JP3323690B2 - Optical wavelength division multiplexing communication equipment - Google Patents

Optical wavelength division multiplexing communication equipment

Info

Publication number
JP3323690B2
JP3323690B2 JP08342995A JP8342995A JP3323690B2 JP 3323690 B2 JP3323690 B2 JP 3323690B2 JP 08342995 A JP08342995 A JP 08342995A JP 8342995 A JP8342995 A JP 8342995A JP 3323690 B2 JP3323690 B2 JP 3323690B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
optical wavelength
signal
division multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08342995A
Other languages
Japanese (ja)
Other versions
JPH08256128A (en
Inventor
秀徳 多賀
登 枝川
憲幸 武田
周 山本
重幸 秋葉
Original Assignee
ケイディーディーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイディーディーアイ株式会社 filed Critical ケイディーディーアイ株式会社
Priority to JP08342995A priority Critical patent/JP3323690B2/en
Priority to US08/542,058 priority patent/US5589969A/en
Publication of JPH08256128A publication Critical patent/JPH08256128A/en
Application granted granted Critical
Publication of JP3323690B2 publication Critical patent/JP3323690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2572Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to forms of polarisation-dependent distortion other than PMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0224Irregular wavelength spacing, e.g. to accommodate interference to all wavelengths

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は光波長多重通信装置に
関し、特に、四光波混合による干渉の影響を抑圧して光
ファイバ通信システムの伝送容量を増大させることが可
能な光波長多重通信装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength division multiplexing communication device, and more particularly to an optical wavelength division multiplexing communication device capable of suppressing the influence of interference due to four-wave mixing to increase the transmission capacity of an optical fiber communication system. Things.

【0002】[0002]

【従来の技術】光波長多重信号を利用する光ファイバ通
信システムは、伝送路に変更を加えずにその伝送容量を
増大させることが可能であることから、将来の基幹光フ
ァイバ通信システムへの適用が期待される技術である。
光波長多重信号を利用する場合、信号波長間の四光波混
合が存在すると、信号波長間隔が等間隔の場合には、信
号光に隣接する他の2つの信号光から発生する四光波混
合が干渉の原因となり、システムの特性、例えば最大伝
送可能距離、最大多重化可能信号数等を制限する。この
四光波混合による特性劣化を避けるために、任意の2波
長間の波長間隔を不等間隔とする技術が公知である(F.
Forghieri et. al., IEEE Photon. Technol. Lett. vo
l.6, no.6, pp.754-756 )。
2. Description of the Related Art An optical fiber communication system using an optical wavelength division multiplexing signal can increase its transmission capacity without changing a transmission line, and is therefore applied to a future basic optical fiber communication system. Is expected technology.
In the case of using an optical wavelength division multiplexing signal, if four-wave mixing exists between signal wavelengths, if the signal wavelength intervals are equal, four-wave mixing generated from two other signal lights adjacent to the signal light interferes. And limits the characteristics of the system, such as the maximum transmittable distance and the maximum number of multiplexable signals. In order to avoid the characteristic deterioration due to the four-wave mixing, a technique of making the wavelength interval between any two wavelengths unequal is known (F.
Forghieri et. Al., IEEE Photon. Technol. Lett. Vo
l.6, no.6, pp.754-756).

【0003】その一例を、図10を参照して説明する。
図10は横軸に、8チャンネルの各々に割当てられた信
号光の波長を示す。図から明らかなように、各々の2波
長間の波長間隔は、第1、第2チャンネルとの波長間隔
は0.8nm、第2、第3チャンネルとの波長間隔は
0.9nm、第3、第4チャンネルとの波長間隔は1.
2nm、…となっており、任意の2波長間の波長間隔を
不等間隔とされている。
One example will be described with reference to FIG.
FIG. 10 shows the wavelength of signal light allocated to each of the eight channels on the horizontal axis. As is clear from the figure, the wavelength interval between the two wavelengths is 0.8 nm for the first and second channels, 0.9 nm for the second and third channels, and 0.9 nm for the third and third channels. The wavelength interval from the fourth channel is 1.
.., And the wavelength intervals between any two wavelengths are unequal.

【0004】このように不等間隔とすることにより、あ
る信号光に隣接する他の信号光から発生する四光波混合
による干渉を効果的に抑圧することができる。
[0004] By making the intervals unequal, it is possible to effectively suppress interference due to four-wave mixing generated from another signal light adjacent to a certain signal light.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、任意の
2波長間の波長間隔を不等間隔にすると、所要光信号帯
域が等間隔の場合と比較して広くなってしまうため、多
重化可能波長数が減少してしまうという問題があった。
その理由は、波長多重信号の信号分離に使用する光分波
器の性能により波長多重信号の最小波長間隔は自ずと制
限されるため、該最小波長間隔をxとすると、n波長多
重した等間隔システムではnxの帯域で十分であるのに
対し、不等間隔システムでは各波長間隔をxより大きい
ものにしなければならないため、n波長多重時の帯域が
nxよりかなり大きくなってしまうからである。
However, if the wavelength spacing between any two wavelengths is made unequal, the required optical signal band becomes wider than in the case of equal spacing, so that the number of multiplexable wavelengths is increased. However, there is a problem that the number is reduced.
The reason is that the minimum wavelength interval of a wavelength division multiplexed signal is naturally limited by the performance of an optical demultiplexer used for signal separation of a wavelength division multiplexed signal. In this case, the band of nx is sufficient, whereas in the case of the unequally spaced system, each wavelength interval must be larger than x, so that the band at the time of n-wavelength multiplexing becomes considerably larger than nx.

【0006】図10の例では、最小波長間隔xは、x=
0.7nmであるので、2波長間の波長間隔を等間隔と
した場合には、第1〜第8チャンネルの光信号帯域が
4.9nmになる。これに対して、任意の2波長間の波
長間隔を不等間隔にした場合には、7nmの光信号帯域
が必要になり、光信号帯域は約1.4倍になる。
In the example of FIG. 10, the minimum wavelength interval x is x =
Since the wavelength is 0.7 nm, if the wavelength interval between the two wavelengths is equal, the optical signal band of the first to eighth channels is 4.9 nm. On the other hand, if the wavelength interval between any two wavelengths is made unequal, an optical signal band of 7 nm is required, and the optical signal band becomes about 1.4 times.

