプロピル、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジブチル、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジアミル、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジヘキシル、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジペンチル、3,5−ジーt-ブチル−4−ヒドロキシベンジルホスホン酸ジオクチル、ビス(2,6−ジーt-ブチル−4−メチルフェニル)ペンタエリトリトールジフォスファイト、ビス(3,5−ジ−tーブチル−4−ヒドロキシベンジル)ホスホン酸ジエチルマンガン化物、ビス(3,5−ジ−tーブチル−4−ヒドロキシベンジル)ホスホン酸ジエチルマグネシウム化物、ビス(3,5−ジ−tーブチル−4−ヒドロキシベンジル)ホスホン酸ジエチルカルシウム化物、ビス(3,5−ジ−tーブチル−4−ヒドロキシベンジル)ホスホン酸ジエチル亜鉛化物から選ばれるものを用いることができ、好ましくは、ビス(2,6−ジーt-ブチル−4−メチルフェニル)ペンタエリトリトールジフォスファイトを用いる。 Examples of the phosphite ester-based antioxidant include dimethyl 3,5-di t-butyl-4-hydroxybenzylphosphonate, diethyl 3,5-di t-butyl-4-hydroxybenzylphosphonate, 3,5-. Dipropyl g-t-butyl-4-hydroxybenzylphosphonate, dibutyl 3,5-g t-butyl-4-hydroxybenzylphosphonate, diamill 3,5-dit-butyl-4-hydroxybenzylphosphonate 3,5 -G-t-butyl-4-hydroxybenzylphosphonate dihexyl, 3,5-G-t-butyl-4-hydroxybenzylphosphonate dipentyl, 3,5-G-t-butyl-4-hydroxybenzylphosphonate dioctyl, bis ( 2,6-G t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (3,5-di-t-butyl-4-hydroxybenzyl) phosphonate diethyl manganese, bis (3,5-di-) t-butyl-4-hydroxybenzyl) phosphonate diethylmagneside, bis (3,5-di-t-butyl-4-hydroxybenzyl) phosphonate diethylcalcium, bis (3,5-di-t-butyl-4-hydroxy) Those selected from diethylzincide benzyl) phosphonate can be used, preferably bis (2,6-di t-butyl-4-methylphenyl) pentaerythritol diphosphite.

本発明の消臭繊維は、乾燥後の消臭母粒子を溶融紡糸して得られたものである。前記消臭繊維の繊維構造としては、ポリエステルにより構成された芯部と、消臭母粒子により構成された鞘部を有する、芯鞘比率(芯部/鞘部)が40/60〜60/40(体積比)である複合紡糸からなる芯鞘型構造を用いることができる。この繊維構造の外層に消臭剤が分布しているので、異臭気体と効率的に反応することができる。 The deodorant fiber of the present invention is obtained by melt-spinning the deodorant mother particles after drying. The fiber structure of the deodorant fiber has a core portion made of polyester and a sheath portion made of deodorant mother particles, and the core-sheath ratio (core / sheath) is 40/60 to 60/40. A core-sheath type structure made of composite spinning having a (volume ratio) can be used. Since the deodorant is distributed in the outer layer of this fiber structure, it can efficiently react with the offensive odor gas.

本発明の消臭繊維の製造方法としては、まず、本発明の消臭母粒子を原料とし、紡糸温度230〜290℃、紡糸の巻取速度1000〜3000m/分の条件で、複合紡糸からなる芯鞘型構造の半延伸消臭糸(POY)を製作し、そして仮撚り加工により、直径が10〜30μm、繊維繊度が1〜10dpfの加工糸(DTY)である、本発明の消臭繊維を製作した。 The method for producing the deodorant fiber of the present invention first comprises composite spinning using the deodorant mother particles of the present invention as a raw material under the conditions of a spinning temperature of 230 to 290 ° C. and a spinning winding speed of 1000 to 3000 m / min. The deodorant fiber of the present invention is a processed yarn (DTY) having a diameter of 10 to 30 μm and a fiber fineness of 1 to 10 dpf by producing a semi-stretched deodorant yarn (POY) having a core-sheath structure and performing false twisting. Was produced.

本発明の消臭繊維において、繊維構造として芯鞘型構造が採用され、繊維鞘部に消臭粉体が被覆されているので、10回の水洗後でも、消臭繊維による消臭効果を高く維持することができる。従って、本発明の消臭繊維を、繊維関連産業の例えば下着、家庭装飾品並びにアウトドアスポーツ用紡績製品に幅広く用いることができる。 In the deodorant fiber of the present invention, a core-sheath type structure is adopted as the fiber structure, and the fiber sheath portion is coated with deodorant powder, so that the deodorant effect of the deodorant fiber is high even after washing with water 10 times. Can be maintained. Therefore, the deodorant fiber of the present invention can be widely used in textile-related industries such as underwear, household decorations, and spun products for outdoor sports.

以下、幾つかの実施例(実施例1〜4)を例示し、改質消臭粉体の製作、消臭母粒子・消臭繊維への加工について説明すると共に、対照としての比較例も挙げることにより、本発明の目的、効果及び原理を説明する。 Hereinafter, some examples (Examples 1 to 4) will be illustrated to explain the production of modified deodorant powder and the processing into deodorant mother particles and deodorant fibers, and a comparative example as a control will also be given. Thereby, the object, effect and principle of the present invention will be described.

各実施例及び比較例で製作された改質消臭粉体及び消臭繊維について、下述した方法に従って物性評価を行った。
1.圧力損失の上昇に関するテスト:消臭母粒子の最終濃度が8%になるようにPET樹脂で消臭母粒子を希釈し、濾過圧力上昇試験機(LabTech社製、型番:LTF34−GP)により、消臭母粒子の、網目15μmのフィルターを通過した時の圧力損失の上昇値を測定した。圧力損失の上昇値が低いほど、消臭粉体のポリエステル樹脂での分散性が高くなることを意味する。その反面、圧力損失の上昇値が高いほど、消臭粉体のポリエステル樹脂での分散性が低くなることを意味する。
2.消臭テスト:ISO 17299に準拠し、サンプルとして大きさが10cmx10cmの編地(表裏面を区別せず)を用意し、20℃ RH65%の環境で24時間放置し、3LTedlar−bagに濃度の異なる気体(アンモニアガス100ppm又は酢酸ガス30ppm)を充填し、検知管により120分経過後の袋内気体の濃度を検出し、気体濃度の低下率を算出した。
The modified deodorant powder and deodorant fiber produced in each Example and Comparative Example were evaluated for their physical properties according to the method described below.
1. 1. Test on increase in pressure loss: Dilute the deodorant mother particles with PET resin so that the final concentration of the deodorant mother particles is 8%, and use a filtration pressure increase tester (LabTech, model number: LTF34-GP). The increase value of the pressure loss of the deodorant mother particles when passed through a filter having a mesh of 15 μm was measured. The lower the increase value of the pressure loss, the higher the dispersibility of the deodorant powder in the polyester resin. On the other hand, the higher the increase value of the pressure loss, the lower the dispersibility of the deodorant powder in the polyester resin.
2. Deodorization test: Based on ISO 17299, a knitted fabric with a size of 10 cm x 10 cm (without distinguishing between the front and back surfaces) was prepared and left to stand in an environment of 20 ° C. RH 65% for 24 hours, and the concentration was different in 3 LTDlar-bag. A gas (ammonia gas 100 ppm or acetic acid gas 30 ppm) was filled, and the concentration of the gas in the bag after 120 minutes had passed was detected by a detector tube, and the rate of decrease in the gas concentration was calculated.

[実施例1]
<消臭粉体に対する改質>
表1の配合成分A1を参照し、消臭粉体であるAl、ZnO、SiOを攪拌槽に仕込み、攪拌羽根としてフェンス型羽根を用いた撹拌機により回転速度250rpmで攪拌を行い、そして、改質後の消臭粉体100wt%に1wt%を占めるように改質剤である3−アクリロキシプロピルトリメトキシシランを秤量し、体積比で改質剤:イソプロピルアルコール=1:6となるようにイソプロピルアルコールで改質剤を希釈溶解し、その得られた希釈液を1ml/minの滴下速度で消臭粉体に徐々に滴下しながら、攪拌槽による攪拌速率を1000rpmに調整した。滴下終了後、攪拌槽の温度を120℃に昇温し、2時間の攪拌を行うことにより、イソプロピルアルコールを揮発させ、改質消臭粉体(改質消臭粉体A1)を製作した。
<消臭母粒子の製作>
表2の原料成分を参照し、PET樹脂79.5wt%と、改質消臭粉体A1 20wt%と、ビス(2,6−ジーt-ブチル−4−メチルフェニル)ペンタエリトリトールジフォスファイト(以下、「酸化防止剤RCPEP36」と略称する)0.5wt%とを原料とし、二軸スクリュー押出機により溶融造粒を行った。
<消臭繊維の製作>
紡糸温度280℃、紡速2500m/minの条件で紡糸を行い、乾燥ポリエステル顆粒により構成された芯部と、乾燥消臭母粒子により構成された鞘部とを有し、且つ芯鞘比率が50/50である、75D/72Fの部分延伸糸(POY)を得て、更に加工糸(DTY)に加工した後、編地に編織し、そして染色・水洗を施した。
得られた消臭母粒子の、フィルター通過時の圧力損失の上昇値を測定し、その結果を表2に示す。また、消臭母粒子を用いて紡糸を行い、更に編地に織り成した後、染色を行い、その消臭効果を測定し、その結果を表3及び表4に示す。また、編地を10回水洗した後、消臭効果に対する試験を行い、その結果を表5に示す。結果として、消臭効果を依然として最初時点の水準に維持することができ、換言すれば水洗前後の消臭効果が殆ど変わらなかった。
[Example 1]
<Modification for deodorant powder>
With reference to the compounding component A1 in Table 1, the deodorant powders Al 2 O 3 , ZnO, and SiO 2 are charged into the stirring tank, and the stirring is performed at a rotation speed of 250 rpm by a stirrer using a fence type blade as the stirring blade. Then, the modifier 3-acryloxypropyltrimethoxysilane is weighed so as to occupy 1 wt% in 100 wt% of the modified deodorant powder, and the modifier: isopropyl alcohol = 1: 6 by volume ratio. The modifier was diluted and dissolved with isopropyl alcohol so as to be obtained, and the obtained diluted solution was gradually added dropwise to the deodorizing powder at a dropping rate of 1 ml / min, and the stirring speed by the stirring tank was adjusted to 1000 rpm. .. After completion of the dropping, the temperature of the stirring tank was raised to 120 ° C., and the mixture was stirred for 2 hours to volatilize isopropyl alcohol to produce a modified deodorant powder (modified deodorant powder A1).
<Production of deodorant mother particles>
Refer to the raw material components in Table 2, PET resin 79.5 wt%, modified deodorant powder A1 20 wt%, and bis (2,6-g t-butyl-4-methylphenyl) pentaerythritol diphosphite (2,6-G t-butyl-4-methylphenyl). Hereinafter, melt granulation was carried out using a twin-screw screw extruder using 0.5 wt% (hereinafter abbreviated as “antioxidant RPEP36”) as a raw material.
<Manufacturing deodorant fiber>
Spinning is performed under the conditions of a spinning temperature of 280 ° C. and a spinning speed of 2500 m / min, and the core portion is composed of dried polyester granules and the sheath portion is composed of dried deodorant mother particles, and the core-sheath ratio is 50. A partially drawn yarn (POY) of 75D / 72F, which is / 50, was obtained, further processed into a processed yarn (DTY), knitted and woven on a knitted fabric, and dyed and washed with water.
The increase value of the pressure loss of the obtained deodorant mother particles when passing through the filter was measured, and the results are shown in Table 2. Further, spinning is performed using the deodorant mother particles, further weaving is performed on the knitted fabric, dyeing is performed, the deodorizing effect is measured, and the results are shown in Tables 3 and 4. In addition, after washing the knitted fabric with water 10 times, a test for deodorant effect was performed, and the results are shown in Table 5. As a result, the deodorant effect could still be maintained at the initial level, in other words, the deodorant effect before and after washing with water was almost unchanged.

[実施例2]
実施例1において、改質剤の添加量を5wt%に変更した以外(表1の配合成分A2参照)、実施例1と同様に改質消臭粉体(改質消臭粉体A2)を製作した。
そして、表2の原料成分を参照し、PET樹脂79.5wt%と、改質消臭粉体A2 20wt%と、酸化防止剤RCPEP36 0.5wt%とを原料とし、二軸スクリュー押出機により溶融造粒を行い、消臭母粒子を製作した。
得られた消臭母粒子の、フィルター通過時の圧力損失の上昇値を測定し、その結果を表2に示す。消臭母粒子を用いて紡糸を行い、更に編地に織り成した後、染色を行い、その消臭効果を測定した。その結果を表3及び表4に示す。編地を10回水洗した後、消臭効果に関する試験を行い、その結果を表5に示す。結果として、消臭効果を依然として最初時点の水準に維持することができ、換言すれば水洗前後の消臭効果が殆ど変わらなかった。
[Example 2]
In Example 1, the modified deodorant powder (modified deodorant powder A2) was used in the same manner as in Example 1 except that the amount of the modifier added was changed to 5 wt% (see compounding component A2 in Table 1). I made it.
Then, referring to the raw material components in Table 2, PET resin 79.5 wt%, modified deodorant powder A2 20 wt%, and antioxidant RCPEP36 0.5 wt% are used as raw materials and melted by a twin-screw screw extruder. Granulation was performed to produce deodorant mother particles.
The increase value of the pressure loss of the obtained deodorant mother particles when passing through the filter was measured, and the results are shown in Table 2. Spinning was performed using the deodorant mother particles, and after weaving the knitted fabric, dyeing was performed and the deodorizing effect was measured. The results are shown in Tables 3 and 4. After washing the knitted fabric with water 10 times, a test on the deodorizing effect was performed, and the results are shown in Table 5. As a result, the deodorant effect could still be maintained at the initial level, in other words, the deodorant effect before and after washing with water was almost unchanged.

[実施例3]
実施例1において、改質剤の添加量を10wt%に変更した以外(表1の配合成分A3参照)、実施例1と同様に改質消臭粉体(改質消臭粉体A3)を製作した。
そして、表2の原料成分を参照し、PET樹脂79.5wt%と、改質消臭粉体A3 20wt%と、酸化防止剤RCPEP36 0.5wt%とを原料とし、二軸スクリュー押出機により溶融造粒を行い、消臭母粒子を製作した。
得られた消臭母粒子の、フィルター通過時の圧力損失の上昇値を測定し、その結果を表2に示す。消臭母粒子を用いて紡糸を行い、更に編地に織り成した後、染色を行い、その消臭効果を測定した。その結果を表3及び表4に示す。編地を10回水洗した後、消臭効果に関する試験を行い、その結果を表5に示す。結果として、消臭効果を依然として最初時点の水準に維持することができ、換言すれば水洗前後の消臭効果が殆ど変わらなかった。
[Example 3]
In Example 1, the modified deodorant powder (modified deodorant powder A3) was used in the same manner as in Example 1 except that the amount of the modifier added was changed to 10 wt% (see compounding component A3 in Table 1). I made it.
Then, referring to the raw material components in Table 2, PET resin 79.5 wt%, modified deodorant powder A3 20 wt%, and antioxidant RCPEP36 0.5 wt% are used as raw materials and melted by a twin-screw screw extruder. Granulation was performed to produce deodorant mother particles.
The increase value of the pressure loss of the obtained deodorant mother particles when passing through the filter was measured, and the results are shown in Table 2. Spinning was performed using the deodorant mother particles, and after weaving the knitted fabric, dyeing was performed and the deodorizing effect was measured. The results are shown in Tables 3 and 4. After washing the knitted fabric with water 10 times, a test on the deodorizing effect was performed, and the results are shown in Table 5. As a result, the deodorant effect could still be maintained at the initial level, in other words, the deodorant effect before and after washing with water was almost unchanged.

[実施例4]
実施例1において、改質剤を、添加量1wt%のステアロイルチタネートに変更した以外(表1の配合成分A4参照)、実施例1と同様に改質消臭粉体(改質消臭粉体A4)を製作した。
そして、表2の原料成分を参照し、PET樹脂79.5wt%と、改質消臭粉体A4 20wt%と、酸化防止剤RCPEP36 0.5wt%とを原料とし、二軸スクリュー押出機により溶融造粒を行い、消臭母粒子を製作した。
得られた消臭母粒子の、フィルター通過時の圧力損失の上昇値を測定し、その結果を表2に示す。消臭母粒子を用いて紡糸を行い、更に編地に織り成した後、染色を経て、消臭効果に関する試験を行い、その結果を表3及び表4に示す。編地を10回水洗した後、消臭効果に関する試験を行い、その結果を表5に示す。結果として、その消臭効果が依然として最初時点の水準に維持することができ、換言すれば水洗前後の消臭効果が殆ど変わらなかった。
[Example 4]
In Example 1, the modified deodorant powder (modified deodorant powder) was the same as in Example 1 except that the modifier was changed to stearoyl titanate having an addition amount of 1 wt% (see compounding component A4 in Table 1). A4) was manufactured.
Then, referring to the raw material components in Table 2, PET resin 79.5 wt%, modified deodorant powder A4 20 wt%, and antioxidant RCPEP36 0.5 wt% are used as raw materials and melted by a twin-screw screw extruder. Granulation was performed to produce deodorant mother particles.
The increase value of the pressure loss of the obtained deodorant mother particles when passing through the filter was measured, and the results are shown in Table 2. Spinning was performed using the deodorant mother particles, and the fabric was further woven into a knitted fabric. After dyeing, a test on the deodorizing effect was performed, and the results are shown in Tables 3 and 4. After washing the knitted fabric with water 10 times, a test on the deodorizing effect was performed, and the results are shown in Table 5. As a result, the deodorant effect could still be maintained at the initial level, in other words, the deodorant effect before and after washing with water was almost unchanged.

[比較例1]
消臭粉体として、未改質の粉体を用意した(表1の配合成分A5参照)。
そして、表2の原料成分を参照し、PET樹脂79.5wt%と、消臭粉体A5 20wt%と、酸化防止剤RCPEP36 0.5wt%を原料とし、二軸スクリュー押出機により溶融造粒を行い、消臭母粒子を製作した。
その得られた消臭母粒子の、フィルター通過時の圧力損失の上昇値を測定し、その結果を表2に示す。消臭母粒子を用いて紡糸を行い、更に編地に織り成した後、染色を行い、消臭効果に関する試験を行った。その結果を表3及び表4に示す。編地を10回水洗した後、再度に消臭効果に関する試験を行い、その結果を表5に示す。結果として、その消臭効果が依然として最初時点の水準に維持することができ、換言すれば水洗前後の消臭効果が殆ど変わらなかったが、実施例1〜4に比べて消臭効果が低かった。
[Comparative Example 1]
As a deodorant powder, an unmodified powder was prepared (see compounding component A5 in Table 1).
Then, referring to the raw material components in Table 2, PET resin 79.5 wt%, deodorant powder A5 20 wt%, and antioxidant RCPEP36 0.5 wt% are used as raw materials, and melt granulation is performed by a twin-screw screw extruder. This was done to produce deodorant mother particles.
The increase value of the pressure loss of the obtained deodorant mother particles when passing through the filter was measured, and the results are shown in Table 2. Spinning was performed using the deodorant mother particles, and after weaving the knitted fabric, dyeing was performed and a test on the deodorizing effect was performed. The results are shown in Tables 3 and 4. After washing the knitted fabric with water 10 times, the deodorant effect test was conducted again, and the results are shown in Table 5. As a result, the deodorizing effect could still be maintained at the initial level, in other words, the deodorizing effect before and after washing with water was almost the same, but the deodorizing effect was lower than in Examples 1 to 4. ..

上記の試験結果からも分かるように、実施例1〜3の改質剤である3−アクリロキシプロピルトリメトキシシランにより改質された消臭粉体、実施例4の改質剤であるステアロイルチタネートにより改質された消臭粉体の夫々を、樹脂及び分散剤とともに混練造粒を行い、その得られた消臭母粒子を乾燥した後、濾過圧力上昇試験機で消臭母粒子のフィルター通過時の圧力損失の上昇値を測定したが、表2に示すように、そのいずれも0.5bar/g以下となり、これは、消臭粉体のポリエステル樹脂での分散性が非常に良好であったことを意味する。
比較例1の消臭粉体は改質せずそのまま樹脂及び分散剤とともに混練造粒を行い、その得られた消臭母粒子を乾燥させた後、濾過圧力上昇試験機によりフィルター通過時の圧力損失の上昇値を測定したところ、2.4bar/gという数値であった(表2参照)。この数値が0.5bar/gを超えているので、消臭粉体のポリエステル樹脂での分散性が悪かったことを意味する。
上記の対比結果によれば、改質剤による改質処理を受けた消臭粉体のポリエステル樹脂での分散性が向上され、粉体のブロッキング現象が低減されることから、圧力損失の上昇を抑止し、消臭繊維を製造する紡糸工程をより順調に進行できると考えられる。
実施例1〜4により得られた消臭母粒子に対し乾燥による除水を行った後、芯部、鞘部が夫々ポリエステル、消臭母粒子により構成された芯鞘型複合紡糸に製作し、そしてロール状に巻き取った後、加工糸に加工し、更に編地に織り成し、染色を行った後、関連効果を評価した。結果として、改質された消臭粉体を用いて得られた紡糸による消臭効果は、未改質の消臭粉体による消臭効果よりも高く(表3参照)、また、たとえ10回の水洗がされても同様な傾向を示す(表4参照)。
実施例1〜4と比較例1のいずれにおいても、水洗前後の紡糸による消臭効果に顕著な変化が見られなかった。これは、消臭粉体自体が、バインダを介してポスト加工である含浸処理や塗布工程により編地に取り入れられているわけではなく、樹脂と直接結合して繊維本体に取り入れられているので、水洗前後の消臭効果に顕著な変化がなかったことによると考えられる(表5参照)。
As can be seen from the above test results, the deodorant powder modified with 3-acryloxypropyltrimethoxysilane, which is the modifier of Examples 1 to 3, and stearoyl titanate, which is the modifier of Example 4. Each of the deodorant powders modified by The increase value of the pressure loss at that time was measured, and as shown in Table 2, all of them were 0.5 bar / g or less, which means that the dispersibility of the deodorant powder in the polyester resin was very good. It means that.
The deodorant powder of Comparative Example 1 was kneaded and granulated with the resin and the dispersant as it was without being modified, and the obtained deodorant mother particles were dried, and then the pressure at the time of passing through the filter by the filtration pressure increase tester. When the increase value of the loss was measured, it was a value of 2.4 bar / g (see Table 2). Since this value exceeds 0.5 bar / g, it means that the dispersibility of the deodorant powder in the polyester resin was poor.
According to the above comparison results, the dispersibility of the deodorant powder that has been modified with the modifier in the polyester resin is improved, and the blocking phenomenon of the powder is reduced, so that the pressure loss is increased. It is considered that the spinning process of suppressing and producing deodorant fibers can proceed more smoothly.
After removing water by drying the deodorant mother particles obtained in Examples 1 to 4, a core-sheath type composite yarn in which the core portion and the sheath portion were each composed of polyester and deodorant mother particles was produced. Then, after winding into a roll, it was processed into a processed yarn, further woven into a knitted fabric, dyed, and then the related effect was evaluated. As a result, the deodorizing effect of spinning obtained using the modified deodorizing powder is higher than the deodorizing effect of the unmodified deodorizing powder (see Table 3), and even 10 times. The same tendency is shown even if it is washed with water (see Table 4).
In both Examples 1 to 4 and Comparative Example 1, no significant change was observed in the deodorizing effect of spinning before and after washing with water. This is because the deodorant powder itself is not incorporated into the knitted fabric by the impregnation process or coating process, which is post processing via a binder, but is directly bonded to the resin and incorporated into the fiber body. This is probably because there was no significant change in the deodorant effect before and after washing with water (see Table 5).

Figure 0006931037
Figure 0006931037

Figure 0006931037
Figure 0006931037

Figure 0006931037
Figure 0006931037

Figure 0006931037
Figure 0006931037

Figure 0006931037
Figure 0006931037

Claims (8)

消臭母粒子を溶融紡糸して得られる消臭繊維であって、前記消臭母粒子全体の重量を100wt%として、
a)ポリエステル粉又はポリエステル顆粒により構成され、固有粘度が0.2〜2.0である熱可塑性高分子50〜95wt%と、
b)アルミニウム、チタン、亜鉛、ケイ素、鉄、ジルコニウムの酸化物及びこれらの複合酸化物から選ばれる1種以上の粉体であって、その表面に、3−アクリロキシプロピルトリメトキシシランによる改質がされ、3−アクリロキシプロピルトリメトキシシランの使用量は改質消臭粉体の全量100wt%について、1〜10wt%であり、且つ粒径が1μm以下である粉体を含む、改質消臭粉体1〜30wt%と、
c)酸化防止剤0.01〜5wt%と、
を含有し、且つ、
ISO17299に準拠して、前記消臭繊維をアンモニアガス濃度100ppm又は酢酸ガス濃度30ppmの雰囲気に2時間放置したとき、アンモニアガス又は酢酸ガスの濃度が70%以上低下し、かつ、前記消臭繊維を10回洗浄処理したものを、アンモニアガス濃度100ppm又は酢酸ガス30ppmの雰囲気に2時間放置したときも、アンモニアガス又は酢酸ガスの濃度が70%以上低下することを特徴とする、消臭繊維。
A deodorant fiber obtained by melt-spinning deodorant mother particles, wherein the total weight of the deodorant mother particles is 100 wt%.
a) 50 to 95 wt% of a thermoplastic polymer composed of polyester powder or polyester granules and having an intrinsic viscosity of 0.2 to 2.0.
b) One or more powders selected from aluminum, titanium, zinc, silicon, iron, zirconium oxides and composite oxides thereof, and the surface thereof is modified with 3-acryloxypropyltrimethoxysilane. The amount of 3-acryloxypropyltrimethoxysilane used is 1 to 10 wt% with respect to 100 wt% of the total amount of the modified deodorant powder, and the modified deodorant powder contains a powder having a particle size of 1 μm or less. Odor powder 1 to 30 wt%,
c) Antioxidant 0.01-5 wt%,
Containing and
According to ISO17299, when the deodorant fiber is left in an atmosphere having an ammonia gas concentration of 100 ppm or an acetic acid gas concentration of 30 ppm for 2 hours, the concentration of ammonia gas or acetic acid gas decreases by 70% or more, and the deodorant fiber is used. A deodorant fiber characterized in that the concentration of ammonia gas or acetic acid gas decreases by 70% or more even when the product washed 10 times is left in an atmosphere having an ammonia gas concentration of 100 ppm or acetic acid gas of 30 ppm for 2 hours.
前記消臭母粒子の、フィルター通過時の圧力損失の上昇値が0.5bar/g以下であることを特徴とする、請求項1に記載の消臭繊維。 The deodorant fiber according to claim 1, wherein the increase value of the pressure loss of the deodorant mother particles when passing through the filter is 0.5 bar / g or less. 前記消臭繊維の繊維繊度が1〜10dpfであることを特徴とする、請求項1又は2に記載の消臭繊維。 The deodorant fiber according to claim 1 or 2, wherein the deodorant fiber has a fiber fineness of 1 to 10 dpf. 前記消臭繊維が芯鞘型構造のものであり、芯部がポリエステルにより構成され、鞘部が前記消臭母粒子により構成され、且つ芯鞘比率が40:60〜60:40であることを特徴とする、請求項3に記載の消臭繊維。 The deodorant fiber has a core-sheath structure, the core is made of polyester, the sheath is made of the deodorant mother particles, and the core-sheath ratio is 40:60 to 60:40. The deodorant fiber according to claim 3, which is characteristic. 前記消臭繊維の直径が10〜30μmであることを特徴とする、請求項3に記載の消臭繊維。 The deodorant fiber according to claim 3, wherein the deodorant fiber has a diameter of 10 to 30 μm. 前記熱可塑性高分子の固有粘度が0.8であることを特徴とする、請求項1に記載の消臭繊維。 The deodorant fiber according to claim 1, wherein the thermoplastic polymer has an intrinsic viscosity of 0.8. 前記酸化防止剤が、ヒンダードフェノール系酸化防止剤又は亜リン酸エステル系酸化防止剤であることを特徴とする、請求項1に記載の消臭繊維。 The deodorant fiber according to claim 1, wherein the antioxidant is a hindered phenol-based antioxidant or a phosphite ester-based antioxidant. 前記酸化防止剤が、ビス(2,6−ジt-ブチル−4−メチルフェニル)ペンタエリトリトールジフォスファイトであることを特徴とする、請求項1に記載の消臭繊維。 The deodorant fiber according to claim 1, wherein the antioxidant is bis (2,6-di - t-butyl-4-methylphenyl) pentaerythritol diphosphite.
JP2019231668A 2018-12-25 2019-12-23 Deodorant fiber Active JP6931037B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107147005 2018-12-25
TW107147005A TWI706975B (en) 2018-12-25 2018-12-25 Deodorizing fiber and its deodorizing masterbatch

Publications (2)

Publication Number Publication Date
JP2020105686A JP2020105686A (en) 2020-07-09
JP6931037B2 true JP6931037B2 (en) 2021-09-01

Family

ID=71099220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231668A Active JP6931037B2 (en) 2018-12-25 2019-12-23 Deodorant fiber

Country Status (4)

Country Link
US (1) US20200199809A1 (en)
JP (1) JP6931037B2 (en)
CN (1) CN111364112A (en)
TW (1) TWI706975B (en)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157040A (en) * 1988-12-08 1990-06-15 Azumi Roshi Kk Fibrous deodorant
IT1271132B (en) * 1994-11-30 1997-05-26 Ciba Geigy Spa PIPERIDINE COMPOUNDS CONTAINING SILANIC GROUPS AS STABILIZERS FOR ORGANIC MATERIALS
JP3301709B2 (en) * 1997-02-06 2002-07-15 株式会社クラレ Fiber with excellent deodorant performance
CN100436668C (en) * 2005-06-01 2008-11-26 张洪泽 Deodorization fiber and preparation method
JP5182912B2 (en) * 2005-07-01 2013-04-17 協和化学工業株式会社 Antibacterial agent, production method thereof and use thereof
CN101144217B (en) * 2006-09-11 2012-11-21 郑国彬 Fabric product with antibiosis, deodorization, heat emission and cooling function
JP2009084758A (en) * 2007-10-02 2009-04-23 Imt:Kk Resin for deodorant and antibacterial fiber and deodorant and antibacterial fiber
JP4750777B2 (en) * 2007-11-29 2011-08-17 三洋化成工業株式会社 Photosensitive resin composition
JP2012219402A (en) * 2011-04-07 2012-11-12 Du Pont Mitsui Polychem Co Ltd Method for producing fiber material
CN102965760B (en) * 2012-11-26 2014-12-03 荣盛石化股份有限公司 Manufacturing method of antibacterial deodorizing polyester fiber
CN103409843B (en) * 2013-09-02 2015-08-19 江苏红豆实业股份有限公司 There is the preparation method of the nylon fibre of anti-ultraviolet function
JP6204184B2 (en) * 2013-12-19 2017-09-27 帝人株式会社 Deodorant polyester fiber
CN103981588B (en) * 2014-06-09 2016-01-13 青岛嘉胜隆贸易有限公司 A kind of antibacterial and deodouring cellulose fibre and preparation method thereof
CN106714850B (en) * 2014-12-24 2019-08-13 东亚合成株式会社 Deodorant and deodorizing products
CN104947231A (en) * 2015-07-01 2015-09-30 义乌市惠航化纤科技有限公司 Odor-resistant polyester fiber and preparation method thereof
CN106498536B (en) * 2015-09-08 2020-03-10 东丽纤维研究所(中国)有限公司 Deodorizing nylon fiber and fabric
CN105177746A (en) * 2015-10-15 2015-12-23 山东英利实业有限公司 Anti-bacterial Lyocell fiber and preparation method thereof
CN106192070A (en) * 2016-07-15 2016-12-07 陆建益 A kind of core-sheath polyster fibre containing sea mud and preparation method thereof
CN106977751B (en) * 2017-05-11 2018-04-03 浙江银瑜新材料股份有限公司 A kind of composite antibacterial deodorization functions master batch, the preparation method of fiber
CN107142549A (en) * 2017-05-26 2017-09-08 昆山保扬新型材料科技有限公司 A kind of original liquid coloring long-acting type antibacterial and deodorizing fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2020105686A (en) 2020-07-09
CN111364112A (en) 2020-07-03
US20200199809A1 (en) 2020-06-25
TW202024195A (en) 2020-07-01
TWI706975B (en) 2020-10-11

Similar Documents

Publication Publication Date Title
JP3215318B2 (en) Deodorant fiber and method for producing the same
CN101307510A (en) Process for preparing bamboo charcoal fiber
CN112575448B (en) Preparation method of porous non-woven fabric with antibacterial function
US9243349B2 (en) Functional cellulosic moldings
CN103882543A (en) Anti-mite antibacterial thermoplastic polymer melt spun fiber and preparation method thereof
WO2015111172A1 (en) Functional air filter
JPH10204727A (en) Deodorant conjugate yarn and its production
JP6931037B2 (en) Deodorant fiber
JPH0384066A (en) Resin composition having antibacterial activity and its preparation
US20180022879A1 (en) Processes for Producing an Antimicrobial Masterbatch and Products Thereof
KR101112448B1 (en) Complex fiber and method of manufacturing the same
JP2010119970A (en) Deodorizing fiber and manufacturing method therefor
JP2003268628A (en) Antibacterial polyester fiber
JP4115880B2 (en) Special cross-section fiber
JP3720466B2 (en) Deodorant fiber
JP4560778B2 (en) Functional fiber with photocatalytic activity
KR100544780B1 (en) Antibacterial sea-island polyester composite filament and precipitation thereof
CN106592014A (en) Environment-friendly bamboo filament-nylon 66-blended modified spun fabric and preparation method thereof
JP3905823B2 (en) Deodorant composite fiber
KR101756911B1 (en) Process Of Producing Sheath/Core Type Synthetic Fiber Containing Sericite
CN109279674A (en) A kind of antibacterial and deodouring modified fibre and preparation method thereof for purification of water quality
JP2809648B2 (en) Composite fiber with deodorant performance
WO2005098102A1 (en) Manufacturing method of high charcoal content synthetic fiber
JPH10219520A (en) Fiber excellent in deodorant performance
JP5341673B2 (en) Deodorant fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210812

R150 Certificate of patent or registration of utility model

Ref document number: 6931037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150