JP3323046B2 - Manufacturing method of composite ceramic material - Google Patents

Manufacturing method of composite ceramic material

Info

Publication number
JP3323046B2
JP3323046B2 JP34230195A JP34230195A JP3323046B2 JP 3323046 B2 JP3323046 B2 JP 3323046B2 JP 34230195 A JP34230195 A JP 34230195A JP 34230195 A JP34230195 A JP 34230195A JP 3323046 B2 JP3323046 B2 JP 3323046B2
Authority
JP
Japan
Prior art keywords
solid solution
precipitation
treatment
phase
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34230195A
Other languages
Japanese (ja)
Other versions
JPH09183669A (en
Inventor
雨叢 王
博 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34230195A priority Critical patent/JP3323046B2/en
Publication of JPH09183669A publication Critical patent/JPH09183669A/en
Application granted granted Critical
Publication of JP3323046B2 publication Critical patent/JP3323046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス固溶
体から2種以上の結晶相を生成する複合材料の製造方法
に関するもので,特に、析出結晶相が微細且つ均一に分
散した高強度、高靭性セラミックス複合材料の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite material in which two or more crystal phases are formed from a ceramic solid solution, and more particularly to a high-strength, high-toughness ceramic in which precipitated crystal phases are finely and uniformly dispersed. The present invention relates to a method for producing a composite material.

【0002】[0002]

【従来の技術】セラミックス材料は、絶縁性、誘電性、
耐熱性、強度、靭性等の優れた特性を有し、従来から、
機能材料、構造材料として広く利用されている。また、
材料の特性を一層向上させるために、複数のセラミック
スの複合化、例えば、数十nm程度の分散相が母相中に
分散したナノコンポジットなどが検討されてきた。
2. Description of the Related Art Ceramic materials have insulating properties, dielectric properties,
Has excellent properties such as heat resistance, strength, and toughness.
Widely used as functional and structural materials. Also,
In order to further improve the properties of the material, a composite of a plurality of ceramics, for example, a nanocomposite in which a dispersed phase of about several tens of nm is dispersed in a matrix has been studied.

【0003】このようなセラミックスの複合化方法の1
つに、セラミック固溶体を作製し、この固溶体から2種
以上の結晶相を生成させた、いわゆる析出処理法が知ら
れているが、かかる固溶析出処理法は、分散相の微細化
および均一分布の組織形成に特に有効であるとして注目
されている。例えば、セラミック固溶体を所定の条件下
で熱処理することにより特定の主結晶相中に主結晶相と
は異なる他の結晶相を析出させる,いわゆる固溶析出処
理法により,MgAl2 4 結晶中にAl2 3 結晶相
を析出分散させたもの,NiO結晶中にNiFe2 4
結晶相を析出分散させたもの,Al2 3 結晶相中にT
iO2 結晶相を析出分散させたもの,およびSnO2
TiO2 系のスピノダル分解反応などが知られている。
[0003] One of the composite methods of such ceramics is as follows.
Finally, a so-called precipitation treatment method in which a ceramic solid solution is produced and two or more types of crystal phases are generated from this solid solution is known. Such a solid solution precipitation treatment method involves the refinement and uniform distribution of a dispersed phase. Has attracted attention as being particularly effective in the formation of tissue. For example, the precipitating different other crystal phases as a main crystal phase in a particular main crystalline phase by heat treating a ceramic solid solution under predetermined conditions, so-called solid solution precipitation treatment method, the MgAl 2 O 4 crystal Al 2 O 3 crystal phase precipitated and dispersed, NiFe 2 O 4
Crystal phase dispersed and dispersed, Al 2 O 3
iO 2 crystal phase dispersed and dispersed, and SnO 2
A TiO 2 -based spinodal decomposition reaction and the like are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た固溶析出処理法により、複合セラミック材料を作製す
る場合,その複合材料の大きさが直径20mm以下のセ
ラミックス複合体を作製するような場合は特に支障はな
いが、その大きさが20mmを越えるようなサイズの大
きい材料を作製する場合では、加熱処理時の材料内外の
温度分布差により材料の中心部には析出相が得られにく
く、また表面部の析出相が粗大化になるなど組織の不均
一性が生じてしまい、期待した材料特性、例えば、強
度、破壊靭性あるいは機能的特性が得られないという問
題があった。
However, when a composite ceramic material is produced by the solid solution precipitation method described above, especially when a ceramic composite having a diameter of 20 mm or less is produced. Although there is no problem, when producing a large-sized material having a size exceeding 20 mm, it is difficult to obtain a precipitated phase at the center of the material due to a difference in temperature distribution between the inside and outside of the material during the heat treatment. There is a problem that unevenness of the structure occurs, for example, the precipitation phase of the portion becomes coarse, and the expected material properties, for example, strength, fracture toughness or functional properties cannot be obtained.