【0007】また、信号波長間隔を不等間隔とする技術
とは別に、四光波混合の発生効率が、発生に関わる光信
号の偏波状態が一致した場合に高く、直交した場合に低
くなることを利用して、隣接光信号の偏波状態を意図的
に直交させて配置する技術が公知である。
In addition to the technique of making the signal wavelength intervals unequal, the generation efficiency of four-wave mixing is high when the polarization states of the optical signals involved in generation are the same, and low when they are orthogonal. There is known a technique in which the polarization states of adjacent optical signals are intentionally orthogonally arranged by utilizing the above.

【0008】しかしながら、隣接信号間の偏波状態は、
光ファイバの複屈折性によりある程度の距離を伝送する
と保たれなくなってしまうため、長距離の波長多重シス
テムに適用する場合には、四光波混合発生抑圧技術とし
ては不十分であった。また、隣接光信号の偏波状態を直
交させると1波長おいた信号波長間では偏波状態が一致
してしまうため、かえって四光波混合の発生効率を増大
させてしまうという問題もあった。
However, the state of polarization between adjacent signals is
When the optical fiber is transmitted over a certain distance due to the birefringence, the optical fiber is not maintained. Therefore, when applied to a long-distance wavelength multiplexing system, it is insufficient as a four-wave mixing generation suppression technique. Further, when the polarization states of adjacent optical signals are made orthogonal, the polarization states coincide between signal wavelengths that are one wavelength apart, so that there is a problem that the generation efficiency of four-wave mixing is rather increased.

【0009】本発明の目的は、前記した従来技術の問題
点を除去し、波長多重光通信システムにおいて四光波混
合により発生する信号間干渉を抑圧しつつ、所要光信号
帯域を減少させて多重化可能波長数を増大させることが
可能な光波長多重通信装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned problems of the prior art and to reduce the required optical signal band while suppressing the signal-to-signal interference caused by four-wave mixing in a wavelength division multiplexed optical communication system. An object of the present invention is to provide an optical wavelength division multiplexing communication device capable of increasing the number of possible wavelengths.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、互いに異なる複数の波長の信号を光波長
多重して送信する光波長多重通信装置において、ある2
波長間の波長間隔が他の信号を2波以上隔てた別の2波
長間の波長間隔として再度使用され、かつ波長間隔に周
期性がない波長の信号を出力する5台以上の光送信機を
含む光波長多重送信端局を具備し、前記光波長多重送信
端局は、隣接する信号波長の偏波状態が、該光波長多重
送信端局の出力端において直交するように偏波状態を制
御する偏波状態制御手段を具備した点に特徴がある。
To achieve the above object, the present invention provides an optical wavelength division multiplexing communication apparatus for optically multiplexing and transmitting signals of a plurality of different wavelengths.
Five or more optical transmitters that output a signal of a wavelength whose wavelength interval between wavelengths is used again as a wavelength interval between two other wavelengths that separate another signal by two or more wavelengths and that has no periodicity in the wavelength interval. comprising an optical wavelength multiplexing transmitting terminal station including, the optical wavelength multiplexing transmission
The terminal station determines whether the polarization state of adjacent signal wavelengths is
The polarization state is controlled to be orthogonal at the output end of the transmitting terminal.
It is characterized in that it comprises a polarization state control means for controlling .

【0011】[0011]

【0012】[0012]

【作用】四光波混合の発生効率は、四光波混合の発生に
かかわる各信号の光強度に比例し、各信号波長間の波長
間隔に反比例する(参考文献:N. Shibata et. al., El
ectronics Letters, vol.24, pp.1528-1529, 1988 )。
おおざっぱに言って、波長間隔が2倍になると四光波混
合の発生効率は1/4になるので、波長間隔を広げるこ
とは四光波混合の発生抑制に効果がある。5波長以上の
光信号が多重化された光波長多重通信システムにおい
て、ある2波長間の波長間隔を、他の光信号を2波以上
隔てた別の2波長間の波長間隔として再度使用すること
を考えると、同一の波長間隔が2カ所にあることにより
発生する四光波混合は、他の光信号を2波以上隔てるこ
とにより生じる大きな波長間隔により抑圧されるため、
光信号伝送特性に及ぼす劣化を効果的に低減できる。ま
た、波長多重間隔の再使用により波長多重信号帯域を減
少できるので、最大多重化可能波長数を増大できる。
[Effect] The generation efficiency of four-wave mixing is proportional to the light intensity of each signal involved in the generation of four-wave mixing and inversely proportional to the wavelength interval between each signal wavelength (Reference: N. Shibata et. Al., El.
ectronics Letters, vol. 24, pp. 1528-1529, 1988).
Roughly speaking, when the wavelength interval is doubled, the generation efficiency of four-wave mixing is reduced to 1/4. Therefore, increasing the wavelength interval is effective in suppressing the generation of four-wave mixing. In an optical wavelength division multiplexing communication system in which optical signals of five or more wavelengths are multiplexed, a wavelength interval between certain two wavelengths is reused as a wavelength interval between another two wavelengths separating another optical signal by two or more wavelengths. In consideration of the above, four-wave mixing caused by the same wavelength interval in two places is suppressed by a large wavelength interval caused by separating another optical signal by two or more waves,
Deterioration on the optical signal transmission characteristics can be effectively reduced. Further, since the wavelength multiplexing signal band can be reduced by reusing the wavelength multiplexing interval, the maximum multiplexable wavelength number can be increased.

【0013】また、光波長多重送信端局の出力端で隣接
する光信号の偏波状態を直交させると、送信端局に隣接
した伝送用光ファイバの数百kmの部分までは、隣接す
る光信号間の四光波混合発生が抑圧されるため、より一
層の改善を図ることができる。
When the polarization states of the optical signals adjacent to each other at the output end of the optical wavelength division multiplexing transmission terminal are made orthogonal, the transmission optical fiber adjacent to the transmission terminal has a distance of several hundred km. Since the occurrence of four-wave mixing between signals is suppressed, further improvement can be achieved.

【0014】[0014]

【実施例】以下に、図面を参照して、本発明を詳細に説
明する。図2は本発明の一実施例の構成を示すブロック
図である。図において、Tは光波長多重送信端局、Rは
光波長多重受信端局である。該光波長多重送信端局T
は、第1〜8チャンネルの光送信機1〜8と合波器9か
ら構成されている。一方、光波長多重受信端局Rは、第
1〜8チャンネルの光受信機11〜18と分波器19と
から構成されている。なお、本実施例では、光送信機お
よび光受信機をそれぞれ8個設けた例であるが、本発明
はこれに限定されず、それぞれが5個以上であればよ
い。光波長多重送信端局Tと光波長多重受信端局Rとは
伝送用光ファイバ21で結ばれ、該伝送用光ファイバ2
1には所定間隔で光増幅器22が挿入されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 2 is a block diagram showing the configuration of one embodiment of the present invention. In the figure, T is an optical wavelength multiplexing transmitting terminal, and R is an optical wavelength multiplexing receiving terminal. The optical wavelength multiplexing transmitting terminal T
Comprises optical transmitters 1 to 8 of the first to eighth channels and a multiplexer 9. On the other hand, the optical wavelength multiplexing receiving terminal R includes optical receivers 11 to 18 of the first to eighth channels and a duplexer 19. Although the present embodiment is an example in which eight optical transmitters and eight optical receivers are provided, the present invention is not limited to this, and it suffices that each has five or more optical transmitters and optical receivers. The optical wavelength multiplexing transmitting terminal T and the optical wavelength multiplexing receiving terminal R are connected by a transmission optical fiber 21, and the transmission optical fiber 2
1 is provided with optical amplifiers 22 at predetermined intervals.

【0015】図3は光送信機1の一具体例を示すブロッ
ク図である。光送信機1は、光源部1a、外部変調部1
bおよび出力端子1cから構成されている。光源部1a
は、発光部、駆動電流制御部、温度制御部等から構成さ
れている。発光部の駆動に供される電流および温度は、
該駆動電流制御部および温度制御部により、高精度に安
定化される。例えば、駆動電流は10μA、温度は0.
01°C程度に安定化される。光送信機2〜8も同構成
である。
FIG. 3 is a block diagram showing a specific example of the optical transmitter 1. As shown in FIG. The optical transmitter 1 includes a light source 1a, an external modulator 1
b and an output terminal 1c. Light source unit 1a
Is composed of a light emitting section, a drive current control section, a temperature control section, and the like. The current and temperature used to drive the light emitting unit are
The driving current control unit and the temperature control unit stabilize with high accuracy. For example, the driving current is 10 μA, and the temperature is 0.1 μA.
Stabilized to about 01 ° C. The optical transmitters 2 to 8 have the same configuration.

【0016】本実施例では、光送信機1〜8から出力さ
れる信号光の波長は、ある2波長間の波長間隔が他の信
号を2波以上隔てた別の2波長間の波長間隔として再度
使用され、かつ波長間隔に周期性がないように決定され
ている。例えば、図1に示されているように決定されて
いる。すなわち、光送信機1〜8(第1〜8チャンネ
ル)から出力される信号光の波長は、それぞれ、155
4.9、1555.7、1556.6、1557.7、
1558.5、1559.5、1560.7、および1
561.6nmに決定されている。
In this embodiment, the wavelengths of the signal lights output from the optical transmitters 1 to 8 are such that the wavelength interval between certain two wavelengths is the wavelength interval between other two wavelengths separating another signal by two or more. It has been determined that it will be used again and that the wavelength spacing will not be periodic. For example, it is determined as shown in FIG. That is, the wavelengths of the signal lights output from the optical transmitters 1 to 8 (first to eighth channels) are 155, respectively.
4.9, 1555.7, 1556.6, 1557.7,
1558.5, 1559.5, 1560.7, and 1
It has been determined to be 561.6 nm.

【0017】図1から明らかなように、第1、第2チャ
ンネル間および該第2チャンネルから2チャンネル離れ
た第4、第5チャンネル間の波長間隔は0.8nmに取
られ、第2、第3チャンネル間および該第3チャンネル
から4チャンネル離れた第7、第8チャンネル間の波長
間隔は0.9nmに取られている。
As apparent from FIG. 1, the wavelength spacing between the first and second channels and between the fourth and fifth channels two channels away from the second channel is 0.8 nm, The wavelength intervals between the three channels and between the seventh and eighth channels four channels away from the third channel are set to 0.9 nm.

【0018】前記光送信機1〜8(図2参照)から出力
された前記した各波長の信号光は、合波器9で合波さ
れ、伝送用光ファイバ21を通って、光波長多重受信端
局Rに伝送される。信号光は、伝送用光ファイバ21中
での減衰と、光増幅器22による増幅とを繰り返しなが
ら伝送される。光波長多重受信端局Rは信号光を受信す
ると、分波器19で分波し、それぞれの信号光を光受信
機11〜18に送る。
The signal lights of the respective wavelengths output from the optical transmitters 1 to 8 (see FIG. 2) are multiplexed by a multiplexer 9, passed through a transmission optical fiber 21, and received by an optical wavelength multiplex receiver. It is transmitted to the terminal station R. The signal light is transmitted while repeating the attenuation in the transmission optical fiber 21 and the amplification by the optical amplifier 22. Upon receiving the signal light, the optical wavelength division multiplexing receiving terminal R splits the signal light by the demultiplexer 19 and sends each signal light to the optical receivers 11 to 18.

【0019】さて、本実施例では、光送信機1〜8から
出力される信号光の波長は、図1で説明した値にされて
おり、かつ同一の波長間隔が2カ所にあることにより発
生する四光波混合は、他の光信号を2波以上隔てること
により生じる大きな波長間隔により抑圧されるため、光
信号伝送特性に及ぼす劣化を効果的に低減できる。ま
た、図10と図1とを比較すれば明らかなように、本実
施例の第1〜第8チャンネルの光信号帯域は6.7nm
(=1561.6−1554.9)となり、図10の7
nmより狭くすることができ、光増幅器22の増幅帯域
を有効に使用することが可能となる。換言すれば、最大
多重化可能波長数を増大することができる。
In the present embodiment, the wavelengths of the signal lights output from the optical transmitters 1 to 8 are set to the values described with reference to FIG. 1 and the same wavelength interval occurs at two places. Since the four-wave mixing is suppressed by a large wavelength interval generated by separating two or more other optical signals, deterioration on optical signal transmission characteristics can be effectively reduced. As is apparent from a comparison between FIG. 10 and FIG. 1, the optical signal band of the first to eighth channels of this embodiment is 6.7 nm.
(= 1561.6-1554.9), which is 7 in FIG.
nm, and the amplification band of the optical amplifier 22 can be used effectively. In other words, the maximum multiplexable wavelength number can be increased.

【0020】次に、本発明の第2実施例を説明する。図
4は、本実施例の光波長多重送信端局Tの構成を示して
いる。なお他の構成は図2と同一または同等であるの
で、図示を省略する。図において、31は奇数チャンネ
ルの合波器、32は偶数チャンネルの合波器、33は偏
波多重合波器である。奇数チャンネルの合波器31は、
第1、第3、第5および第7チャンネルの光送信機1、
3、5および7から出力された信号光を合波する。ま
た、偶数チャンネルの合波器32は、第2、第4、第6
および第8チャンネルの光送信機2、4、6および8か
ら出力された信号光を合波する。偏波多重合波器33に
よって得られる各チャンネルの信号光の偏波状態配置
は、図5のようになる。すなわち、奇数チャンネルの信
号光の偏波状態と偶数チャンネルの信号光の偏波状態と
は、互いに直交することになる。
Next, a second embodiment of the present invention will be described. FIG. 4 shows the configuration of the optical wavelength multiplexing transmitting terminal T of the present embodiment. Other configurations are the same as or equivalent to those in FIG. In the figure, 31 is a multiplexer for odd channels, 32 is a multiplexer for even channels, and 33 is a multi-polarizer. The odd-numbered channel combiner 31
Optical transmitters 1 of the first, third, fifth and seventh channels,
The signal lights output from 3, 5, and 7 are multiplexed. Further, the multiplexers 32 of the even-numbered channels include the second, fourth, and sixth multiplexers.
And multiplex the signal lights output from the optical transmitters 2, 4, 6 and 8 of the eighth channel. FIG. 5 shows the polarization state arrangement of the signal light of each channel obtained by the polarization multiplexer 33. That is, the polarization state of the odd-numbered channel signal light and the polarization state of the even-numbered signal light are orthogonal to each other.

【0021】次に、本実施例の動作を説明する。前記第
1〜8チャンネルの光送信機1〜8のそれぞれから出力
される信号光の波長は、第1実施例と同様に、ある2波
長間の波長間隔が他の信号を2波以上隔てた別の2波長
間の波長間隔として再度使用され、かつ波長間隔に周期
性がないように決定されている。奇数チャンネルの光送
信機1、3、5および7から出力された信号光は合波器
31で合波され、偶数チャンネルの光送信機2、4、6
および8から出力された信号光は合波器32で合波さ
れ、偏波多重合波器33に送られる。偏波多重合波器3
3は、奇数チャンネルの偏波状態と偶数チャンネルの偏
波状態が互いに直交した状態を作り出して、伝送用光フ
ァイバ21に出力する。この結果、送信端局において
は、隣接するチャンネルは偏波状態が互いに直交してい
ることとなる。
Next, the operation of this embodiment will be described. As in the first embodiment, the wavelength of the signal light output from each of the optical transmitters 1 to 8 of the first to eighth channels is such that the wavelength interval between certain two wavelengths is two or more waves apart from other signals. It is used again as a wavelength interval between another two wavelengths, and is determined so that the wavelength interval has no periodicity. The signal lights output from the odd-numbered channel optical transmitters 1, 3, 5 and 7 are multiplexed by the multiplexer 31, and the even-numbered channel optical transmitters 2, 4, and 6 are combined.
The signal lights output from the multiplexors 8 are multiplexed by the multiplexer 32 and sent to the polarization multiplexer 33. Polarized multi-wave device 3
3 generates a state in which the polarization state of the odd-numbered channel and the polarization state of the even-numbered channel are orthogonal to each other, and outputs the state to the transmission optical fiber 21. As a result, in the transmitting terminal station, the adjacent channels have orthogonal polarization states.

【0022】一般に、四光波混合は偏波状態が異なる信
号光間では発生しないので、本実施例によれば、隣接チ
ャンネル間で発生する四光波混合を抑制することができ
る。また、各チャンネルの信号波長を、前記図1のよう
に決定すると、偏波状態が一致している偶数チャンネル
どうし、奇数チャンネルどうしで発生する四光波混合は
他のチャンネルには干渉を引き起こさないので、1チャ
ンネルおきで発生する四光波混合の影響も抑圧できる。
In general, four-wave mixing does not occur between signal lights having different polarization states. Therefore, according to the present embodiment, four-wave mixing that occurs between adjacent channels can be suppressed. When the signal wavelength of each channel is determined as shown in FIG. 1, four-wave mixing that occurs between the even-numbered channels and the odd-numbered channels whose polarization states match does not cause interference in other channels. In addition, the effect of four-wave mixing generated every other channel can be suppressed.

【0023】これに対して、従来装置のように、波長多
重間隔を等間隔にすると(図6参照)、偏波状態が一致
している偶数チャンネルどうし、奇数チャンネルどうし
で発生する四光波混合が他のチャンネルに干渉を引き起
こすので特性が劣化する。なお、信号偏波状態の直交性
が保たれる距離は、伝送用光ファイバの複屈折性の大き
さと波長多重間隔により決まる。
On the other hand, if the wavelength multiplexing intervals are made equal as in the conventional apparatus (see FIG. 6), four-wave mixing that occurs between the even-numbered channels and the odd-numbered channels whose polarization states match each other is not possible. The characteristic is degraded because it causes interference to other channels. The distance at which the orthogonality of the signal polarization state is maintained is determined by the birefringence of the transmission optical fiber and the wavelength multiplexing interval.

【0024】図1のような信号波長配置および図6のよ
うな等間隔配置で実際に実験を行ない、本実施例の効果
を確認した。伝送用光ファイバ21は1区間当たり66
km、光増幅器は15台使用し、1000kmの実験用
伝送路を構築した。信号波長を設定できる光帯域幅は、
光増幅器の多中継による帯域減少により制限されるた
め、本実施例では最大でも約9nmであったため、図1
および図6のような信号波長配置となった。
Experiments were actually performed with the signal wavelength arrangement as shown in FIG. 1 and the equidistant arrangement as shown in FIG. 6 to confirm the effect of this embodiment. The transmission optical fiber 21 is 66 per section.
km, 15 optical amplifiers were used, and a 1000 km experimental transmission line was constructed. The optical bandwidth for setting the signal wavelength is
In this embodiment, since the band is limited by the band reduction due to the multi-repeat of the optical amplifier, the maximum is about 9 nm.
And the signal wavelength arrangement as shown in FIG.

【0025】図6のような信号配置を用いた場合には、
たとえ光受信機に−15dBmというような十分なパワ
ーを入れても、1000km伝送後において最も特性が
良好であったチャンネルでも10-6程度の符号誤り率し
か達成できなかった。これに対して、図1の信号配置を
用いた場合には、図7に示すような符号誤り率特性が得
られた。この図を見てわかるように、1000km伝送
後においてもすべてのチャンネルで10-9以下の良好な
符号誤り率が、−30〜−25dBmの光受信機入力パ
ワーという相対的に微弱な入力で達成され、本実施例の
効果が著しいことが確認された。
When a signal arrangement as shown in FIG. 6 is used,
Even if a sufficient power such as -15 dBm is applied to the optical receiver, only a code error rate of about 10.sup.-6 can be achieved in the channel having the best characteristics after the transmission of 1000 km. On the other hand, when the signal arrangement of FIG. 1 was used, the bit error rate characteristics as shown in FIG. 7 were obtained. As can be seen from the figure, even after 1000 km transmission, a good bit error rate of 10 -9 or less is achieved with a relatively weak input of an optical receiver input power of -30 to -25 dBm in all channels. It was confirmed that the effect of this example was remarkable.

【0026】次に、本発明の第3実施例を説明する。図
8は、本実施例の光波長多重送信端局Tの構成を示して
いる。なお他の構成は図2と同一または同等であるの
で、図示を省略する。図において、41〜48は第1〜
第8チャンネル1〜8の偏波状態制御器、49は第1〜
8チャンネルの合波器、21は伝送用光ファイバであ
り、他の符号は図2と同一または同等物を示す。前記偏
波状態制御器41〜48は、第1〜第8チャンネル1〜
8のどの2つの信号波長を選んでもその偏波状態が一致
しないように設定する。
Next, a third embodiment of the present invention will be described. FIG. 8 shows the configuration of the optical wavelength multiplexing transmitting terminal T of the present embodiment. Other configurations are the same as or equivalent to those in FIG. In the figure, 41 to 48 are first to fourth.
The polarization state controllers of the eighth channels 1 to 8 are 49
An 8-channel multiplexer, 21 is a transmission optical fiber, and the other reference numerals are the same as or equivalent to those in FIG. The polarization state controllers 41 to 48 include first to eighth channels 1 to
No matter which two signal wavelengths are selected, setting is made such that their polarization states do not match.

【0027】図9に本実施例の各チャンネルの偏波状態
配置の一例を示す。図9のような信号偏波状態配置を行
なうと、第2実施例とは違い、四光波混合はどの信号波
長間にも発生する。しかし、本実施例によれば、第2実
施例の場合に奇数チャンネルどうし、偶数チャンネルど
うしで発生していた四光波混合ほど大きな四光波混合は
発生しない。従って、全てのチャンネルで特性が平均化
され、システム全体としてみた場合には特性改善が図ら
れる。
FIG. 9 shows an example of the polarization state arrangement of each channel in this embodiment. When the signal polarization state arrangement as shown in FIG. 9 is performed, unlike the second embodiment, four-wave mixing occurs between any signal wavelengths. However, according to this embodiment, four-wave mixing does not occur as much as four-wave mixing that occurs between odd channels and even channels in the case of the second embodiment. Therefore, the characteristics are averaged in all the channels, and the characteristics are improved in the whole system.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
によれば、複数の光送信機は、ある2波長間の波長間隔
が他の信号を2波以上隔てた別の2波長間の波長間隔と
して再度使用され、かつ波長間隔に周期性がない波長の
信号を出力するようにしたので、光信号伝送特性の劣化
を効果的に低減できると共に、最大多重化可能波長数を
増大することができる。
As is apparent from the above description, according to the present invention, a plurality of optical transmitters are arranged such that the wavelength interval between certain two wavelengths is between two other wavelengths separating another signal by two or more waves. Since a signal of a wavelength that is used again as a wavelength interval and has no periodicity in the wavelength interval is output, it is possible to effectively reduce deterioration of optical signal transmission characteristics and increase the maximum number of multiplexable wavelengths. Can be.

【0029】また、光波長多重送信端局の出力端で隣接
する光信号の偏波状態を直交させると、送信端局に隣接
した伝送用光ファイバの数百kmの部分までは、隣接す
る光信号間の四光波混合発生が抑圧されるため、光通信
システムの伝送特性をより一層改善することができる。
Further, when the polarization states of the adjacent optical signals are made orthogonal at the output end of the optical wavelength division multiplexing transmission terminal, the transmission of the optical fiber adjacent to the transmission terminal at a distance of several hundred km can be achieved. Since the generation of four-wave mixing between signals is suppressed, the transmission characteristics of the optical communication system can be further improved.

【0030】また、複数の光送信機が、いかなる信号波
長を2波抜き出しても、該二つの信号の偏波状態が、該
光波長多重送信端局の出力端において一致する場合がな
いように偏波状態を制御するようにしたので、全てのチ
ャンネルで伝送特性が平均化され、システム全体として
みた場合には光通信システムの伝送特性を改善すること
ができる。
Even if a plurality of optical transmitters extract any two signal wavelengths, there is no case where the polarization states of the two signals coincide at the output end of the optical wavelength division multiplexing transmission terminal. Since the polarization state is controlled, the transmission characteristics are averaged in all the channels, so that the transmission characteristics of the optical communication system can be improved when viewed as a whole system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の光波長多重信号配置の例
を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of an optical wavelength multiplex signal arrangement according to an embodiment of the present invention.

【図2】 本発明の第1実施例のシステム構成を示すブ
ロック図である。
FIG. 2 is a block diagram showing a system configuration of a first embodiment of the present invention.

【図3】 本実施例の光送信機の一具体例の構成を示す
ブロック図である。
FIG. 3 is a block diagram illustrating a configuration of a specific example of an optical transmitter according to the present embodiment.

【図4】 本発明の第2実施例の光波長多重送信端局の
構成を示すブロック図である。
FIG. 4 is a block diagram showing a configuration of an optical wavelength division multiplexing transmitting terminal according to a second embodiment of the present invention.

【図5】 第2実施例によって得られる光信号の偏波状
態を説明する説明図である。
FIG. 5 is an explanatory diagram illustrating a polarization state of an optical signal obtained by a second embodiment.

【図6】 従来の光波長多重信号配置の例の説明図であ
る。
FIG. 6 is an explanatory diagram of an example of a conventional optical wavelength multiplex signal arrangement.

【図7】 第2実施例に基づく実験結果を説明する、各
チャンネルの符号誤り率特性測定図である。
FIG. 7 is a diagram illustrating the measurement of the bit error rate characteristics of each channel for explaining the experimental result based on the second embodiment.

【図8】 本発明の第3実施例の光波長多重送信端局の
構成を示すブロック図である。
FIG. 8 is a block diagram showing a configuration of an optical wavelength division multiplexing transmitting terminal according to a third embodiment of the present invention.

【図9】 第3実施例によって得られる光信号の偏波状
態を説明する説明図である。
FIG. 9 is an explanatory diagram illustrating a polarization state of an optical signal obtained by a third embodiment.

【図10】 従来の光波長多重信号配置の例の説明図で
ある。
FIG. 10 is an explanatory diagram of an example of a conventional optical wavelength multiplex signal arrangement.

【符号の説明】[Explanation of symbols]

T…光波長多重送信端局、R…光波長多重受信端局、1
〜8…第1〜8チャンネルの光送信機、9…合波器、1
1〜18…第1〜8チャンネルの光受信機、19…分波
器、21…伝送用光ファイバ、22…光増幅器、31、
32…合波器、33…偏波多重合波器、41〜48…偏
波状態制御器、49合波器。
T: optical wavelength multiplexing transmitting terminal, R: optical wavelength multiplexing receiving terminal, 1
8 to 1 to 8 channel optical transmitters 9 to 1
1 to 18: first to eighth channel optical receivers, 19: duplexer, 21: transmission optical fiber, 22: optical amplifier, 31,
Reference numeral 32 denotes a multiplexer, 33 denotes a polarization-multiplexed multiplexer, 41 to 48: a polarization state controller, and 49 a multiplexer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 周 東京都新宿区西新宿2丁目3番2号 国 際電信電話株式会社内 (72)発明者 秋葉 重幸 東京都新宿区西新宿2丁目3番2号 国 際電信電話株式会社内 (56)参考文献 特開 平8−171109(JP,A) 特開 平7−264166(JP,A) Kazuhiro Oda,et a l.,10−channel x 10−G bit/s optical FDM transmission over a 500−km dispersion −shifted fiber emp loying une,OFC’95, 1995年,p.27−29,TuH1 (58)調査した分野(Int.Cl.7,DB名) H04J 14/00 - 14/08 H04B 10/00 - 10/28 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shu Yamamoto 2-3-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo International Telegraph and Telephone Corporation (72) Inventor Shigeyuki Akiba 2-3-Nishi Shinjuku, Shinjuku-ku, Tokyo No. 2 International Telegraph and Telephone Corporation (56) References JP-A-8-171109 (JP, A) JP-A-7-264166 (JP, A) Kazuhiro Oda, et al. , 10-channel x 10-G bit / s optical FDM transmission over a 500-km dispersion-shifted fiber employingune, OFC'95, 1995, p. 27-29, TuH1 (58) Fields investigated (Int. Cl. 7 , DB name) H04J 14/00-14/08 H04B 10/00-10/28 JICST file (JOIS)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 互いに異なる複数の波長の信号を光波長
多重して送信する光波長多重通信装置において、 ある2波長間の波長間隔が他の信号を2波以上隔てた別
の2波長間の波長間隔として再度使用され、かつ波長間
隔に周期性がない波長の信号を出力する5台以上の光送
信機を含む光波長多重送信端局を具備し、前記光波長多重送信端局は、隣接する信号波長の偏波状
態が、該光波長多重送信端局の出力端において直交する
ように偏波状態を制御する偏波状態制御手段を具備した
ことを特徴とする光波長多重通信装置。
1. An optical wavelength division multiplexing communication apparatus for transmitting signals of a plurality of wavelengths different from each other by optical wavelength division multiplexing, wherein a wavelength interval between certain two wavelengths is different from another wavelength between two other wavelengths. It used again as the wavelength intervals, and includes an optical wavelength multiplexing transmitting terminal station comprising five or more optical transmitters for outputting a wavelength signal of no periodicity in the wavelength interval, wherein the optical wavelength multiplexing transmitting terminal is adjacent Polarization of the signal wavelength
Are orthogonal at the output end of the WDM transmitting end station
An optical wavelength division multiplexing apparatus comprising a polarization state control means for controlling the polarization state as described above .
【請求項2】 請求項記載の光波長多重通信装置にお
いて、 前記偏波状態制御手段は、前記光波長多重送信端局の奇
数チャンネルの光送信機の出力信号を合波する第1の合
波器と、偶数チャンネルの光送信機の出力信号を合波す
る第2の合波器と、前記第1および第2の合波器からの
信号の偏波状態が、互いに直交するように偏波状態を制
御する偏波多重合波器とを具備したことを特徴とする光
波長多重通信装置。
2. The optical wavelength multiplex communication apparatus according to claim 1 , wherein said polarization state control means multiplexes an output signal of an optical transmitter of an odd channel of said optical wavelength multiplex transmission terminal. , A second multiplexer for multiplexing the output signals of the even-numbered channel optical transmitters, and polarization states of the signals from the first and second multiplexers such that the polarization states are orthogonal to each other. An optical wavelength division multiplexing communication device comprising: a polarization multi-wavelength wave controller for controlling a wave state.
【請求項3】 請求項1記載の光波長多重通信装置にお
いて、 前記光波長多重送信端局は、いかなる信号波長を2波ぬ
きだしても、該二つの信号の偏波状態が、該光波長多重
送信端局の出力端において一致する場合がないように偏
波状態を制御する偏波状態制御手段を具備したことを特
徴とする光波長多重通信装置。
3. The optical wavelength division multiplexing communication device according to claim 1, wherein the optical wavelength division multiplexing transmission terminal sets the polarization state of the two signals to be equal to the optical wavelength even if two signal wavelengths are removed. An optical wavelength division multiplexing communication apparatus comprising: a polarization state control means for controlling a polarization state so that no coincidence occurs at an output terminal of a multiplex transmission terminal.
【請求項4】 請求項記載の光波長多重通信装置にお
いて、 前記偏波状態制御手段は、各チャンネルの光送信機の出
力信号を所定角度ずつ偏波する複数の偏波状態制御器
と、各偏波状態制御器から出力された信号を合波する合
波器とを具備したことを特徴とする光波長多重通信装
置。
4. The optical wavelength division multiplexing communication device according to claim 3 , wherein the polarization state control means comprises: a plurality of polarization state controllers for polarizing output signals of the optical transmitter of each channel by a predetermined angle; An optical wavelength multiplexing communication device, comprising: a multiplexer for multiplexing signals output from the respective polarization state controllers.
JP08342995A 1995-03-15 1995-03-15 Optical wavelength division multiplexing communication equipment Expired - Fee Related JP3323690B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08342995A JP3323690B2 (en) 1995-03-15 1995-03-15 Optical wavelength division multiplexing communication equipment
US08/542,058 US5589969A (en) 1995-03-15 1995-10-12 Wavelength division multiplexed optical fiber transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08342995A JP3323690B2 (en) 1995-03-15 1995-03-15 Optical wavelength division multiplexing communication equipment

Publications (2)

Publication Number Publication Date
JPH08256128A JPH08256128A (en) 1996-10-01
JP3323690B2 true JP3323690B2 (en) 2002-09-09

Family

ID=13802205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08342995A Expired - Fee Related JP3323690B2 (en) 1995-03-15 1995-03-15 Optical wavelength division multiplexing communication equipment

Country Status (2)

Country Link
US (1) US5589969A (en)
JP (1) JP3323690B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930824B1 (en) 1993-08-10 2005-08-16 Fujitsu Limited Optical amplifier which compensates for dispersion of a WDM optical signal
JP3396270B2 (en) 1993-08-10 2003-04-14 富士通株式会社 Optical dispersion compensation method
JP2851247B2 (en) * 1995-01-17 1999-01-27 古河電気工業株式会社 Optical transmission system
US5784184A (en) * 1995-05-11 1998-07-21 Ciena Corporation WDM Optical communication systems with remodulators and remodulating channel selectors
GB2302484B (en) * 1995-06-17 1999-08-04 Northern Telecom Ltd Optical tdm transmission system
JPH0946318A (en) * 1995-08-01 1997-02-14 Fujitsu Ltd Wavelength multiplexed optical transmission system and optical transmitter to be used for same
JPH09181705A (en) * 1995-12-25 1997-07-11 Fujitsu Ltd Wavelength multiplex optical communication method using rz signal, wavelength multiplex optical transmission equipment using rz signal and wavelength multiplex optical communications system using rz signal
JPH09247091A (en) * 1996-03-08 1997-09-19 Fujitsu Ltd Optical transmitter and optical transmission system
JP3822932B2 (en) * 1996-04-11 2006-09-20 株式会社日立コミュニケーションテクノロジー Optical amplifier and method, and optical transmission system having optical amplifier
JPH1084333A (en) * 1996-09-10 1998-03-31 Fujitsu Ltd Wavelength multiplex optical transmitter and wavelength multiplex demultiplex optical transmission/ reception system
US5938309A (en) * 1997-03-18 1999-08-17 Ciena Corporation Bit-rate transparent WDM optical communication system with remodulators
US6349103B1 (en) 1997-05-07 2002-02-19 Samsung Electronics Co., Ltd. Cold-start wavelength-division-multiplexed optical transmission system
US5915052A (en) * 1997-06-30 1999-06-22 Uniphase Telecommunications Products, Inc. Loop status monitor for determining the amplitude of the signal components of a multi-wavelength optical beam
GB2327546A (en) * 1997-07-18 1999-01-27 Northern Telecom Ltd Optical frequency channel assignment plan and filtering technique to support it
US6204944B1 (en) * 1997-07-18 2001-03-20 Nippon Telegraph And Telephone Corporation All-optical time-division demultiplexing circuit and all-optical TDM-WDM conversion circuit
US6496288B2 (en) * 1997-10-17 2002-12-17 Fujitsu Limited Wavelength multiplexing transmission apparatus and wavelength demultiplexing reception apparatus
US6038357A (en) * 1998-02-03 2000-03-14 E-Tek Dynamics, Inc PDM-WDM for fiberoptic communication networks
US6118563A (en) * 1998-03-25 2000-09-12 Corning Incorporated Methods and apparatus for reducing four-wave mixing
US6545780B1 (en) 1998-04-22 2003-04-08 Nippon Telegraph And Telephone Corporation Wavelength allocation method, a transmission equipment and receiving equipment using this method and a wavelength division multiplex transmission system
US6236480B1 (en) * 1998-05-01 2001-05-22 Dogan A. Atlas System and method for reducing Raman cross-talk in a DWDM transport system
US6381047B1 (en) * 1998-05-06 2002-04-30 At&T Corp. Passive optical network using a fabry-perot laser as a multiwavelength source
US6100831A (en) * 1998-06-30 2000-08-08 The United States Of America As Represented By The Secretary Of The Navy Optoelectronic analog-to-digital converter using wavelength division multiplexing
DE19852332A1 (en) * 1998-11-13 2000-05-31 Alcatel Sa Transmission module for the transmission of optical signals
US6940624B1 (en) 1998-11-23 2005-09-06 Ciena Corporation Wavelength division multiplexed optical communication system having reduced non-linear effects
US6233387B1 (en) 1998-11-30 2001-05-15 Corning Incorporated Broadband pulse-reshaping optical fiber
IL128557A (en) * 1999-02-16 2003-04-10 Eci Telecom Ltd Wave division multiplexing communications system
JP2001085800A (en) * 1999-09-09 2001-03-30 Hitachi Ltd Semiconductor optical amplifier module, and, optical communication system
US6690886B1 (en) * 1999-12-22 2004-02-10 Nortel Networks Limited Suppression of four-wave mixing in ultra dense WDM optical communication systems through optical fibre dispersion map design
US7209660B1 (en) 1999-12-29 2007-04-24 Forster Energy Llc Optical communications using heterodyne detection
US7447436B2 (en) * 1999-12-29 2008-11-04 Forster Energy Llc Optical communications using multiplexed single sideband transmission and heterodyne detection
US7146103B2 (en) * 1999-12-29 2006-12-05 Forster Energy Llc Optical communications using multiplexed single sideband transmission and heterodyne detection
JP2002158384A (en) * 2000-09-07 2002-05-31 Sumitomo Electric Ind Ltd Optical fiber for amplification, optical fiber amplifier, optical transmitter, and optical communication system
JP3824885B2 (en) 2001-05-28 2006-09-20 富士通株式会社 Polarization corrector and wavelength division multiplexing apparatus using the same
EP1454436B1 (en) * 2001-08-16 2007-02-21 Telefonaktiebolaget LM Ericsson (publ) Optical amplifier
GB0122623D0 (en) * 2001-09-19 2001-11-07 Marconi Comm Ltd Improvements in or relating to signal transmission
JP3985571B2 (en) 2002-04-08 2007-10-03 住友電気工業株式会社 Optical demultiplexer and optical transmission system
JP2004086143A (en) * 2002-06-28 2004-03-18 Sumitomo Electric Ind Ltd Light transmission system
CA2562790C (en) * 2004-04-15 2012-10-02 Infinera Corporation Coolerless and floating wavelength grid photonic integrated circuits (pics) for wdm transmission networks
JP5130702B2 (en) * 2006-12-05 2013-01-30 富士通株式会社 Polarization orthogonal controller
JP7176213B2 (en) 2018-03-28 2022-11-22 富士通株式会社 Transmission device and transmission method
CN112399283B (en) * 2019-08-16 2021-10-26 中国移动通信有限公司研究院 Wavelength division multiplexing system, local side device and far-end device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0385834A (en) * 1989-08-30 1991-04-11 Hitachi Ltd Optical frequency multiplexer and optical frequency multiplex transmitter
GB2281670B (en) * 1993-09-01 1998-01-28 Northern Telecom Ltd WDM optical communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kazuhiro Oda,et al.,10−channel x 10−Gbit/s optical FDM transmission over a 500−km dispersion−shifted fiber employing une,OFC’95,1995年,p.27−29,TuH1

Also Published As

Publication number Publication date
JPH08256128A (en) 1996-10-01
US5589969A (en) 1996-12-31

Similar Documents

Publication Publication Date Title
JP3323690B2 (en) Optical wavelength division multiplexing communication equipment
CA2323744C (en) Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
US7831118B2 (en) Coarse wavelength division multiplexing optical transmission system, and coarse wavelength division multiplexing optical transmission method
EP0908034B1 (en) Optical transmission systems using optical amplifiers and wavelength division multiplexing
US5841557A (en) Method and apparatus for scrambling the polarization of signal lights forming a wavelength division multiplexed signal light
JP3995781B2 (en) Optical branching / inserting device and optical branching device using wavelength selective filter
EP0938197A2 (en) High capacity chirped-pulse wavelength-division multiplexed communication method and apparatus
US6771854B2 (en) Optical transmission system and optical coupler/branching filter
US6941075B2 (en) Wavelength division multiplexing optical transmission method and system
EP0863630A2 (en) Method and apparatus for transmitting a wavelength division multiplexed (WDM) signal through an optical transmission line to reduce the effects of stimulated brillouin scattering (SBS)
JPH11103286A (en) Wavelength multiplexed light transmitting device
US6411413B1 (en) Method and apparatus for performing dispersion compensation without a change in polarization and a transmitter incorporating same
JP3769172B2 (en) Optical wavelength division multiplexing system
JP2001136125A (en) Optical transmission system
WO2022152115A1 (en) Device and method for generating dummy light signal, and reconfigurable optical add-drop multiplexer
WO2003029861A1 (en) Improving optical signal to noise ratio system
JP3533307B2 (en) Optical WDM transmission equipment
JP3566396B2 (en) Optical transmission equipment
US6825973B1 (en) Reducing leading edge transients using co-propagating pumps
JP3575442B2 (en) WDM optical transmitter
US6363181B1 (en) Method and apparatus for wavelength-division multiplexing
JP2001094535A (en) Optical transmission system
JP2004282735A (en) Metro optical communication network of wavelength division multiplexing system
JPH08237222A (en) Optical transmission system
JPH04113330A (en) Multichannel optical simultaneous amplifying method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees