JP3325474B2 - Sewage treatment method and circulating nitrification denitrification method - Google Patents

Sewage treatment method and circulating nitrification denitrification method

Info

Publication number
JP3325474B2
JP3325474B2 JP29027096A JP29027096A JP3325474B2 JP 3325474 B2 JP3325474 B2 JP 3325474B2 JP 29027096 A JP29027096 A JP 29027096A JP 29027096 A JP29027096 A JP 29027096A JP 3325474 B2 JP3325474 B2 JP 3325474B2
Authority
JP
Japan
Prior art keywords
water
tank
reaction tank
filter
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29027096A
Other languages
Japanese (ja)
Other versions
JPH10128369A (en
Inventor
均 大同
規行 田島
直哉 高橋
三雄 近藤
哲夫 長谷川
睦郎 永井
和夫 鈴木
繁樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Kurita Water Industries Ltd
Nippon Steel Corp
Original Assignee
Hitachi Metals Ltd
Kurita Water Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Kurita Water Industries Ltd, Nippon Steel Corp filed Critical Hitachi Metals Ltd
Priority to JP29027096A priority Critical patent/JP3325474B2/en
Publication of JPH10128369A publication Critical patent/JPH10128369A/en
Application granted granted Critical
Publication of JP3325474B2 publication Critical patent/JP3325474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活性汚泥法による
汚水処理方法および循環式硝化脱窒方法に関する。下水
等の汚水に空気を吹込み攪拌すると、種々の微生物が汚
水中の有機物を利用して繁殖し、凝集性のあるフロック
を形成する。これが活性汚泥と呼ばれるもので、細菌
類、原生動物、後生動物等の微生物の他に非生物性の無
機物から構成されている。
The present invention relates to a method for treating sewage by an activated sludge method and a method for circulating nitrification and denitrification. When air is blown into sewage such as sewage and agitated, various microorganisms propagate using organic matter in the sewage to form flocculent floc. This is called activated sludge, and is composed of non-biological inorganic substances in addition to microorganisms such as bacteria, protozoa and metazoans.

【0002】活性汚泥を酸素の存在下で汚水と混合する
と、汚水中の有機物は、活性汚泥に吸着され、活性汚泥
を構成する微生物群の代謝機能により酸化および同化さ
れ、一部が活性汚泥に転換される。活性汚泥法では、生
物反応槽内において空気の吹込みや機械による水面の掻
き混ぜ、すなわちエアレーションにより酸素を供給し、
このときに生じる反応槽内の水流により活性汚泥を浮遊
状態に保っている。
When activated sludge is mixed with sewage in the presence of oxygen, organic matter in the sewage is adsorbed by the activated sludge, oxidized and assimilated by the metabolic function of the microorganisms constituting the activated sludge, and a part of the activated sludge is converted into activated sludge. Is converted. In the activated sludge method, oxygen is supplied by blowing air or stirring the water surface with a machine in a biological reaction tank, that is, aeration.
The activated sludge is maintained in a floating state by the water flow in the reaction tank generated at this time.

【0003】[0003]

【従来の技術】図1に従来の活性汚泥法による汚水処理
装置を示す。図示した汚水処理装置は最初沈澱池1、生
物反応槽2、および最終沈澱池3をこの順に配設し、反
応槽2内には図示しないエアレーション用の水中エアレ
ータや曝気管を浸漬配置した基本構成である。原水(汚
水)は図の左端から最初沈澱池1に流入し、最初沈澱池
1内で粗大な固形分を沈澱除去した後、生物反応槽2に
流入し、上記の生物反応により生成した活性汚泥フロッ
クが浮遊した混合液状態の被処理水となり、最終沈澱池
3内に流入し、ここで活性汚泥の沈澱により固液分離を
行い、上澄み部分を処理済水として排出する。最終沈澱
池3内で沈澱した活性汚泥は、ポンプPにより反応槽2
内に返送し、一部は余剰汚泥として外部へ排出し処分す
る。
2. Description of the Related Art FIG. 1 shows a conventional sewage treatment apparatus using an activated sludge method. The illustrated sewage treatment apparatus has a basic configuration in which a sedimentation basin 1, a biological reaction tank 2, and a final sedimentation basin 3 are arranged in this order, and a submersible aerator for aeration and an aeration tube (not shown) are immersed in the reaction tank 2. It is. Raw water (sewage) first flows into the sedimentation basin 1 from the left end of the figure, and after first removing coarse solids in the sedimentation basin 1, flows into the biological reaction tank 2, where the activated sludge generated by the biological reaction described above. The treated water in a mixed liquid state in which the flocs are suspended flows into the final sedimentation basin 3, where the activated sludge is precipitated to perform solid-liquid separation, and the supernatant is discharged as treated water. The activated sludge settled in the final settling basin 3 is supplied to the reaction tank 2 by the pump P.
The waste is returned inside and part of it is discharged to the outside as excess sludge and disposed of.

【0004】しかし、従来の活性汚泥法には下記の点で
問題があった。 (1) 被処理水中にする活性汚泥フロック(浮遊物質(S
S:suspended solid))を最終沈澱池で沈澱除去する処理
にはSSの分離能力に限界があり、特に流入負荷の変動
時、冬場の生物機能低下時、合流式処理設備での流入負
荷増加時、バルキング発生時等には、処理済水の水質悪
化が避けられない。
[0004] However, the conventional activated sludge method has the following problems. (1) Activated sludge floc (suspended material (S
There is a limit to the separation capacity of SS in the treatment to remove suspended solid (S: suspended solid)) in the final sedimentation basin, especially when the inflow load fluctuates, when the biological function decreases in winter, or when the inflow load increases in the combined treatment facility. When the bulking occurs, the quality of the treated water deteriorates.

【0005】(2) 高度な処理水質が要求される場合に
は、最終沈澱池の後に、急速濾過器、ストレーナー等の
設備が必要になる。 (3) 最終沈澱池からの活性汚泥返送操作が必要である。 (4) 最終沈澱池でスカム発生、汚泥の浮上(硝化進行
時)等のトラブルが発生することがある。
(2) When high treated water quality is required, equipment such as a rapid filter and a strainer is required after the final sedimentation basin. (3) It is necessary to return activated sludge from the final sedimentation basin. (4) Troubles such as scum generation and sludge floating (when nitrification progresses) may occur in the final sedimentation basin.

【0006】(5) 最終沈澱池自体が大きな設置面積を必
要とする。次に、図9に、従来の硝化脱窒装置の典型例
を示す。図示した硝化脱窒装置は、最初沈澱池1、反応
槽2、および最終沈澱池3をこの順に配設し、反応槽2
内には図示しないエアレーション用の水中エアレータや
曝気管、撹拌機等が配置されている。反応槽2は、上流
側の無酸素タンク(脱窒タンク)21と下流側の好気タ
ンク(硝化タンク)22とから成り、これらタンクは堰
23で隔てられていて、無酸素タンク21から好気タン
ク22への流入は堰23の上端を越えるオーバーフロー
Aにより行われる。
(5) The final sedimentation basin itself requires a large installation area. Next, FIG. 9 shows a typical example of a conventional nitrification denitrification apparatus. In the illustrated nitrification denitrification apparatus, a first settling basin 1, a reaction tank 2 and a final settling basin 3 are arranged in this order.
A submersible aerator for aeration (not shown), an aeration tube, a stirrer, and the like are arranged therein. The reaction tank 2 is composed of an oxygen-free tank (denitrification tank) 21 on the upstream side and an aerobic tank (nitrification tank) 22 on the downstream side. The flow into the gas tank 22 is performed by an overflow A that exceeds the upper end of the weir 23.

【0007】原水(汚水)は図の左端から最初沈澱池1
に流入し、最初沈澱池1内で粗大な固形分を沈澱除去す
る。循環式硝化脱窒プロセスは、最初沈澱池1からの流
入水と最終沈澱池3からの返送汚泥とを無酸素タンク2
1に流入させる一方、続く好気タンク22の硝化混合液
の一部を導管Bにより無酸素タンク21へ循環するとい
う処理方式である。好気タンク22では、流入するアン
モニア性窒素が亜硝酸性もしくは硝酸性の窒素に酸化さ
れ、無酸素タンク21では、これらの酸化態の窒素が流
入水中の有機物の酸化反応によって窒素ガスに還元され
る。反応槽2で硝化脱窒後、最終沈澱池3で沈降分離し
た上澄を処理済水として排出する。
[0007] Raw water (sewage) is first settled from the left end of the figure.
And first, coarse solids are precipitated and removed in the sedimentation basin 1. In the recirculation type nitrification and denitrification process, the inflow water from the first settling basin 1 and the returned sludge from the final settling basin 3
1, while a part of the nitrification mixture in the aerobic tank 22 is circulated to the oxygen-free tank 21 through the conduit B. In the aerobic tank 22, the inflowing ammoniacal nitrogen is oxidized to nitrite or nitrate nitrogen, and in the anoxic tank 21, these oxidized nitrogens are reduced to nitrogen gas by the oxidation reaction of the organic matter in the influent water. You. After nitrification and denitrification in the reaction tank 2, the supernatant separated and settled in the final settling basin 3 is discharged as treated water.

【0008】標準的な都市下水であれば、脱窒のための
水素供与体(メタノールなど)やpH調整用のアルカリ
剤(水酸化ナトリウムなど)の添加は必要としないが、
流入水の水質によっては、これらを考慮する必要があ
る。下水中の有機物の一部は、脱窒反応で分解除去され
るため、硝化促進型活性汚泥法と比べてBOD除去のた
めの酸素供給量を少なくすることができる。
[0008] Standard municipal sewage does not require the addition of a hydrogen donor (such as methanol) for denitrification or an alkaline agent (such as sodium hydroxide) for adjusting pH.
These need to be considered depending on the quality of the incoming water. Since a part of the organic matter in the sewage is decomposed and removed by the denitrification reaction, the oxygen supply amount for removing the BOD can be reduced as compared with the nitrification-promoting activated sludge method.

【0009】なお、窒素除去率を向上させるために、二
段循環方式がある。この方式では、無酸素タンクおよび
好気タンクの組を二段直列に配置して、流入水を各段の
無酸素タンクにステップ流入させることにより、高いM
LSS濃度と長いSRTを可能にしたものである。この
ような操作により、前段の硝化タンクからの流出水を後
段の無酸素タンクで受け入れることが可能となり、高い
窒素除去率を得ることができる。
There is a two-stage circulation system for improving the nitrogen removal rate. In this system, a set of anoxic tanks and aerobic tanks is arranged in two stages in series, and the inflow water is step-flowed into the anoxic tanks of each stage, so that a high M is achieved.
This enables LSS concentration and long SRT. By such an operation, it is possible to receive the effluent from the nitrification tank in the preceding stage in the anoxic tank in the subsequent stage, and it is possible to obtain a high nitrogen removal rate.

【0010】しかし、上記従来の循環式硝化脱窒プロセ
スには下記の(1) 〜(4) の点で問題があった。 (1) 反応タンクのMLSS濃度を活性汚泥法よりも高く
2,000〜3,000mg/Lに保つ必要があり、し
たがって最終沈澱池の流入固形物負荷が大きくなるた
め、水面積負荷を小さくとる必要がある。
However, the above-mentioned conventional recirculation type nitrification and denitrification process has problems in the following points (1) to (4). (1) It is necessary to keep the MLSS concentration in the reaction tank higher than the activated sludge method at 2,000 to 3,000 mg / L. Therefore, the load on the solids flowing into the final sedimentation basin increases, so that the water area load is reduced. There is a need.

【0011】そのため、既存の最終沈澱池を用いてこの
プロセスを適用することは、負荷が過剰になるため不可
能であった。 (2) 処理水SSが多い場合には、反応タンクの後段に濾
過機を設置する必要がある。 (3) 最終沈澱池での返送汚泥操作を必要とする。
[0011] Therefore, it is not possible to apply this process using an existing final settling basin due to excessive load. (2) If the treated water SS is large, it is necessary to install a filter at the latter stage of the reaction tank. (3) Return sludge operation in the final sedimentation basin is required.

【0012】(4) 最終沈澱池で、脱窒ガスによる汚泥の
浮上が発生する。これら従来の問題を解決すべく、特開
平5−185078号公報には、間隔保持用の通水性多
孔質材を間に介在させて重ね合わせた通水性シートの周
囲を密封して形成した袋状の濾過体を曝気槽内に曝気部
の上方に配置して処理水中に浸漬配設し、前記濾過体内
より低い水頭差により濾過水を低い吸引力で引き抜く吸
引管を前記曝気槽の外部に導出させた曝気槽の濾過装置
が提案されている。
(4) Sludge floats due to denitrification gas in the final sedimentation basin. To solve these conventional problems, Japanese Unexamined Patent Publication (Kokai) No. 5-185078 discloses a bag-like shape formed by sealing the periphery of a laminated water-permeable sheet with a water-permeable porous material for maintaining an interval interposed therebetween. Is disposed above the aeration unit in the aeration tank and is immersed and disposed in the treated water, and a suction pipe for drawing out the filtered water with a low suction force due to a lower head difference than the filter body is led out of the aeration tank. A filtration device for an aerated tank has been proposed.

【0013】しかし、上記提案の濾過装置を用いても、
急激な水温低下や水質変化があった場合には、良好な処
理水質が安定して得られないという問題があった。
[0013] However, even if the filtration device proposed above is used,
When there is a sudden drop in water temperature or a change in water quality, there is a problem that good treated water quality cannot be stably obtained.

【0014】[0014]

【発明が解決しようとする課題】本発明は、上記提案の
濾過装置を利用して従来の活性汚泥法における最終沈澱
池による固液分離に伴う問題を解消した上で、更に安定
して良好な処理水質が得られる活性汚泥法による汚水処
理方法および循環式硝化脱窒方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention solves the problems associated with solid-liquid separation by the final settling basin in the conventional activated sludge method using the above-mentioned proposed filtration device, and further stably improves the performance. It is an object of the present invention to provide a sewage treatment method by an activated sludge method and a circulating nitrification and denitrification method capable of obtaining treated water quality.

【0015】[0015]

【課題を解決するための手段】上記の目的は、本願第1
発明によれば、周囲壁の少なくとも一部としての通水性
の支持材から成る流入部と、開口としての流出部とを有
する中空状の濾過体であって、該支持材上に活性汚泥及
び濁質からなる濾過膜を形成して濾過を行う濾過体を、
生物反応槽内および最終沈澱池内の少なくとも一方に浸
漬配置し、後続槽との水頭差により該流出口を介して該
濾過体から処理済水を引き抜く活性汚泥法による汚水処
理方法において、処理対象とする原水中または生物反応
槽内のうちの少なくとも一方に凝集剤を添加することを
特徴とする汚水処理方法によって達成される。
SUMMARY OF THE INVENTION The above object is attained by the present invention.
According to the invention, there is provided a hollow filter body having an inflow portion made of a water-permeable support material as at least a part of a peripheral wall, and an outflow portion as an opening, wherein activated sludge and turbidity are formed on the support material. A filtration body that forms a filtration membrane made of quality and performs filtration,
In the sewage treatment method by the activated sludge method of immersing and disposing in at least one of the biological reaction tank and the final sedimentation basin, and withdrawing the treated water from the filter through the outflow port due to the head difference from the subsequent tank, This is achieved by a sewage treatment method characterized by adding a flocculant to at least one of raw water or a biological reaction tank.

【0016】また上記の目的は、本願第2発明によれ
ば、被処理水の流入側に無酸素域を、処理済水の流出側
に好気域を有する生物反応槽を用い、該好気域内の硝化
混合液の一部を該無酸素域へ循環させて該被処理水中の
窒素を除去する循環式硝化脱窒方法であって、通水性の
支持材で周囲壁の少なくとも一部を構成した中空状の濾
過体を、該好気域内または後続の最終沈澱池内の少なく
とも一方に浸漬配置し、該支持材上に硝化汚泥及び濁質
からなる濾過膜を形成させ、後続槽との水頭差により該
濾過膜を介して該濾過体内へ処理済水を流入させ且つ該
濾過体内から該処理済水を引き抜く循環式硝化脱窒方法
において、処理対象とする原水中または生物反応槽内の
うちの少なくとも一方に凝集剤を添加することを特徴と
する循環式硝化脱窒方法によっても達成される。
According to a second aspect of the present invention, there is provided a biological reaction tank having an oxygen-free zone on an inflow side of treated water and an aerobic zone on an outlet side of treated water. A circulating nitrification denitrification method for circulating a part of the nitrification mixed solution in the region to the oxygen-free region to remove nitrogen in the water to be treated, wherein at least a part of a peripheral wall is formed of a water-permeable supporting material. The filtered hollow filter body is immersed in at least one of the aerobic region and the subsequent final sedimentation basin to form a filtration membrane made of nitrified sludge and turbidity on the support material, and the head difference from the subsequent tank In the circulating nitrification and denitrification method of causing treated water to flow into the filter body through the filtration membrane and extracting the treated water from the filter body, in the raw water or biological reaction tank to be treated Circulating nitrification denitrification characterized by adding a flocculant to at least one of them Also be achieved by law.

【0017】本願第1および第2の発明に用いる濾過体
を構成する通水性の支持材として、金属製、合成樹脂製
あるいはセラミックス製の網、不織布、織布、膜、多孔
体を用いることが便利である。その中でも特に金属網、
合成樹脂製の不織布をシート状にして用いることが好ま
しい。
As the water-permeable supporting material constituting the filter used in the first and second inventions of the present application, a metal, synthetic resin or ceramic net, a nonwoven fabric, a woven fabric, a membrane, or a porous material may be used. It is convenient. Among them, metal mesh,
It is preferable to use a synthetic resin non-woven fabric in the form of a sheet.

【0018】[0018]

【作用】先ず、本発明の前提として濾過体を用いた汚水
処理により下記の作用が得られる。すなわち、本願第1
発明の汚水処理方法においては、上記の濾過体を、生物
反応槽内および最終沈澱池内の少なくとも一方に浸漬配
置し、従来は最終沈澱池で行っていた固液分離の一部ま
たは全部を濾過体により行う。
First, as a premise of the present invention, the following effects are obtained by sewage treatment using a filter. That is, the first of the present application
In the sewage treatment method of the present invention, the above filter is immersed and disposed in at least one of the biological reaction tank and the final sedimentation basin, and a part or all of the solid-liquid separation conventionally performed in the final sedimentation basin is performed by the filter. Performed by

【0019】また本願第2発明の循環式硝化脱窒方法に
おいては、上記の濾過体を、生物反応槽の好気域内およ
び最終沈澱池内の少なくとも一方に浸漬配置し、従来は
最終沈澱池で行っていた固液分離の一部または全部を濾
過体により行う。その際に、後続槽との水頭差により該
流出口を介して該濾過体から処理済水を引き抜くことに
より濾過を行うので、被処理水を駆動するための動力を
特に必要としない。
In the circulating nitrification and denitrification method of the second invention of the present application, the above-mentioned filter is immersed in at least one of the aerobic region of the biological reaction tank and the final sedimentation basin, and is conventionally performed in the final sedimentation basin. Part or all of the solid-liquid separation that has been performed is performed by a filter. At this time, since the filtration is performed by extracting the treated water from the filter through the outlet due to the head difference from the succeeding tank, the power for driving the water to be treated is not particularly required.

【0020】上記構成により、本発明は浮上分離によら
ず濾過により固液分離を行うので、最終沈澱池により固
液分離に伴う前記従来の問題(1) 〜(5) を全て解消する
ことができる。すなわち、本発明は、浮上分離による固
液分離の限界を越えて高度の処理水質を得ることができ
るので上記問題(1) および(2) を解消できるし、最終沈
澱池を簡略化または省略することができるので上記問題
(3) 〜(5) を解消できる。
With the above structure, the present invention performs solid-liquid separation by filtration instead of flotation separation. Therefore, it is possible to eliminate all of the above-mentioned conventional problems (1) to (5) associated with solid-liquid separation by using a final sedimentation tank. it can. That is, the present invention can solve the above-mentioned problems (1) and (2) because a high treated water quality can be obtained beyond the limit of solid-liquid separation by flotation, and the final settling basin is simplified or omitted. So the above problem can
(3) to (5) can be eliminated.

【0021】上記前提に加えて、本発明の最も重要な特
徴は、処理対象となる原水中または生物反応槽内(もし
くはその好気域内)に凝集剤を添加する点にある。凝集
剤の添加により、活性汚泥のフロック化を進め、良好な
濾過膜(生物膜あるいはダイナミック膜)を支持材上に
形成させる。更に本発明のもう一つの大きな利点は、凝
集剤による燐の除去効果も同時に得られることである。
In addition to the above premise, the most important feature of the present invention is that a coagulant is added to raw water to be treated or into a biological reaction tank (or in an aerobic region thereof). By adding a flocculant, flocculation of the activated sludge is promoted, and a good filtration membrane (biological membrane or dynamic membrane) is formed on the support material. Still another great advantage of the present invention is that the effect of removing phosphorus by the flocculant can be obtained at the same time.

【0022】すなわち、本発明に用いる凝集剤は従来か
ら一般に活性汚泥法における燐除去に用いられていたも
のである。活性汚泥法における燐除去の機構は、3価金
属イオンが下水中の燐酸イオンと反応して、難水溶性の
燐酸塩を生成する反応に基づいている。この反応は下式
で表される。 M3++PO4 3- → MPO4 ↓ 通常は、中性付近で沈澱物が生成するアルミニウム塩や
鉄(III) 塩が凝集剤として用いられる。
That is, the coagulant used in the present invention has been generally used for removing phosphorus in the activated sludge method. The mechanism of phosphorus removal in the activated sludge process is based on a reaction in which trivalent metal ions react with phosphate ions in sewage to form poorly water-soluble phosphates. This reaction is represented by the following formula. M 3+ + PO 4 3- → MPO 4 ↓ Usually, an aluminum salt or an iron (III) salt which forms a precipitate near neutrality is used as a flocculant.

【0023】このような原理に基づく燐除去プロセス
は、凝集剤と下水との混和、フロック形成、沈澱分離の
3段階が必要である。活性汚泥法においては、混和およ
びフロック形成は生物反応槽内の流れによって行われ、
生物フロックと渾然一体となったフロックを生成し、こ
れが最終沈澱池において沈澱分離される。本発明に適用
可能な凝集剤は活性汚泥法に適用可能なものであればよ
く、代表的なものとしては、硫酸アルミニウム、ポリ塩
化アルミニウム(PAC)、塩化第二鉄、硫酸第一鉄等
がある。
The phosphorus removal process based on such a principle requires three steps of mixing a flocculant with sewage, floc formation, and sedimentation. In the activated sludge method, mixing and floc formation are performed by a flow in a biological reactor,
A floc is produced in harmony with the biological floc, which is sedimented and separated in the final sedimentation basin. The coagulant applicable to the present invention may be any as long as it is applicable to the activated sludge method, and typical examples include aluminum sulfate, polyaluminum chloride (PAC), ferric chloride, and ferrous sulfate. is there.

【0024】また、凝集剤の添加位置は、凝集剤として
アルミニウム塩、第二鉄塩を用いる場合は、反応槽の末
端部(下流端部)であり、凝集剤として第一鉄塩を用い
る場合は、第一鉄が反応槽末端部で全て第二鉄に酸化可
能な位置とする。一般に、凝集剤添加による汚泥の発生
量は、凝集剤としてアルミニウム塩を用いた場合は、添
加したアルミニウム量の5倍程度のSSが、鉄塩を用い
た場合は添加して鉄の3.5倍程度のSSが発生する。
The coagulant is added at the end (downstream end) of the reaction tank when an aluminum salt or a ferric salt is used as the coagulant, and when the ferrous salt is used as the coagulant. Is a position where ferrous iron can be oxidized to ferric iron at the end of the reactor. In general, the amount of sludge generated by the addition of a flocculant is about 5 times the amount of aluminum added when an aluminum salt is used as a flocculant, and 3.5 times as much as iron when an iron salt is used. About twice as many SSs occur.

【0025】[0025]

【実施例】以下に、実施例により本発明を更に詳細に説
明する。 〔実施例1〕図2に、本願第1発明の方法を行うための
汚水処理装置の一例を示す。図1と対応する部分は図1
中と同じ参照番号を付してある。
The present invention will be described in more detail with reference to the following examples. Embodiment 1 FIG. 2 shows an example of a sewage treatment apparatus for performing the method of the first invention of the present application. The part corresponding to FIG.
The same reference numerals as in the figures are used.

【0026】図示した汚水処理装置は、最初沈澱池1、
生物反応槽2、および緩衝槽4をこの順に配設し、反応
槽2内には図示しないエアレーション用の水中エアレー
タや曝気管の他に、1組の濾過体5を浸漬配置した基本
構成である。原水(汚水)は図の左端から最初沈澱池1
に流入し、最初沈澱池1内で粗大な固形分を沈澱除去し
た後、生物反応槽2に流入し、上記の生物反応により生
成した活性汚泥フロックが浮遊した混合液状態の被処理
水となり、後続の緩衝槽4との水頭差により濾過体5内
に吸引されて流入し、ここで濾過により固液分離され、
緩衝槽4を経て処理済水として排出される。緩衝槽4内
の水位により、濾過に必要な水頭差が安定して維持され
る。
The illustrated sewage treatment apparatus initially comprises a settling basin 1,
The biological reaction tank 2 and the buffer tank 4 are arranged in this order, and the reaction tank 2 has a basic configuration in which a set of filter bodies 5 is immersed and arranged in addition to an underwater aerator for aeration and an aeration tube (not shown). . Raw water (sewage) is the first settling pond from the left end of the figure.
After the coarse solid content is first settled and removed in the sedimentation basin 1, it flows into the biological reaction tank 2, and becomes the treated water in the mixed liquid state in which the activated sludge floc generated by the biological reaction floats, Due to the head difference from the subsequent buffer tank 4, it is sucked into the filter body 5 and flows thereinto, where it is separated into solid and liquid by filtration,
The water is discharged through the buffer tank 4 as treated water. The head difference required for filtration is stably maintained by the water level in the buffer tank 4.

【0027】図3〜図6に、本発明の汚水処理装置の生
物反応槽2における1組の濾過体5の配置を示す。図3
は平面図、図4は図3の線IV−IVにおける断面図、図5
は図3の線V −V における断面図、図6は図3の線VI−
VIにおける断面図である。反応槽2は、その中央にある
中間隔壁2Aによって上層部と下層部を除く中間深さの
範囲が左右に分離されている。最初沈澱池1からの被処
理水導入管1Aにより導入された被処理水が、中間隔壁
2Aの上端2AUより高い水位2Wに維持されている。
すなわち、槽2は、被処理水の水位2Wと隔壁2Aの上
端2AUとの間の上層部は被処理水が連通している。ま
た、隔壁2Aの下端2ALと槽2の底面2Bとの間でも
被処理水が連通している。
FIGS. 3 to 6 show the arrangement of a set of filter bodies 5 in the biological reaction tank 2 of the sewage treatment apparatus of the present invention. FIG.
4 is a plan view, FIG. 4 is a sectional view taken along line IV-IV in FIG.
3 is a sectional view taken along line V-V in FIG. 3, and FIG.
It is sectional drawing in VI. The reaction tank 2 has a middle partition 2A at the center thereof, and a range of an intermediate depth excluding an upper layer portion and a lower layer portion is separated into right and left. The to-be-treated water initially introduced by the to-be-treated water introduction pipe 1A from the sedimentation basin 1 is maintained at a water level 2W higher than the upper end 2AU of the intermediate partition 2A.
That is, in the tank 2, an upper layer portion between the water level 2W of the water to be treated and the upper end 2AU of the partition wall 2A is in communication with the water to be treated. Further, the water to be treated is also communicated between the lower end 2AL of the partition 2A and the bottom surface 2B of the tank 2.

【0028】槽2の中間隔壁2Aより右の区域(図6)
には多数の曝気管6が槽2のほぼ全長にわたって並べて
(図3,図5)浸漬配置されている。濾過体5はその厚
さ方向に4個を並立させて1組としてあり、槽2内の中
間隔壁2Aを挟んで曝気管6とは反対側になる左の区域
(図6)の下流部分(図3,図4で右側)に浸漬配置さ
れている。
Area to the right of intermediate partition 2A of tank 2 (FIG. 6)
In FIG. 3, a number of aeration tubes 6 are immersed and arranged side by side over almost the entire length of the tank 2 (FIGS. 3 and 5). The filter body 5 is a set of four filter bodies 5 arranged side by side in the thickness direction, and a downstream portion (FIG. 6) of a left section (FIG. 6) opposite to the aeration tube 6 with the intermediate partition wall 2A in the tank 2 interposed therebetween. 3 and 4).

【0029】図2に示した最初沈澱池1からの被処理水
は、導入管1A(図3,図5)を通り、生物反応槽2の
上流端(図3,図5で左側)の右区域(図6)に導入さ
れ、曝気管6の曝気により右区域内で上昇流(矢印F
1)となり、隔壁2Aの上を矢印F2方向に越え、濾過
体5のある左区域に入って下降流(矢印F3)となり、
隔壁2Aの下を潜って右区域に戻るサイクルの旋回流を
形成しながら、槽2内を上流部から下流部(図3〜図5
の左側から右側)へ移動する。
The water to be treated from the first sedimentation basin 1 shown in FIG. 2 passes through the inlet pipe 1A (FIGS. 3 and 5) and passes through the right end of the upstream end of the biological reaction tank 2 (the left side in FIGS. 3 and 5). Area (FIG. 6), and the ascending flow (arrow F)
1), it crosses over the partition 2A in the direction of arrow F2, enters the left area where the filter 5 is located, and becomes a downward flow (arrow F3),
While forming a swirling flow of a cycle of diving below the partition wall 2A and returning to the right area, the inside of the tank 2 is changed from an upstream portion to a downstream portion (FIGS. 3 to 5).
From the left to the right).

【0030】図7に、図4の濾過体5の部分の拡大断面
図を示す。図7の矢印F3は図4に示した被処理水の下
降流を示す。1組を成す4個の濾過体5はそれぞれ、構
造部材51の側面に所定範囲の目開きおよび厚さを持つ
支持材52を密着固定したものである。構造部材51
は、偏平な中空体であり、上端は閉鎖され下端は流出口
54として開口しており、側面には多数の流入口51A
が開口している。支持材52上には、後に詳細に説明す
る濾過膜が活性汚泥により形成される。被処理水は支持
材52を透過する際に上記の濾過膜により固液分離さ
れ、透過部分が構造部材51側面の流入口51Aを通っ
て濾過体5の内部に流入し、下端の流出口54から排出
管55に集まって、後続の槽または導管へ導かれる。
FIG. 7 is an enlarged sectional view of a portion of the filter 5 shown in FIG. The arrow F3 in FIG. 7 indicates the downward flow of the water to be treated shown in FIG. One set of four filter bodies 5 has a support member 52 having a predetermined range of apertures and thicknesses in close contact with the side surface of a structural member 51. Structural member 51
Is a flat hollow body, the upper end is closed and the lower end is opened as an outlet 54, and a number of inlets 51A are provided on the side.
Is open. On the support material 52, a filtration membrane, which will be described in detail later, is formed by activated sludge. The water to be treated is separated into solid and liquid by the above-mentioned filtration membrane when passing through the support material 52, and the permeated portion flows into the inside of the filter body 5 through the inlet 51A on the side of the structural member 51, and the outlet 54 at the lower end. From the outlet pipe 55 and is led to a subsequent tank or conduit.

【0031】図8に示すように、支持材52上には活性
汚泥及び濁質が濃縮して濾過膜が形成される。図示を簡
単にするために図8では構造部材51は省略してある。
本実施例においては、濾過体5を被処理水の旋回流Fの
下降流部分F3に配置した。次に、図2に示した配置の
本実施例の汚水処理装置により汚水処理を行った結果の
一例を説明する。
As shown in FIG. 8, the activated sludge and turbid matter are concentrated on the supporting material 52 to form a filtration membrane. For simplicity of illustration, the structural member 51 is omitted in FIG.
In the present embodiment, the filter body 5 is disposed in the downward flow portion F3 of the swirl flow F of the water to be treated. Next, an example of a result of performing sewage treatment by the sewage treatment apparatus of the present embodiment having the arrangement shown in FIG. 2 will be described.

【0032】原水は、BOD180mg/L、SS13
0mg/Lの下水であった。実効容量1m3 の生物反応
槽内の下流部の、被処理水旋回流の下降流部分に、側面
面積40cm×40cmの濾過体を浸漬配置し、1m/
日の透過流速で、自然流下で処理済水を取り出した。濾
過体の支持材としては、目開きが分離粒径40μmで厚
さが0.3mmのポリエステル製不織布を用いた。水頭
差(損失水頭)は20cmであった。最終沈澱池の実効
容量は500Lであった。
Raw water was BOD180mg / L, SS13
The sewage was 0 mg / L. A filter having a side surface area of 40 cm × 40 cm is immersed and arranged in the downstream part of the swirling flow of the water to be treated in the downstream part of the biological reaction tank having an effective volume of 1 m 3 ,
At the daily permeation flow rate, the treated water was taken out under natural flow. As a support material of the filter, a nonwoven fabric made of polyester having a mesh size of 40 μm and a thickness of 0.3 mm was used. The head difference (loss head) was 20 cm. The effective volume of the final settling basin was 500 L.

【0033】凝集剤としてポリ硫酸第二鉄を、鉄の量と
して7mg/Lの添加量で、薬注ポンプにより反応槽内
に連続投入した。その結果、得られた処理水質はBOD
8mg/L、SS5mg/L、T−P1.5mg/Lで
あった。比較として、凝集剤を添加しない以外は上記と
同一条件で処理を行った。
Ferric polysulfate as a coagulant was continuously charged into the reaction tank by a chemical injection pump at an addition amount of 7 mg / L as iron. As a result, the quality of the treated water obtained is BOD
8 mg / L, SS 5 mg / L, and TP 1.5 mg / L. For comparison, the treatment was performed under the same conditions as above except that no coagulant was added.

【0034】その結果、得られた処理水質はBOD8m
g/L、SS5mg/L、T−P0.2mg/Lであっ
た。このように、本発明にしたがって凝集剤を添加する
ことにより、BODおよびSSは同等レベルに確保した
上で、燐の除去が促進された。凝集剤は貯留槽内に貯留
し、本実施例のように薬注ポンプにより投入する添加方
法が効率的で確実である。
As a result, the quality of the treated water obtained was BOD 8 m
g / L, SS 5 mg / L, and TP 0.2 mg / L. As described above, by adding the flocculant according to the present invention, the removal of phosphorus was promoted while the BOD and SS were kept at the same level. The addition method in which the flocculant is stored in the storage tank and charged by the chemical injection pump as in this embodiment is efficient and reliable.

【0035】凝集剤の添加は連続投入でも間欠投入でも
よい。但し、連続投入の場合は燐の除去および安定した
処理が継続して行えるが、間欠投入の場合は燐の除去効
果については投入後一定期間のみ有効である。燐除去作
用の低下時あるいは処理悪化時にのみ投入する形の間欠
投入もできる。 〔実施例2〕実施例1と同じ装置を用いて、原水の水質
を変動させて処理を行った。すなわち、原水のBOD3
00mg/Lに増加して2日間供給し、その後3日間は
BOD180mg/Lに戻し、再度BOD300mg/
Lに上げて2日間供給して、活性汚泥を悪化させた。
The coagulant may be added continuously or intermittently. However, in the case of continuous charging, the removal of phosphorus and stable processing can be continuously performed, but in the case of intermittent charging, the effect of removing phosphorus is effective only for a certain period after the charging. Intermittent dosing can also be used in which dosing is performed only when the phosphorus removal action is reduced or when the treatment is deteriorated. [Example 2] Using the same apparatus as in Example 1, the treatment was carried out while varying the quality of the raw water. That is, BOD3 of raw water
00 mg / L and supply for 2 days, then return to BOD 180 mg / L for 3 days, and again BOD 300 mg / L
L and fed for 2 days to exacerbate the activated sludge.

【0036】凝集剤として、実施例1と同様に、ポリ硫
酸第二鉄を鉄の量として7mg/Lの添加量で、薬注ポ
ンプにより反応槽内に連続投入した。その結果、得られ
た処理水質はBOD8mg/L、SS5mg/L、T−
P0.2mg/Lであった。比較として、凝集剤を添加
しない以外は上記と同一条件で処理を行った。
As in Example 1, ferric polysulfate was added as a coagulant in an amount of 7 mg / L in terms of iron, and was continuously charged into the reaction tank by a chemical injection pump. As a result, the obtained treated water quality was BOD 8 mg / L, SS 5 mg / L, T-
P was 0.2 mg / L. For comparison, the treatment was performed under the same conditions as above except that no coagulant was added.

【0037】その結果、得られた処理水質はBOD15
mg/L、SS15mg/L、T−P1.7mg/Lで
あった。このように本発明にしたがって凝集剤を添加す
ることにより、原水の水質が変動しても安定して良好な
処理水質が得られると共に、燐除去効果も得られた。
〔実施例3〕図10に、本願第2発明の方法を行うため
の循環式硝化脱窒装置の一例を示す。図9の従来装置と
対応する部分については同一の参照符号を付した。
As a result, the quality of the treated water obtained was BOD 15
mg / L, SS 15 mg / L, and T-P 1.7 mg / L. As described above, by adding the coagulant according to the present invention, good treated water quality was stably obtained even when the water quality of the raw water fluctuated, and the phosphorus removing effect was also obtained.
[Embodiment 3] Fig. 10 shows an example of a circulating nitrification denitrification apparatus for performing the method of the second invention of the present application. Portions corresponding to those of the conventional device in FIG. 9 are denoted by the same reference numerals.

【0038】図示した硝化脱窒装置は、最初沈澱池1、
反応槽2、および緩衝槽4をこの順に配設し、反応槽2
内には図示しないエアレーション用の水中エアレータや
曝気管、撹拌機等が配置されている。反応槽2は、上流
側の無酸素タンク(脱窒タンク)21と下流側の好気タ
ンク(硝化タンク)22とから成り、これらタンクは堰
23で隔てられていて、無酸素タンク21から好気タン
ク22への流入は堰23の上を越えるオーバーフローA
により行われる。
The illustrated nitrification and denitrification apparatus initially comprises a sedimentation basin 1,
The reaction tank 2 and the buffer tank 4 are arranged in this order, and the reaction tank 2
A submersible aerator for aeration (not shown), an aeration tube, a stirrer, and the like are arranged therein. The reaction tank 2 is composed of an oxygen-free tank (denitrification tank) 21 on the upstream side and an aerobic tank (nitrification tank) 22 on the downstream side. The flow into the gas tank 22 is overflow A over the weir 23
It is performed by

【0039】更に、反応槽2の好気タンク22内には、
濾過体5が浸漬配置されている。原水(汚水)は図の左
端から最初沈澱池1に流入し、最初沈澱池1内で粗大な
固形分を沈澱除去する。最初沈澱池1からの流入水と最
終沈澱池3からの返送汚泥とを無酸素タンク21に流入
させる一方、続く好気タンク22の硝化混合液の一部を
導管Bにより無酸素タンク21へ循環する。好気タンク
22では、流入するアンモニア性窒素が亜硝酸性もしく
は硝酸性の窒素に酸化され、無酸素タンク21では、こ
れらの酸化態の窒素が流入水中の有機物の酸化反応によ
って窒素ガスに還元される。硝化脱窒後の被処理水は、
好気タンク22内に浸漬配置された濾過体5で濾過によ
り固液分離された後、緩衝槽4を経て処理済水として排
出される。緩衝槽4内の水位により、濾過に必要な水頭
差が安定して維持される。
Further, in the aerobic tank 22 of the reaction tank 2,
The filter 5 is immersed. Raw water (sewage) first flows into the sedimentation basin 1 from the left end of the figure, and first precipitates coarse solids in the sedimentation basin 1. While the influent from the first settling basin 1 and the returned sludge from the final settling basin 3 are allowed to flow into the anoxic tank 21, a portion of the nitrification mixture in the subsequent aerobic tank 22 is circulated to the anoxic tank 21 by the conduit B. I do. In the aerobic tank 22, the inflowing ammoniacal nitrogen is oxidized to nitrite or nitrate nitrogen, and in the anoxic tank 21, these oxidized nitrogens are reduced to nitrogen gas by the oxidation reaction of the organic matter in the influent water. You. The water to be treated after nitrification and denitrification is
After being separated into solid and liquid by filtration with the filter 5 immersed in the aerobic tank 22, it is discharged as treated water through the buffer tank 4. The head difference required for filtration is stably maintained by the water level in the buffer tank 4.

【0040】図11〜図14に、本発明の循環式硝化脱
窒装置の反応槽2における1組の濾過体5の配置を示
す。図11は平面図、図12は図11の線IV−IVにおけ
る断面図、図13は図11の線V −V における断面図、
図14は図11の線VI−VIにおける断面図である。な
お、図11〜図14においては、循環用の導管Bは図示
を省略した。
FIGS. 11 to 14 show the arrangement of a set of filter bodies 5 in the reaction tank 2 of the circulating nitrification and denitrification apparatus of the present invention. 11 is a plan view, FIG. 12 is a sectional view taken along line IV-IV in FIG. 11, FIG. 13 is a sectional view taken along line V-V in FIG.
FIG. 14 is a sectional view taken along line VI-VI in FIG. In FIGS. 11 to 14, the circulation conduit B is not shown.

【0041】反応槽2は、長さのほぼ中央にある堰23
によって、無酸素タンク21と好気タンク22とに仕切
られており、更に幅の中央にある中間隔壁2Aによって
上層部と下層部を除く中間深さの範囲が左右に分離され
ている。最初沈澱池1から導入管1Aにより無酸素タン
ク21内に導入された被処理水が、堰23の上端によっ
て、中間隔壁2Aの上端2AUより高い水位2W1に維
持されている(図12,図13)。また堰23を越えて
オーバーフローAにより好気タンク22内に流入した被
処理水は、中間隔壁2Aの上端2AUより高いが無酸素
タンク21内の水位2W1よりは低い水位2W2に維持
されている。すなわち、槽2は、無酸素タンク21内で
も好気タンク22内でも、被処理水の水位2W1または
2W2と隔壁2Aの上端2AUとの間の上層部は被処理
水が連通している。また、隔壁2Aの下端2ALと槽2
の底面2Bとの間でも被処理水が連通している。
The reaction tank 2 has a weir 23 substantially at the center of its length.
Thereby, an oxygen-free tank 21 and an aerobic tank 22 are separated from each other, and an intermediate depth range excluding an upper layer portion and a lower layer portion is separated left and right by an intermediate partition 2A at the center of the width. First, the water to be treated introduced from the sedimentation basin 1 into the anoxic tank 21 by the introduction pipe 1A is maintained at the water level 2W1 higher than the upper end 2AU of the intermediate partition 2A by the upper end of the weir 23 (FIGS. 12 and 13). ). The water to be treated that has flowed into the aerobic tank 22 by the overflow A over the weir 23 is maintained at a water level 2W2 higher than the upper end 2AU of the intermediate partition 2A but lower than the water level 2W1 in the anoxic tank 21. That is, in the tank 2, both in the anoxic tank 21 and the aerobic tank 22, the water to be treated communicates with the upper layer portion between the water level 2W1 or 2W2 of the water to be treated and the upper end 2AU of the partition wall 2A. In addition, the lower end 2AL of the partition wall 2A and the tank 2
The water to be treated also communicates with the bottom surface 2B.

【0042】槽2の中間隔壁2Aより右の区域(図1
4)には、無酸素タンク21内には機械的攪拌機7が、
好気タンク22内には多数の曝気管6が浸漬配置されて
いる(図11,図13)。濾過体5はその厚さ方向に4
個を並立させて1組としてあり、好気タンク22内にお
いて、中間隔壁2Aを挟んで曝気管6とは反対側になる
左の区域(図14)の、下流部分(図11,図12で右
側)に浸漬配置されている。
The area to the right of the intermediate partition 2A of the tank 2 (FIG. 1)
4) In the oxygen-free tank 21, a mechanical stirrer 7 is provided.
A number of aeration tubes 6 are immersed in the aerobic tank 22 (FIGS. 11 and 13). The filter 5 has a thickness of 4
In the aerobic tank 22, the downstream portion (FIG. 14) of the left area (FIG. 14) opposite to the aeration tube 6 across the intermediate partition 2 </ b> A in the aerobic tank 22. (Right side).

【0043】図10に示した最初沈澱池1からの被処理
水は、導入管1A(図11,図13)を通り、無酸素タ
ンク21の上流端(図11,図13で左側)の右区域
(図14)に導入され、攪拌機7により右区域内で上昇
流(図13の矢印F11)となり、隔壁2Aの上を図1
1の矢印F12方向に越え、左区域に入って下降流(図
12の矢印F13)となり、隔壁2Aの下を潜って右区
域に戻るサイクルの旋回流を形成する。好気タンク22
内においても同様に、曝気管6により右区域内で上昇流
(図13の矢印F21)となり、隔壁2Aの上を図11
の矢印F22方向に越え、濾過体5のある左区域に入っ
て下降流(図12の矢印F23)となり、隔壁2Aの下
を潜って右区域に戻るサイクルの旋回流(図14のF
2)を形成する。
The water to be treated from the first settling basin 1 shown in FIG. 10 passes through the inlet pipe 1A (FIGS. 11 and 13), and is located at the right end of the upstream end of the oxygen-free tank 21 (the left side in FIGS. 11 and 13). It is introduced into the section (FIG. 14), and is caused to flow upward (arrow F11 in FIG. 13) in the right section by the stirrer 7, and flows over the partition 2A in FIG.
The flow crosses in the direction of arrow F12 of FIG. 1 and enters the left area to form a downward flow (arrow F13 in FIG. 12), forming a swirl flow of a cycle of dive below the partition wall 2A and return to the right area. Aerobic tank 22
Similarly, the air flows upward in the right area by the aeration tube 6 (arrow F21 in FIG. 13), and flows upward on the partition 2A in FIG.
, A downward flow (arrow F23 in FIG. 12) after entering the left area where the filter 5 is present, and a swirling flow (F in FIG. 14) of diving below the partition wall 2A and returning to the right area.
2) is formed.

【0044】このように濾過体5は好気タンク22内に
おいて旋回流の下降流F23の部分に配置されるが、こ
れは、後に詳細に説明するように、濾過体5の構成部材
である濾過膜を安定して形成および維持するためであ
る。図15に、図12の濾過体5の部分の拡大断面図を
示す。図15の矢印F23は図12に示した被処理水の
下降流を示す。1組を成す4個の濾過体5はそれぞれ、
構造部材51の側面に支持材52を密着固定したもので
ある。構造部材51は、偏平な中空体であり、上端は閉
鎖され下端は流出口54として開口しており、側面には
多数の流入口51Aが開口している。支持材52上に
は、後に詳細に説明する濾過膜が形成される。被処理水
は支持材52を透過する際に上記の濾過膜により固液分
離され、透過部分が構造部材51側面の流入口51Aを
通って濾過体5の内部に流入し、下端の流出口54から
排出管55に集まって、後続の槽または導管へ導かれ
る。
As described above, the filter body 5 is disposed in the portion of the downward flow F23 of the swirling flow in the aerobic tank 22, which is a component member of the filter body 5 as described later in detail. This is for stably forming and maintaining the film. FIG. 15 shows an enlarged cross-sectional view of a portion of the filter 5 shown in FIG. The arrow F23 in FIG. 15 indicates the downward flow of the water to be treated shown in FIG. One set of four filter bodies 5 is
The support member 52 is closely fixed to the side surface of the structural member 51. The structural member 51 is a flat hollow body. The upper end is closed, the lower end is opened as an outlet 54, and a number of inlets 51A are opened on the side. On the support member 52, a filtration membrane described in detail later is formed. The water to be treated is separated into solid and liquid by the above-mentioned filtration membrane when passing through the support material 52, and the permeated portion flows into the inside of the filter body 5 through the inlet 51A on the side of the structural member 51, and the outlet 54 at the lower end. From the outlet pipe 55 and is led to a subsequent tank or conduit.

【0045】本実施例においては、好気タンク22内に
おいて濾過体5を被処理水の旋回流Fの下降流部分F2
3に配置した。次に、図10に示した配置の本実施例の
装置により処理を行った結果の一例を説明する。原水は
BOD160mg/L、SS120mg/L、T−P3
mg/L、T−N25mg/L、の下水であった。実効
容量1m3 の反応槽2を前段500L分を無酸素タンク
21、後段500L分を好気タンク22とした。好気タ
ンク22内の、被処理水旋回流の下降流部分に、側面面
積40cm×40cmの濾過体を浸漬配置し、1m/日
の透過流速で、自然流下で処理済水を取り出した。濾過
体の支持材としては、目開きが分離粒径20μmで厚さ
が0.4mmのポリエステル製不織布を用いた。水頭差
(損失水頭)は20cmであった。
In this embodiment, in the aerobic tank 22, the filter 5 is caused to flow through the downward flow portion F 2 of the swirling flow F of the water to be treated.
3 was placed. Next, an example of a result of processing performed by the apparatus of the present embodiment having the arrangement shown in FIG. 10 will be described. Raw water is BOD160mg / L, SS120mg / L, T-P3
mg / L, T-N 25 mg / L, sewage. The reaction tank 2 having an effective capacity of 1 m 3 was defined as an oxygen-free tank 21 for the first 500 L and an aerobic tank 22 for the second 500 L. A filter having a side surface area of 40 cm × 40 cm was immersed and disposed in the downward flow portion of the swirling flow of the water to be treated in the aerobic tank 22, and the treated water was taken out under a natural flow at a permeation flow rate of 1 m / day. A nonwoven fabric made of polyester having a mesh size of 20 μm and a thickness of 0.4 mm was used as a support for the filter. The head difference (loss head) was 20 cm.

【0046】凝集剤として、実施例1と同様に、ポリ硫
酸第二鉄を鉄の量として7mg/Lの添加量で、薬注ポ
ンプにより反応槽内に連続投入した。その結果、得られ
た処理水質はBOD6mg/L、SS3mg/L、T−
P0.2mg/L、T−N5mg/Lであった。比較と
して、凝集剤を添加しない以外は上記と同一条件で処理
を行った。
As in Example 1, ferric polysulfate was added as an aggregating agent in an amount of 7 mg / L in terms of iron, and was continuously charged into the reaction tank by a chemical injection pump. As a result, the quality of the treated water obtained was 6 mg / L for BOD, 3 mg / L for SS,
P 0.2 mg / L and T-N 5 mg / L. For comparison, the treatment was performed under the same conditions as above except that no coagulant was added.

【0047】その結果、得られた処理水質はBOD7m
g/L、SS4mg/L、T−P1.5mg/L、T−
N5mg/Lであった。このように、本発明にしたがっ
て凝集剤を添加することにより、BODおよびSSは同
等レベルに確保した上で、燐の除去が促進された。〔実
施例4〕実施例3と同じ装置を用いて、原水の水質を変
動させて処理を行った。すなわち、原水のBOD300
mg/Lに増加して2日間供給し、その後3日間はBO
D180mg/Lに戻し、再度BOD300mg/Lに
上げて2日間供給して、活性汚泥を悪化させた。
As a result, the quality of the treated water obtained was BOD 7 m
g / L, SS4mg / L, T-P1.5mg / L, T-
N5 mg / L. As described above, by adding the flocculant according to the present invention, the removal of phosphorus was promoted while the BOD and SS were kept at the same level. [Embodiment 4] Using the same apparatus as in Embodiment 3, treatment was carried out while varying the quality of raw water. That is, BOD300 of raw water
mg / L and supply for 2 days, then BO for 3 days
The DOD was returned to 180 mg / L, and the BOD was increased again to 300 mg / L and supplied for 2 days to deteriorate the activated sludge.

【0048】凝集剤として、実施例1と同様に、ポリ硫
酸第二鉄を鉄の量として7mg/Lの添加量で、薬注ポ
ンプにより反応槽内に連続投入した。その結果、得られ
た処理水質はBOD6mg/L、SS4mg/L、T−
P0.2mg/L、T−N6mg/Lであった。比較と
して、凝集剤を添加しない以外は上記と同一条件で処理
を行った。
As in Example 1, ferric polysulfate was added as a coagulant in an amount of 7 mg / L in terms of iron, and was continuously charged into the reaction tank by a chemical injection pump. As a result, the quality of the treated water obtained was 6 mg / L for BOD, 4 mg / L for SS,
P 0.2 mg / L and T-N 6 mg / L. For comparison, the treatment was performed under the same conditions as above except that no coagulant was added.

【0049】その結果、得られた処理水質はBOD14
mg/L、SS15mg/L、T−P1.6mg/L、
T−N18mg/Lであった。このように本発明にした
がって凝集剤を添加することにより、原水の水質が変動
しても安定して良好な処理水質が得られると共に、燐除
去効果も得られた。
As a result, the quality of the treated water obtained was BOD14
mg / L, SS15mg / L, T-P1.6mg / L,
T-N was 18 mg / L. As described above, by adding the coagulant according to the present invention, good treated water quality was stably obtained even when the water quality of the raw water fluctuated, and the phosphorus removing effect was also obtained.

【0050】[0050]

【発明の効果】以上説明したように、本発明の汚水処理
方法および循環式硝化脱窒方法によれば、従来の活性汚
泥法における最終沈澱池による固液分離に伴う問題を解
消した上で、更に安定して良好な処理水質が得られる。
更に、燐除去効果も併せて得られる。
As described above, according to the sewage treatment method and the circulating nitrification denitrification method of the present invention, the problems associated with the solid-liquid separation by the final settling basin in the conventional activated sludge method are solved. Further, good treated water quality can be obtained stably.
Further, a phosphorus removing effect can also be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、従来の活性汚泥法による汚水処理装置
を示す配置図である。
FIG. 1 is a layout diagram showing a conventional sewage treatment apparatus using an activated sludge method.

【図2】図2は、本発明の活性汚泥法による汚水処理装
置の一例を示す配置図である。
FIG. 2 is a layout diagram showing an example of a sewage treatment apparatus according to the activated sludge method of the present invention.

【図3】図3は、本発明の汚水処理装置の生物反応槽に
おける濾過体の配置を示す平面図である。
FIG. 3 is a plan view showing an arrangement of a filter in a biological reaction tank of the sewage treatment apparatus of the present invention.

【図4】図4は、図3の線IV−IVにおける断面図であ
る。
FIG. 4 is a sectional view taken along line IV-IV in FIG. 3;

【図5】図5は、図3の線V −V における断面図であ
る。
FIG. 5 is a sectional view taken along line VV in FIG. 3;

【図6】図6は、図3の線VI−VIにおける断面図であ
る。
FIG. 6 is a sectional view taken along line VI-VI in FIG. 3;

【図7】図7は、図4の濾過体の部分の拡大断面図であ
る。
FIG. 7 is an enlarged cross-sectional view of a portion of the filter shown in FIG. 4;

【図8】図8は、支持材を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a support member.

【図9】図9は、従来の循環式硝化脱窒装置を示す配置
図である。
FIG. 9 is a layout diagram showing a conventional circulation type nitrification and denitrification apparatus.

【図10】図10は、本発明の循環式硝化脱窒装置の一
例を示す配置図である。
FIG. 10 is a layout diagram showing an example of a circulating nitrification denitrification apparatus of the present invention.

【図11】図11は、本発明の循環式硝化脱窒装置の反
応槽における濾過体の配置を示す平面図である。
FIG. 11 is a plan view showing an arrangement of a filter in a reaction tank of the circulating nitrification denitrification apparatus of the present invention.

【図12】図12は、図11の線IV−IVにおける断面図
である。
FIG. 12 is a sectional view taken along line IV-IV in FIG. 11;

【図13】図13は、図11の線V −V における断面図
である。
FIG. 13 is a sectional view taken along line VV in FIG. 11;

【図14】図14は、図11の線VI−VIにおける断面図
である。
FIG. 14 is a sectional view taken along line VI-VI in FIG. 11;

【図15】図15は、図12の濾過体の部分の拡大断面
図である。
FIG. 15 is an enlarged cross-sectional view of a part of the filter shown in FIG. 12;

【符号の説明】[Explanation of symbols]

1…最初沈澱池 1A…最終沈澱池からの被処理水導入管 2…生物反応槽 21…無酸素タンク 22…好気タンク 23…堰 2A…中間隔壁 2AU…隔壁2Aの上端 2AL…隔壁2Aの下端 2B…反応槽2の底面 2W…水位 2W1…無酸素タンク21内の水位 2W2…好気タンク22内の水位 3…最終沈澱池 4…緩衝槽 5…濾過体 51…構造部材 51A…流入口 52…支持材 53…濾過膜 54…流出口 55…排出管 6…曝気管 7…機械的攪拌機 F…旋回流 F1…旋回流Fの上昇流部分 F3…旋回流Fの下降流部分 F11,F21…旋回流の上昇流部分 F13,F23…旋回流の下降流部分 DESCRIPTION OF SYMBOLS 1 ... First sedimentation basin 1A ... Water introduction pipe from the last sedimentation basin 2 ... Biological reaction tank 21 ... Anoxic tank 22 ... Aerobic tank 23 ... Weir 2A ... Intermediate partition wall 2AU ... Upper end of partition wall 2A 2AL ... Partition wall 2A Lower end 2B ... Bottom of reaction tank 2 2W ... Water level 2W1 ... Water level in anoxic tank 21 2W2 ... Water level in aerobic tank 22 3 ... Final sedimentation basin 4 ... Buffer tank 5 ... Filter 51 ... Structural member 51A ... Inlet 52 ... Support material 53 ... Filtration membrane 54 ... Outlet 55 ... Discharge pipe 6 ... Aeration pipe 7 ... Mechanical stirrer F ... Swirl flow F1 ... Upflow portion of swirl flow F F3 ... Downflow portion of swirl flow F F11, F21 … Upward portion of swirl flow F13, F23… Downward portion of swirl flow

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000005083 日立金属株式会社 東京都港区芝浦一丁目2番1号 (73)特許権者 000001063 栗田工業株式会社 東京都新宿区西新宿3丁目4番7号 (72)発明者 大同 均 東京都新宿区西新宿二丁目8番1号 東 京都下水道局内 (72)発明者 田島 規行 東京都新宿区西新宿二丁目8番1号 東 京都下水道局内 (72)発明者 高橋 直哉 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 近藤 三雄 東京都千代田区大手町2−6−3 新日 本製鐵株式会社内 (72)発明者 長谷川 哲夫 埼玉県熊谷市三ケ尻5200番地 日立金属 株式会社 熊谷工場内 (72)発明者 永井 睦郎 埼玉県熊谷市三ケ尻5200番地 日立金属 株式会社 熊谷工場内 (72)発明者 鈴木 和夫 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (72)発明者 澤田 繁樹 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (56)参考文献 特開 平5−185078(JP,A) 特開 平1−293196(JP,A) 「造水技術」Vol.20 No.2 (1994)財団法人 造水促進センター p.65〜68 (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 3/34 101 C02F 3/30 ──────────────────────────────────────────────────続 き Continuing from the front page (73) Patent holder 000005083 Hitachi Metals, Ltd. 1-2-1, Shibaura, Minato-ku, Tokyo (73) Patent holder 000001063 Kurita Industries, Ltd. 3-4-1 Nishishinjuku, Shinjuku-ku, Tokyo No. 7 (72) Inventor Hitoshi Daido 2-8-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Tokyo Metropolitan Government Sewerage Bureau (72) Inventor Noriyuki Tajima 2-2-1 Nishishinjuku, Shinjuku-ku Tokyo Metropolitan Government Tokyo Metropolitan Government Inventor Naoya Takahashi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Mitsuo Kondo 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation (72) Inventor Tetsuo Hasegawa 5200 Mikajiri, Kumagaya-shi, Saitama Hitachi Metals Kumagaya Plant (72) Inventor Mutsuro Nagai 5200 Mikajiri, Kumagaya-shi, Saitama Hitachi Metals (72) Inventor Kazuo Suzuki 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Co., Ltd. (72) Inventor Shigeki Sawada 3- 4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo (56) References JP-A-5-185078 (JP, A) JP-A-1-293196 (JP, A) "Fresh water technology" Vol. 20 No. 2 (1994) Desalination Promotion Center p. 65-68 (58) Field surveyed (Int. Cl. 7 , DB name) C02F 3/12 C02F 3/34 101 C02F 3/30

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周囲壁の少なくとも一部としての通水性
の支持材から成る流入部と、開口としての流出部とを有
する中空状の濾過体であって、該支持材上に活性汚泥及
び濁質からなる濾過膜を形成して濾過を行う濾過体を、
生物反応槽内および最終沈澱池内の少なくとも一方に浸
漬配置し、後続槽との水頭差により該流出口を介して該
濾過体から処理済水を引き抜く活性汚泥法による汚水処
理方法において、 処理対象とする原水中または生物反応槽内のうちの少な
くとも一方に凝集剤を添加することを特徴とする汚水処
理方法。
1. A hollow filter having an inflow portion made of a water-permeable support material as at least a part of a peripheral wall, and an outflow portion as an opening, wherein activated sludge and turbidity are formed on the support material. A filtration body that forms a filtration membrane made of quality and performs filtration,
A sewage treatment method using an activated sludge method in which the treated water is drawn out of the filter through the outflow port due to a head difference from a subsequent tank and immersed in at least one of the biological reaction tank and the final sedimentation tank. A sewage treatment method comprising adding a flocculant to at least one of raw water and a biological reaction tank.
【請求項2】 前記支持材が金属網または不織布から成
ることを特徴とする請求項記載の汚水処理方法。
2. A sewage treatment process according to claim 1, wherein said support material is characterized by comprising a metal mesh or nonwoven.
【請求項3】 該生物反応槽には曝気管が浸漬配置され3. An aeration tube is immersed in the biological reaction tank.
るとともに、該濾過体は、該生物反応槽の、該曝気管のAnd the filter is provided in the aeration tube of the biological reaction tank.
曝気によって形成される旋回流の下降流側に配置されてLocated on the downflow side of the swirl flow formed by aeration
いることを特徴とする請求項1または2記載の汚水処理The sewage treatment according to claim 1 or 2, wherein
方法。Method.
【請求項4】 被処理水の流入側に無酸素域を、処理済
水の流出側に好気域を有する生物反応槽を用い、該好気
域内の硝化混合液の一部を該無酸素域へ循環させて該被
処理水中の窒素を除去する循環式硝化脱窒方法であっ
て、通水性の支持材で周囲壁の少なくとも一部を構成し
た中空状の濾過体を、該好気域内または後続の最終沈澱
池内の少なくとも一方に浸漬配置し、該支持材上に硝化
汚泥及び濁質からなる濾過膜を形成させ、後続槽との水
頭差により該濾過膜を介して該濾過体内へ処理済水を流
入させ且つ該濾過体内から該処理済水を引き抜く循環式
硝化脱窒方法において、 処理対象とする原水中または生物反応槽内のうちの少な
くとも一方に凝集剤を添加することを特徴とする循環式
硝化脱窒方法。
4. A biological reaction tank having an anoxic zone on the inflow side of the water to be treated and an aerobic zone on the outflow side of the treated water, and a part of the nitrification mixture in the aerobic zone is subjected to the anoxic zone. A method of circulating nitrification and denitrification in which nitrogen in the for-treatment water is removed by circulating through a region, wherein a hollow filter body having at least a part of a peripheral wall formed of a water-permeable supporting material is formed in the aerobic region. Alternatively, the filter is immersed in at least one of the subsequent final sedimentation basins, and a filtration membrane composed of nitrifying sludge and turbidity is formed on the support material, and treated into the filtration body through the filtration membrane due to a head difference from the subsequent tank. In a circulating nitrification and denitrification method for inflowing treated water and extracting the treated water from the filter, a coagulant is added to at least one of raw water to be treated or in a biological reaction tank. Circulating nitrification denitrification method.
【請求項5】 該支持材が金属網または不織布から成る
ことを特徴とする請求項記載の循環式硝化脱窒方法。
5. The circulating nitrification denitrification method according to claim 4, wherein said support material is made of a metal net or a nonwoven fabric.
【請求項6】 該生物反応槽には曝気管が浸漬配置され6. An aeration tube is immersed in the biological reaction tank.
るとともに、該濾過体は、該生物反応槽の、該曝気管のAnd the filter is provided in the aeration tube of the biological reaction tank.
曝気によって形成される旋回流の下降流側に配置されてLocated on the downflow side of the swirl flow formed by aeration
いることを特徴とする請求項4または5記載の循環式硝The circulating nitric acid according to claim 4 or 5, wherein
化脱窒方法。Chemical denitrification method.
JP29027096A 1996-10-31 1996-10-31 Sewage treatment method and circulating nitrification denitrification method Expired - Fee Related JP3325474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29027096A JP3325474B2 (en) 1996-10-31 1996-10-31 Sewage treatment method and circulating nitrification denitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29027096A JP3325474B2 (en) 1996-10-31 1996-10-31 Sewage treatment method and circulating nitrification denitrification method

Publications (2)

Publication Number Publication Date
JPH10128369A JPH10128369A (en) 1998-05-19
JP3325474B2 true JP3325474B2 (en) 2002-09-17

Family

ID=17753969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29027096A Expired - Fee Related JP3325474B2 (en) 1996-10-31 1996-10-31 Sewage treatment method and circulating nitrification denitrification method

Country Status (1)

Country Link
JP (1) JP3325474B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103289A (en) * 2001-09-28 2003-04-08 Daicel Chem Ind Ltd Wastewater treatment method
JPWO2003043941A1 (en) * 2001-11-22 2005-03-10 株式会社荏原製作所 Organic wastewater treatment apparatus and method
JP6483496B2 (en) * 2015-03-26 2019-03-13 株式会社クボタ Solid-liquid separation method and solid-liquid separation system
JP6874435B2 (en) * 2017-03-13 2021-05-19 株式会社Ihi Wastewater treatment equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「造水技術」Vol.20 No.2(1994)財団法人 造水促進センター p.65〜68

Also Published As

Publication number Publication date
JPH10128369A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
EP1270514A1 (en) Method and apparatus for treating waste water
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
JP2001054792A (en) Method and apparatus for treating wastewater
CN113735378B (en) Sewage treatment system and method for denitrification and dephosphorization
CN107265791A (en) Kitchen garbage slurry fermentation waste water processing unit
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
JP2723369B2 (en) Sewage septic tank
JP3325474B2 (en) Sewage treatment method and circulating nitrification denitrification method
JPH11244891A (en) Method for denitrification treating waste water and treating system
CN113277677B (en) Treatment method and reuse water treatment process for production wastewater of disposable nitrile gloves
JP3325475B2 (en) Sewage treatment apparatus and method
JPH04367788A (en) Purification tank
KR20150016775A (en) Advanced water treatment system with improved treatment efficiency for concentrated sludge
JP2005246308A (en) Method for bio-treating wastewater
JPH10314791A (en) Waste water treating device
JP3325473B2 (en) Circulating nitrification denitrification apparatus and method
JP3807945B2 (en) Method and apparatus for treating organic wastewater
KR20030004006A (en) Tertiary sewage treatment apparatus and method using porous filtering media
GB2084041A (en) Process and apparatus for wastewater treatment
JP2585187B2 (en) Organic wastewater biological treatment method
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
KR100243565B1 (en) Apparatus for purifying wastewater
JPH03188994A (en) Biotreating device for organic sewage
JP2001347291A (en) Method and apparatus for treating organic wasteliquid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020528

LAPS Cancellation because of no payment of annual fees