【0005】特に、加熱雰囲気により固溶量が変化する
ことを利用した析出過程では、焼結体の表面部から中心
部へ、あるいは中心部から表面部へのイオン拡散が伴う
ため、材料のサイズが大きくなると、中心部まで析出し
た組織を得るためには数10時間以上の熱処理が必要と
なる場合もあるため、長時間の熱処理により析出組織の
内外差が更に大きくなるだけでなく、材料作製のコスト
が高くなるという問題があった。熱処理温度を上げるこ
とにより、一部の材料系で析出を促進できるが、析出条
件から逸脱して析出量が減少したり、析出相が粗大に成
長してしまい微細な析出組織が得られないという問題が
あった。
[0005] In particular, in the precipitation process utilizing the fact that the amount of solid solution changes depending on the heating atmosphere, ion diffusion from the surface to the center or from the center to the surface of the sintered body accompanies. When the heat treatment becomes large, heat treatment for several tens of hours or more may be required to obtain a structure precipitated to the central part. However, there was a problem that the cost was high. By increasing the heat treatment temperature, precipitation can be promoted in some material systems, but the precipitation amount deviates from the precipitation conditions, or the precipitation phase grows coarsely and a fine precipitation structure cannot be obtained. There was a problem.

【0006】[0006]

【課題を解決するための手段】本発明者は、均質且つ微
細な析出組織を効率よく得るには、加熱の均一性および
拡散速度の向上が重要であるという見地に基づいて研究
を重ねた結果、材料が電磁波を吸収して発熱するマイク
ロ波加熱法で析出処理を行うと、上記の均一加熱および
拡散促進の効果を示し、数10mm以上の大きな焼結体
でも、均質且つ微細な析出相が得られることを見いだし
た。
Means for Solving the Problems The present inventor has conducted repeated studies based on the viewpoint that it is important to improve the uniformity of heating and the diffusion rate in order to efficiently obtain a uniform and fine precipitate structure. When the precipitation treatment is performed by a microwave heating method in which the material absorbs electromagnetic waves and generates heat, the uniform heating and the effect of promoting diffusion are exhibited. Even in a large sintered body of several tens mm or more, a uniform and fine precipitate phase is formed. I found what I could get.

【0007】即ち、本発明の複合セラミック材料の製造
方法は、セラミック固溶体を作製する工程と、該セラミ
ック固溶体から2種類以上の結晶相を生成させる析出工
程とを具備する複合セラミックス材料の製造方法におい
て、前記析出工程を、マイクロ波による加熱処理で行
い、平均粒径が1μm以下、表面部に対する内部の平均
粒径比が0.91〜1.11となる結晶相を析出する
とを特徴とするものである。
That is, a method for producing a composite ceramic material according to the present invention is directed to a method for producing a composite ceramic material comprising a step of producing a ceramic solid solution and a step of depositing two or more crystal phases from the ceramic solid solution. Performing the precipitation step by heat treatment with microwaves, the average particle size is 1 μm or less,
In which the particle size ratio is characterized and this <br/> precipitating a crystal phase becomes 0.91 to 1.11.

【0008】また、この析出処理を加熱雰囲気の変更に
より固溶量が変化する固溶体に対し、固溶量が小さくな
る雰囲気での析出処理をマイクロ波加熱により行う、
ちセラミック固溶体を作製する工程と異なる雰囲気で上
記の析出処理を行うと、前記組織均一化と微細化効果の
他に、処理時間が大幅に短縮できること、中でも、セラ
ミック固溶体として、アルミナを主成分とし、少なくと
もTi、Mg、Feのうちの少なくとも1種を含有する
固溶体を用い、これに対する析出処理で、アルミナ結晶
相中にTiO2、Al2TiO5、FeAl24、MgA
24のうちの少なくとも一種の結晶相を析出させるの
に有効であり、この場合、加熱処理温度は1600℃以
下が好適である。
Further, with respect to solid solution which changes the amount of solid solution by changing the heating atmosphere the precipitation treatment is performed by microwave heating deposition process in an atmosphere amount of solid solution decreases, immediately
In an atmosphere different from the process of preparing the ceramic solid solution
By performing the above-mentioned precipitation treatment, in addition to the above-mentioned structure uniformity and fineness effects, the treatment time can be significantly reduced, among which, as a ceramic solid solution, alumina as a main component and at least Ti, Mg, and at least one of Fe A solid solution containing one kind is used, and TiO 2 , Al 2 TiO 5 , FeAl 2 O 4 , MgA
It is effective for precipitating at least one crystal phase of l 2 O 4. In this case, the heat treatment temperature is preferably 1600 ° C. or less.

【0009】[0009]

【作用】本発明の複合セラミックス材料の製造方法は、
セラミック固溶体から2種以上の結晶相を生成させるの
に、マイクロ波による加熱処理を用いることにより、従
来の処理法と比較して、均一加熱およびイオンの拡散促
進により、サイズが大きな材料でも微細かつ均一な析出
組織を形成させることができる。
The method for producing a composite ceramic material of the present invention comprises:
The use of microwave heat treatment to generate two or more crystal phases from a ceramic solid solution allows for uniform heating and enhanced ion diffusion compared to conventional treatment methods, so that even large-sized materials can be made finer and finer. A uniform precipitation structure can be formed.

【0010】また、特に固溶析出処理法のうち、雰囲気
の違いにより固溶量が異なる化合物を用い、析出処理を
固溶量が小さく雰囲気でのマイクロ波加熱により行う
と,上記のような微細な析出組織の制御の他に熱処理時
間を大幅に短縮することができる。
[0010] In addition, among the solid solution precipitation treatment methods, when a compound having a different solid solution amount due to a different atmosphere is used, and the precipitation treatment is carried out by microwave heating in an atmosphere having a small solid solution amount, the fine particles as described above can be obtained. In addition to controlling the precipitation structure, the heat treatment time can be significantly reduced.

【0011】本発明の方法は,とりわけアルミナを主成
分とし、Ti、Mg、Feのうちの少なくとも1種を含
むセラミック固溶体に対する析出加熱処理により,アル
ミナ結晶相中または粒界に微細なTiO2 、Al2 Ti
5 、FeAl2 4 、MgAl2 4 のうちの少なく
とも1種以上の結晶を析出させる方法に対して有効であ
り、その場合、従来法では温度にもよるが30時間以上
熱処理する必要があったのを,マイクロ波加熱法によれ
ば、10時間以下の短時間で加熱析出処理を行うことが
できる。
The method of the present invention, among other things as a main component alumina, Ti, Mg, by precipitation heat treatment to the ceramic solid solution containing at least one of Fe, alumina crystal phase or grain boundaries fine TiO 2, Al 2 Ti
This is effective for a method of precipitating at least one crystal of O 5 , FeAl 2 O 4 and MgAl 2 O 4. In this case, it is necessary to perform a heat treatment for 30 hours or more in the conventional method, depending on the temperature. However, according to the microwave heating method, the heat deposition treatment can be performed in a short time of 10 hours or less.

【0012】[0012]

【発明の実施の形態】本発明は,セラミック固溶体の析
出処理方法に関するものである。ここでいう「セラミッ
ク固溶体」とは、金属の酸化物、窒化物、炭化物および
その他の無機化合物からなる母相の結晶格子に、母相結
晶に含まない原子あるいはイオンが進入した固溶体であ
り、つまり少なくとも3種以上の元素から構成されるの
が一般的である。例えば3種の元素からなる固溶体と
は、金属元素を1種、炭素、窒素、酸素、フッ素等の軽
元素を1種含み、他の1種は、金属元素、軽元素のいず
れでもよい。また、特殊な場合として、2種の元素から
なる金属化合物で定比組成からずれた固溶体や、準安定
に存在する非晶質相も固溶体と見なされる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method for precipitating a ceramic solid solution. The `` ceramic solid solution '' here is a solid solution in which atoms or ions not included in the mother phase crystal have entered the crystal lattice of the mother phase composed of metal oxides, nitrides, carbides, and other inorganic compounds. Generally, it is composed of at least three or more elements. For example, a solid solution composed of three elements includes one metal element and one light element such as carbon, nitrogen, oxygen, and fluorine, and the other one may be a metal element or a light element. As a special case, a solid solution deviated from a stoichiometric composition by a metal compound composed of two elements and a metastable amorphous phase are also considered as a solid solution.

【0013】この固溶析出処理法において、セラミック
固溶体を作製するには、粉末焼成法、溶融法、気相析出
法、スパッタリング法などいずれも可能である。また、
金属化合物からなるセラミックス材料を加熱して固溶処
理を行うこともできる。この加熱固溶処理は、公知の加
熱方法、例えば、抵抗加熱法、高周波加熱法、マイクロ
波加熱法等いずれの方法でも採用できるが、これらの中
でもマイクロ波加熱法を利用する場合は、加熱処理時間
を大幅に短縮でき、特に緻密体の固溶処理に有効であ
る。この固溶体作製時は、母相結晶に含まない原子ある
いはイオンの母相中への固溶量が大きい条件下で処理す
ることが望ましい。
In the solid solution precipitation treatment method, any of a powder sintering method, a melting method, a vapor phase deposition method, a sputtering method and the like can be used to produce a ceramic solid solution. Also,
A solid solution treatment can also be performed by heating a ceramic material made of a metal compound. This heating solid solution treatment can be adopted by any known heating method, for example, a resistance heating method, a high frequency heating method, a microwave heating method and the like. The time can be greatly reduced, and it is particularly effective for solid solution treatment of a dense body. At the time of producing the solid solution, it is desirable to carry out the treatment under the condition that the amount of atoms or ions not included in the mother phase crystal in the mother phase is large.

【0014】また、本発明において、上記のセラミック
固溶体から少なくとも2種以上の結晶相を生成させる方
法としては、例えば、母相結晶に含まない原子あるいは
イオンの母相中への固溶量が大きい条件下で処理して作
製されたセラミック固溶体を、母相中に固溶する原子あ
るいはイオンの化学平衡的な固溶量が小さくなる温度あ
るいは雰囲気条件で処理を行うことにより、前記固溶原
子あるいはイオンを活性化させ、母相結晶格子から離脱
させることができる。このような加熱析出処理には、固
溶原子或いはイオンの活性化および拡散による原子およ
びイオンの偏析が必要である。
In the present invention, as a method for forming at least two or more crystal phases from the above-mentioned ceramic solid solution, for example, a large amount of atoms or ions not contained in the parent phase crystal in the parent phase is large. The ceramic solid solution prepared by processing under the conditions described above is treated at a temperature or an atmospheric condition in which the amount of atoms or ions solid-dissolved in the mother phase in a chemical equilibrium state becomes small, whereby the solid-dissolved atoms or The ions can be activated and detached from the matrix crystal lattice. Such heat deposition requires segregation of atoms and ions by activation and diffusion of solid solution atoms or ions.

【0015】本発明によれば、上記の加熱析出処理をマ
イクロ波による加熱によって行うのである。本発明にお
けるマイクロ波加熱とは、周波数が1GHz以上のマイ
クロ波による電磁波の作用による結晶格子、元素の振動
により自己加熱させる方法である。
According to the present invention, the above-mentioned heat deposition treatment is performed by heating with microwaves. The microwave heating in the present invention is a method of self-heating by vibration of a crystal lattice or an element by the action of an electromagnetic wave of a microwave having a frequency of 1 GHz or more.

【0016】通常、前述の加熱析出処理においては、材
料のサイズが数十mmの大きさになると、材料の表面部
から中心部にかけて温度が低くなる温度分布が生じるた
めに、材料の中心部から表面部にかけて析出相が徐々に
粗大化する現象が生じ、材料の特性の均一性および安定
性を損なうことがある。本発明では、この加熱析出処理
をマイクロ波加熱で行うと、材料全体が均一に電磁波を
吸収して発熱するために、上述のような表面部と中心部
との温度差がほとんど解消され、均一な析出組織が得ら
れる。また、電磁波の作用で、結晶格子の振動幅が他の
加熱法の場合よりも大きくなるため、析出を促進し、析
出時間を大幅に短縮できる。
Normally, in the above-mentioned heat deposition treatment, when the size of the material becomes several tens of mm, a temperature distribution occurs in which the temperature decreases from the surface to the center of the material. A phenomenon in which the precipitated phase gradually increases over the surface portion may occur, and the uniformity and stability of the material properties may be impaired. In the present invention, when this heat deposition treatment is performed by microwave heating, the entire material uniformly absorbs electromagnetic waves and generates heat, so that the temperature difference between the surface portion and the center portion as described above is almost eliminated, and the uniformity is achieved. A high precipitation structure is obtained. Further, the vibration width of the crystal lattice becomes larger than that of other heating methods due to the action of the electromagnetic wave, so that the precipitation is promoted and the deposition time can be greatly reduced.

【0017】本発明によれば、セラミックス固溶体から
2種以上の結晶相を生成させる固溶析出処理法を、雰囲
気の相違による固溶量の変化を利用する場合、即ち、固
溶体作製処理を固溶量が大きい雰囲気中で行った後、加
熱析出処理を固溶量が小さくなる雰囲気中で行う場合
は、加熱析出処理を上述したマイクロ波加熱法により行
うことが特に有効である。
According to the present invention, a solid solution precipitation treatment method for producing two or more crystal phases from a ceramic solid solution utilizes a change in the amount of solid solution due to a difference in atmosphere, that is, a solid solution preparation process. In the case where the heat precipitation treatment is performed in an atmosphere in which the amount of solid solution is small after the heat precipitation treatment is performed in an atmosphere having a large amount, it is particularly effective to perform the heat precipitation treatment by the above-described microwave heating method.

【0018】上記の方法での加熱析出処理は、普通固溶
イオンの酸化あるいは還元反応を前提とする。従って、
固溶イオンの析出、偏析といった短距離拡散の他に、酸
素イオンの焼結体の表面部から中心部、あるいは中心部
から表面部へのへの拡散、および析出に伴う陽イオン空
孔の拡散が発生する。例えば、Tiイオンの析出には、
酸素イオンが焼結体の表面部から中心部へ、Mgおよび
Feイオンの析出には、酸素イオンが焼結体の中心部か
ら表面部に拡散する。この場合、温度分布の他に、酸素
イオンと陽イオン空孔の濃度差も析出組織が不均一とな
る主な原因となる。
The heat deposition treatment in the above-described method is premised on an oxidation or reduction reaction of a solid solution ion. Therefore,
In addition to short-range diffusion such as precipitation and segregation of solid solution ions, diffusion of oxygen ions from the surface to the center or from the center to the surface of the sintered body, and diffusion of cation vacancies accompanying the precipitation Occurs. For example, for the precipitation of Ti ions,
Oxygen ions diffuse from the center to the surface of the sintered body from the center to the center of the sintered body. In this case, in addition to the temperature distribution, the concentration difference between the oxygen ions and the cation vacancies is also a main cause of the non-uniform precipitated structure.

【0019】従って、上記の方法において、サイズが1
0mm程度の焼結体の中心部まで析出組織を得るには、
通常の加熱方法では数10時間以上の熱処理を要ること
もある。しかも、長時間処理により焼結体の表面部に析
出相の粗大成長は避けられない。これに対して、上記固
溶体の析出処理にマイクロ波加熱を用いると、前記した
ように、焼結体が均一に加熱される他に、電磁波の作用
で結晶格子の振動が促進されるため、固溶イオン、空孔
および酸素イオンの拡散が著しく加速され、焼結体中心
部と表面部の組織差が生じることなく、短時間で内外差
のない均一な析出処理を完成できる。
Therefore, in the above method, the size is 1
In order to obtain a precipitate structure up to the center of a sintered body of about 0 mm,
With a normal heating method, heat treatment for several tens of hours or more may be required. Moreover, coarse growth of the precipitated phase on the surface of the sintered body due to the long-term treatment is inevitable. On the other hand, when microwave heating is used for the precipitation treatment of the solid solution, as described above, in addition to the uniform heating of the sintered body, the vibration of the crystal lattice is promoted by the action of electromagnetic waves. Diffusion of dissolved ions, vacancies, and oxygen ions is remarkably accelerated, and a uniform precipitation process with no difference between inside and outside can be completed in a short time without causing a difference in structure between the central portion and the surface portion of the sintered body.

【0020】また、本発明によれば、具体的に、アルミ
ナを主成分とし、Ti、MgおよびFeのうちの少なく
とも1種を含有するセラミック固溶体に対して、固溶量
が小さくなる雰囲気で加熱析出する際に前記マイクロ波
加熱処理を行う。この時のTi、Mg、Feの含有量は
その使用目的により適宜組成を調整すればよいが、複合
材料としての機能上、これらの金属元素は、酸化物に換
算して0.5モル%以上含有されることが望ましい。
Further, according to the present invention, specifically, a ceramic solid solution containing alumina as a main component and containing at least one of Ti, Mg and Fe is heated in an atmosphere in which the amount of solid solution becomes small. The microwave heating treatment is performed at the time of deposition. The content of Ti, Mg, and Fe at this time may be appropriately adjusted in composition according to the purpose of use. However, in terms of the function as a composite material, these metal elements are 0.5 mol% or more in terms of oxide. It is desirable to be contained.

【0021】この方法では、アルミナへのTi、Mgお
よびFeのうちの少なくとも1種を含有するセラミック
固溶体を作製する場合、TiO2 添加系では水素雰囲気
中で、MgO+TiO2 添加系またはFe2 3 添加系
では大気中で、1200〜1750℃で加熱処理するこ
とにより作製することができる。その後、これらの固溶
体から結晶相を析出させる場合には,TiO2 添加系で
は大気雰囲気中で、MgO+TiO2 添加系またはFe
2 3 添加系では水素中で加熱処理することにより、T
i、Mg,Feの価数変化が生じることに起因してアル
ミナ結晶相とは異なる結晶相をアルミナ結晶相中、ある
いは粒界に析出させることができる。
[0021] In this method, Ti to alumina, the case of manufacturing a ceramic solid solution containing at least one of Mg and Fe, in a hydrogen atmosphere at TiO 2 addition system, MgO + TiO 2 addition system or Fe 2 O 3 The additive system can be produced by heat treatment at 1200 to 1750 ° C. in the air. Thereafter, if the precipitating crystal phase from a solid solution thereof, in an air atmosphere in TiO 2 addition system, MgO + TiO 2 addition system or Fe
In the 2O 3 added system, heat treatment in hydrogen allows T
A crystal phase different from the alumina crystal phase due to the valence change of i, Mg, and Fe can be precipitated in the alumina crystal phase or at the grain boundary.

【0022】この場合のアルミナ結晶相とは異なる結晶
相としては、TiO2 、Al2 TiO5 、FeAl2
4 、MgAl2 4 のうちの少なくとも1種が挙げられ
る。
The crystal phase different from the alumina crystal phase in this case is TiO 2 , Al 2 TiO 5 , FeAl 2 O
And at least one of MgAl 2 O 4 .

【0023】これらの析出結晶相は、加熱析出処理を上
述のマイクロ波加熱処理で行うことにより、1μm以下
の微細な析出相を生成することができる。また、上記加
熱析出処理では、加熱温度を1600℃以下に設定する
ことが望ましい。
These precipitated crystal phases can be formed into fine precipitate phases of 1 μm or less by performing the heat precipitation treatment by the above-mentioned microwave heating treatment. Further, in the heat deposition treatment, it is desirable to set the heating temperature to 1600 ° C. or less.

【0024】これは、加熱析出過程には、析出相の核生
成と成長との二つの過程があり、上記組成系のセラミッ
ク固溶体をマイクロ波加熱により1600℃より高い温
度で処理すると、析出相の粒成長が著しく速くなり、ナ
ノサイズの微細析出組織が得られにくいからである。十
分な析出速度と微細な析出組織を得る為には、析出温度
は特に1000℃から1500℃の範囲が好適である。
This is because there are two processes in the heating precipitation process, namely, nucleation and growth of the precipitated phase. When the ceramic solid solution having the above composition is treated by microwave heating at a temperature higher than 1600 ° C., This is because grain growth becomes remarkably fast, and it is difficult to obtain a nano-sized fine precipitation structure. In order to obtain a sufficient precipitation rate and a fine precipitate structure, the precipitation temperature is particularly preferably in the range of 1000 ° C to 1500 ° C.

【0025】[0025]

【実施例】アルミナ(Al2 3 )粉末、酸化マグネシ
ウム(MgO)粉末、酸化チタン(TiO2 )粉末およ
び酸化鉄(Fe2 3 )粉末を用い、表1に示す組成に
なるように調合した。上記混合粉末を1t/cm2 の圧
力でプレス成形した後、3t/cm2 の圧力で静水圧処
理を加えた。成形体のサイズは表1中に示す。上記成形
体を表1に示す条件で抵抗加熱により焼成した。X線回
折測定により、表1に示す単一相の固溶体を形成してい
ることが分かった。
EXAMPLE An alumina (Al 2 O 3 ) powder, a magnesium oxide (MgO) powder, a titanium oxide (TiO 2 ) powder, and an iron oxide (Fe 2 O 3 ) powder were prepared so as to have the composition shown in Table 1. did. After press-molding the mixed powder at a pressure of 1 t / cm 2 , a hydrostatic pressure treatment was applied at a pressure of 3 t / cm 2 . The size of the compact is shown in Table 1. The compact was fired by resistance heating under the conditions shown in Table 1. X-ray diffraction measurement revealed that a single-phase solid solution shown in Table 1 was formed.

【0026】次に、上記固溶体を表2に示す条件で加熱
析出処理した。X線回折測定により検出した析出相のう
ち、母相以外の結晶相を表2に示す。また、SEM写真
により測定した析出相の平均粒径を試料の中心部と表面
部(表面から1mmの深さ位置)と比較して表2に示し
た。
Next, the solid solution was subjected to heat precipitation under the conditions shown in Table 2. Table 2 shows the crystal phases other than the parent phase among the precipitated phases detected by the X-ray diffraction measurement. The average particle size of the precipitated phase measured by SEM photograph is shown in Table 2 in comparison with the central part and the surface part (at a depth of 1 mm from the surface) of the sample.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表1および表2の結果から、本発明に基づ
き、マイクロ波加熱による加熱析出処理を行った試料N
o.2、5、6、7、9、10は、いずれも試料中心部
と表面部の析出相の平均粒径比は0.91から1.11
の範囲であり、しかも、平均粒径は1μm以下であるこ
とが分かる。しかし、従来の加熱法により従った試料N
o.1、No.3、No.4は、前記内外の析出相の平
均粒径比が0.6以下であった。特に、試料No.3
は、X線回折測定により試料の中心部では析出相が検出
できなかった。なお、マイクロ波加熱処理した試料でも
その処理温度が1600℃を越える試料No.8では析
出相の平均粒径の内外差はほとんどないが、析出相が粗
大化する傾向にあった。
From the results shown in Tables 1 and 2, it was found that Sample N which had been subjected to heat deposition treatment by microwave heating according to the present invention was used.
o. In all of 2, 5, 6, 7, 9, and 10, the average particle size ratio of the precipitated phase between the sample center portion and the surface portion was 0.91 to 1.11.
It can be seen that the average particle size is 1 μm or less. However, the sample N obtained by the conventional heating method
o. 1, No. 3, No. In No. 4, the average particle size ratio of the inner and outer precipitation phases was 0.6 or less. In particular, the sample No. 3
No precipitate phase was detected at the center of the sample by X-ray diffraction measurement. In addition, even for the sample subjected to the microwave heat treatment, the sample No. whose processing temperature exceeds 1600 ° C. In No. 8, there was almost no difference between the inside and outside of the average particle size of the precipitated phase, but the precipitated phase tended to become coarse.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明の複合セラミ
ックス材料の製造方法は、セラミック固溶体からの2種
以上の結晶相の生成を、マイクロ波による加熱処理によ
り行うことにより、従来の処理法に比べてサイズが大き
な材料でも、微細かつ均一な析出組織の複合材料を得る
ことができるとともに、析出組織の制御の他に、処理時
間を大幅に短縮させることができる。
As described in detail above, the method for producing a composite ceramic material according to the present invention comprises a conventional processing method in which two or more types of crystal phases are formed from a ceramic solid solution by microwave heating. Even if the material is larger in size, a composite material having a fine and uniform precipitate structure can be obtained, and in addition to controlling the precipitate structure, the processing time can be significantly reduced.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミック固溶体を作製する工程と、該セ
ラミック固溶体から2種類以上の結晶相を生成させる析
出工程とを具備する複合セラミックス材料の製造方法に
おいて、前記析出工程を、マイクロ波による加熱処理で
行い、平均粒径が1μm以下、表面部に対する内部の平
均粒径比が0.91〜1.11となる結晶相を析出する
ことを特徴とする複合セラミックス材料の製造方法。
1. A method for producing a composite ceramic material, comprising: a step of producing a ceramic solid solution; and a step of depositing two or more crystal phases from the ceramic solid solution. The average particle size is 1 μm or less, and the inner flat
A method for producing a composite ceramic material, wherein a crystal phase having a uniform particle size ratio of 0.91 to 1.11 is precipitated .
【請求項2】前記析出工程における雰囲気が、固溶量が
小さくなる雰囲気であり、且つ前記セラミック固溶体を
作製する工程の雰囲気と異なることを特徴とする請求項
1記載複合セラミックス材料の製造方法。
2. The atmosphere in the precipitation step is an atmosphere in which the amount of solid solution is small , and the ceramic solid solution is
2. The method for manufacturing a composite ceramic material according to claim 1 , wherein the atmosphere is different from the atmosphere in the manufacturing step .
【請求項3】前記セラミック固溶体がアルミナを主成分
とし、Ti、Mg、Feのうちの少なくとも一種を含有
することを特徴とする請求項1又は2記載の複合セラミ
ックス材料の製造方法。
Wherein the ceramic solid solution as a main component alumina, Ti, Mg, method of producing a composite ceramic material according to claim 1 or 2, wherein it contains at least one of Fe.
【請求項4】前記複合セラミックス材料が、アルミナ結
晶相と、TiO2、Al2TiO5、FeAl24、Mg
Al24のうちの少なくとも一種の結晶相を含むことを
特徴とする請求項3記載の複合セラミックス材料の製造
方法。
4. The composite ceramic material comprises an alumina crystal phase, TiO 2 , Al 2 TiO 5 , FeAl 2 O 4 , Mg
4. The method for producing a composite ceramic material according to claim 3, comprising at least one crystal phase of Al 2 O 4 .
【請求項5】前記析出工程を1600℃以下の加熱処理
により行うことを特徴とする請求項3または請求項4記
載の複合セラミックス材料の製造方法。
5. The method for producing a composite ceramic material according to claim 3, wherein said depositing step is performed by a heat treatment at 1600 ° C. or lower.
JP34230195A 1995-12-28 1995-12-28 Manufacturing method of composite ceramic material Expired - Fee Related JP3323046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34230195A JP3323046B2 (en) 1995-12-28 1995-12-28 Manufacturing method of composite ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34230195A JP3323046B2 (en) 1995-12-28 1995-12-28 Manufacturing method of composite ceramic material

Publications (2)

Publication Number Publication Date
JPH09183669A JPH09183669A (en) 1997-07-15
JP3323046B2 true JP3323046B2 (en) 2002-09-09

Family

ID=18352673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34230195A Expired - Fee Related JP3323046B2 (en) 1995-12-28 1995-12-28 Manufacturing method of composite ceramic material

Country Status (1)

Country Link
JP (1) JP3323046B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292746B2 (en) 2017-11-20 2022-04-05 Technion Research & Development Foundation Limited Toughened ceramic and methods of toughening ceramic

Also Published As

Publication number Publication date
JPH09183669A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
Tartaj et al. Anisotropic grain growth in α-Fe2O3-doped alumina
Halder et al. Synthesis and optical properties of anion deficient nano MgO
Kang et al. Growth of BaTiO3 seed grains by the twin‐plane reentrant edge mechanism
Munir et al. Perspectives on the spark plasma sintering process
Sutka et al. The effect of heating conditions on the properties of nano-and microstructured Ni–Zn ferrite
Lukić et al. Processing route to fully dense nanostructured HAp Bioceramics: From powder synthesis to sintering
Sokovnin et al. Properties of ZrO2 and Ag–ZrO2 nanopowders prepared by pulsed electron beam evaporation
Huang et al. Synthesis of Fe-doped alumina transparent ceramics by co-precipitation and vacuum sintering
Li et al. Improved microstructure and optical properties of Nd: YAG ceramics by hot isostatic pressing
JP3323046B2 (en) Manufacturing method of composite ceramic material
Fisher et al. Abnormal grain growth in barium titanate doped with alumina
JP5434583B2 (en) Method for producing sintered metal boride
Ahlawat Effect of concentration and temperature on the surface morphology of Gd2O3 nanocrystallites in silica
Mizoguchi et al. Synthesis of ultrafine particles and thin films of BaFe12O19 by the spray-ICP technique
Nayak et al. Low‐Temperature Processing of Dense Hydroxyapatite–Zirconia Composites
Ko et al. Morphology evolution in spinel manganite films deposited from an aqueous solution
Anđić et al. Analysis of the properties of a Cu-Al2O3 sintered system based on ultra fine and nanocomposite powders
JP3268020B2 (en) Method for producing silicon nitride powder
JP2984581B2 (en) Member composed of indium-tin oxide and method for producing the same
JP3509137B2 (en) Aluminum nitride powder, method for producing the same, and aluminum nitride sintered body produced from the powder
Li et al. Preparation of nanocrystalline LaFeO3 using reverse drop coprecipitation with polyvinyl alcohol as protecting agent
Lwin et al. Effect of Fe deficiency on structural and magnetic properties in low temperature synthesized Mg-Mn Ferrite
JP3340025B2 (en) Alumina sintered body and method for producing the same
Koh et al. Preparation of nanosized mixed oxide ceramic powders using polyvinyl alcohol and polyhydroxy organic compounds
JPH05330919A (en) Silicon nitride-based sintered compact and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees