JP3321815B2 - Polyvinyl chloride resin composition - Google Patents

Polyvinyl chloride resin composition

Info

Publication number
JP3321815B2
JP3321815B2 JP27055991A JP27055991A JP3321815B2 JP 3321815 B2 JP3321815 B2 JP 3321815B2 JP 27055991 A JP27055991 A JP 27055991A JP 27055991 A JP27055991 A JP 27055991A JP 3321815 B2 JP3321815 B2 JP 3321815B2
Authority
JP
Japan
Prior art keywords
resin
weight
parts
polyvinyl chloride
chloride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27055991A
Other languages
Japanese (ja)
Other versions
JPH0578537A (en
Inventor
和康 東山
博章 古川
博 南出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP27055991A priority Critical patent/JP3321815B2/en
Publication of JPH0578537A publication Critical patent/JPH0578537A/en
Application granted granted Critical
Publication of JP3321815B2 publication Critical patent/JP3321815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は各種輸送機器、精密電子
機器、音響機器などの分野において振動を制御すること
により、動作反応速度や測定制度を向上させたり、音質
を改良させる目的で使用される振動エネルギ−吸収性能
の優れたポリ塩化ビニル系樹脂組成物に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in various fields of transportation equipment, precision electronic equipment, audio equipment and the like for controlling vibrations to improve an operation response speed, a measurement accuracy, and a sound quality. The present invention relates to a polyvinyl chloride resin composition having excellent vibration energy-absorbing performance.

【0002】[0002]

【従来の技術】従来、振動エネルギ−吸収材としてはブ
チルゴムが最もよく使用されている。また、最近ではポ
リノルボルネンや特殊なウレタン系エラストマ−などが
より高性能であることが見いだされ注目されている。こ
れら振動エネルギ−吸収材の1次評価はその材料の粘弾
性測定により求められる貯蔵弾性率(E′)と損失係数
(tanδ=損失弾性率(E″)/貯蔵弾性率
(E′))でなされる。
2. Description of the Related Art Conventionally, butyl rubber is most often used as a vibration energy absorbing material. Also, recently, polynorbornene and special urethane-based elastomers have been found to have higher performance and have attracted attention. The primary evaluation of these vibration energy absorbing materials is a storage elastic modulus (E ') and a loss coefficient (tan δ = loss elastic modulus (E ") / storage elastic modulus (E')) obtained by measuring the viscoelasticity of the material. Done.

【0003】振動エネルギ−吸収材として設計するため
には損失係数は大きければ大きいほど、また貯蔵弾性率
は使用される形態によって最適値が存在する。これら2
つの因子は通常温度依存性が大きい。すなわち貯蔵弾性
率は温度が高くなるにつれて徐々に低下し、通常ガラス
転移点を超えた温度域から急激に低下する。また、損失
係数はガラス転移点を超えた温度域で最も高い値を示す
がその前後の温度域では低下する傾向が一般的である。
[0003] In order to design as a vibration energy absorbing material, there is an optimum value as the loss coefficient increases and the storage elastic modulus changes depending on the form used. These two
The two factors are usually highly temperature dependent. That is, the storage elastic modulus gradually decreases as the temperature increases, and sharply decreases from a temperature range usually exceeding the glass transition point. Further, the loss coefficient shows the highest value in a temperature range exceeding the glass transition point, but generally tends to decrease in a temperature range around the glass transition point.

【0004】従って、従来よりこのような振動エネルギ
−吸収材に求められる基準としては、まず材料が用いら
れる温度域で高い損失係数を有することであった。一
方、貯蔵弾性率については無機、金属の充填材や軟化剤
あるいはゴム等を添加することによりかなりの幅でその
値を調整することができるため最適値に合わせることが
可能であった。それゆえ、ブチルゴムやポリノルボルネ
ン,特殊ウレタン系エラストマ−等は損失係数の値がそ
れぞれ最大でtanδ=1.4,2.8,1.3という
優れた値を示している。ところがこれらの素材は加工
性,成形性に難があり使用範囲が限られていた。
[0004] Therefore, as a standard conventionally required for such a vibration energy absorbing material, first, a material having a high loss coefficient in a temperature range in which the material is used. On the other hand, the storage elastic modulus can be adjusted to an optimum value because the value can be adjusted within a considerable range by adding an inorganic or metal filler, a softening agent, rubber, or the like. Therefore, butyl rubber, polynorbornene, special urethane-based elastomer, and the like exhibit excellent loss coefficients of tan δ = 1.4, 2.8, and 1.3 at maximum. However, these materials have difficulties in workability and formability, and their use range is limited.

【0005】最近の精密電子機器や自動車を始めとする
各種輸送機器の高性能化や高品質化の要求は止まるとこ
ろを知らず、単に特定温度域で損失係数の値が大きいだ
けではなく幅広い温度域で、すなわち室温から60℃付
近まで、用途によっては−20℃から100℃前後まで
高いtanδ値を維持することが望まれている。
[0005] The demand for higher performance and higher quality of various kinds of transportation equipment such as recent precision electronic equipment and automobiles does not stop, and not only the value of the loss coefficient is large in a specific temperature range but also a wide temperature range. That is, it is desired to maintain a high tan δ value from room temperature to about 60 ° C., or from −20 ° C. to about 100 ° C. depending on the use.

【0006】ところで、ポリ塩化ビニル樹脂は5大汎用
樹脂の1つとして長い歴史があり、経済性はもとよりほ
とんどの成形加工法が確立している。しかも非晶性樹脂
であること、無機・金属充填剤や軟化剤との複合化が用
意であるなどの長所を有している。ポリ塩化ビニル単独
の損失係数は90℃前後で約1.1のピ−ク値を有する
が、これに代表的な可塑剤であるジ−2−エチルヘキシ
ルフタレ−ト(以下、DOPと略す)をポリ塩化ビニル
樹脂100重量部に対して100重量部加えると損失係
数のピ−ク温度は5℃前後に、またピ−ク値も約0.7
程度に低下してしまう。この現象はポリ塩化ビニル単独
分子鎖の中に異種分子が混入し、その結果緩和時間の分
布が広がると考えれば当然と理解されていた。ところが
最近の我々の検討の結果、ごく限られた種類の可塑剤を
ポリ塩化ビニルに添加すると、損失係数のピ−ク温度は
低下するが、ピ−ク値は1.8程度にまで上昇すること
が見い出された。しかしここで用いる可塑剤は通常の可
塑剤と比較して高価であり、しかも既存の高性能振動吸
収材と比較してその性能はまだ劣るなど、経済的・性能
的に問題がある。
[0006] Incidentally, polyvinyl chloride resin has a long history as one of the five major general-purpose resins, and most molding methods have been established in addition to economic efficiency. In addition, it has advantages such as being an amorphous resin and being ready for complexing with an inorganic / metal filler or a softener. The loss coefficient of polyvinyl chloride alone has a peak value of about 1.1 at about 90 ° C., which is represented by di-2-ethylhexyl phthalate (hereinafter abbreviated as DOP) which is a typical plasticizer. Is added to 100 parts by weight of the polyvinyl chloride resin, the peak temperature of the loss coefficient is about 5 ° C., and the peak value is about 0.7.
To a degree. This phenomenon was naturally understood when it is considered that heterogeneous molecules are mixed in a single molecular chain of polyvinyl chloride, and as a result, the distribution of relaxation time is widened. However, as a result of our recent studies, the addition of a very limited type of plasticizer to polyvinyl chloride lowers the peak temperature of the loss factor, but increases the peak value to about 1.8. That was found. However, the plasticizer used here is expensive in comparison with ordinary plasticizers, and its performance is still inferior to that of existing high-performance vibration absorbers.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ポリ塩化ビ
ニル系樹脂の有する特徴を生かしながら損失係数が高
く、かつ経済的に優れた振動エネルギ−吸収材を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vibration energy absorbing material which has a high loss coefficient and is economically excellent while utilizing the characteristics of a polyvinyl chloride resin.

【0008】[0008]

【課題を解決するための手段】上記のような現状に鑑
み、本発明者らは鋭意検討を重ねた結果、本発明を完成
するに至った。
Means for Solving the Problems In view of the above situation, the present inventors have conducted intensive studies and as a result have completed the present invention.

【0009】すなわち、ポリ塩化ビニル系樹脂100重
量部に対して下記(I)の構造を有するフタル酸エステ
ル、または該フタル酸エステル及び下記(II)の構造
を有するリン酸エステルを5〜200重量部、及び下記
(a)〜(e)の群から選ばれた少なくとも一種の樹脂
を5〜200重量部含んでなるポリ塩化ビニル系樹脂組
成物、該組成物に組成物中のポリ塩化ビニル系樹脂10
0重量部に対し石油樹脂を5〜200重量部含んでなる
ポリ塩化ビニル系樹脂組成物、及びこれら組成物からな
る振動エネルギー吸収材に関する。
That is, the phthalic acid ester having the following structure (I) or the phthalic acid ester and the phosphoric acid ester having the following structure (II) are 5 to 200 parts by weight based on 100 parts by weight of the polyvinyl chloride resin. Parts, and 5 to 200 parts by weight of at least one resin selected from the group consisting of the following (a) to (e) , and a polyvinyl chloride resin composition in the composition. Resin 10
The present invention relates to a polyvinyl chloride resin composition containing 5-200 parts by weight of a petroleum resin with respect to 0 parts by weight, and a vibration energy absorbing material comprising these compositions.

【0010】[0010]

【化3】 Embedded image

【0011】[0011]

【化4】 (式中、R1,R2はC3〜C8からなる単環式炭化水素、
3〜R5はC6〜C9からなる芳香族単環式炭化水素であ
る。) (a)ケトン樹脂 (b)低分子量ポリスチレン (c)マレイン酸樹脂 (d)ロジン系樹脂 (e)テルペン系樹脂 以下、その詳細について説明する。
Embedded image (Wherein R 1 and R 2 are monocyclic hydrocarbons consisting of C 3 to C 8 ,
R 3 to R 5 are an aromatic monocyclic hydrocarbon composed of C 6 to C 9 . (A) Ketone resin (b) Low molecular weight polystyrene (c) Maleic resin (d) Rosin-based resin (e) Terpene-based resin The details will be described below.

【0012】本発明で用いるポリ塩化ビニル系樹脂とは
塩化ビニル単独重合体の他に酢酸ビニル、エチレンとの
共重合体やポリウレタンとのグラフト重合体など一般に
ポリ塩化ビニル系樹脂として認識され得るものを示す。
The polyvinyl chloride resin used in the present invention is not limited to a vinyl chloride homopolymer, but may be a vinyl chloride resin such as a copolymer with vinyl acetate, ethylene, or a graft polymer with polyurethane. Is shown.

【0013】本発明で用いられる(I)の構造式で示さ
れるフタル酸エステルは単独でポリ塩化ビニル樹脂と混
合した場合でも損失係数の最大値が1.4〜1.8を示
す。
The phthalic acid ester represented by the structural formula (I) used in the present invention shows a maximum loss coefficient of 1.4 to 1.8 even when it is used alone and mixed with a polyvinyl chloride resin.

【0014】このような化合物としては、具体的にはジ
シクロヘキシルフタレ−ト(DCHP),ジメチルシク
ロヘキシルフタレ−ト,ジフェニルフタレ−トなどが挙
げられる。
Specific examples of such a compound include dicyclohexyl phthalate (DCHP), dimethylcyclohexyl phthalate, diphenyl phthalate and the like.

【0015】また、本発明で用いられる(II)の構造
式で示されるリン酸エステルは単独でポリ塩化ビニル樹
脂と混合した場合でも損失係数の最大値が0.8〜1.
3を示す。
Further, the phosphate ester represented by the structural formula (II) used in the present invention has a maximum loss coefficient of 0.8-1.
3 is shown.

【0016】具体的にはトリクレジルホスフェ−ト,ト
リキシレニルホスフェ−ト(TXP)などが挙げられ
る。
Specific examples include tricresyl phosphate and trixylenyl phosphate (TXP).

【0017】特に本発明に用いられるフタル酸エステル
は可塑化の効率が悪いため相当量添加しても最大損失係
数を示す温度域が振動エネルギ−吸収材として最も多用
される室温領域まで下がりにくいという欠点があるが、
リン酸エステルを併用することによってこの欠点を補う
ことができる。
In particular, the phthalic acid ester used in the present invention has a poor plasticizing efficiency, so that even if it is added in a considerable amount, the temperature range showing the maximum loss coefficient is hardly lowered to the room temperature range most frequently used as a vibration energy absorbing material. There are drawbacks,
This disadvantage can be compensated for by using a phosphate ester in combination.

【0018】また、本発明に用いられるフタル酸エステ
ルは成形後にブリ−ドしやすいという欠点を有するが、
リン酸エステルの添加でブリ−ドを抑制できることは利
点である。
Further, the phthalic acid ester used in the present invention has a drawback that it is easy to bleed after molding.
It is an advantage that the bleed can be suppressed by adding a phosphate ester.

【0019】これら2種のエステル系可塑剤の添加量は
用途によって一概に特定できないが、塩化ビニル系樹脂
100重量部に対してフタル酸エステル単独、もしくは
リン酸エステルを合わせて5重量部以上200重量部以
下が適当である。添加量が5重量部未満では損失係数の
向上はあまり望めない。一方200重量部を超えて加え
ると、可塑剤のブリ−ドによりべとつきが激しくなりあ
まり好ましくない。
The addition amount of these two ester-based plasticizers cannot be specified unconditionally depending on the application. Less than parts by weight is appropriate. If the addition amount is less than 5 parts by weight, the improvement of the loss coefficient cannot be expected much. On the other hand, if it is added in excess of 200 parts by weight, the stickiness of the plasticizer increases, which is not preferred.

【0020】[0020]

【0021】本発明におけるケトン樹脂(a)はケトン
とホルムアルデヒドの縮合によって得られる樹脂であ
る。ここで使用するケトン類によりアノン系(シクロヘ
キサノン、メチルシクロヘキサノン等を使用)、アセト
フェノン系(アセトフェノン、エチルフェニルケトン等
を使用)に分類されるが、本発明で用いる場合は特にア
ノン系が好ましく、軟化点は70〜120℃のものが好
ましい。
The ketone resin (a) in the present invention is a resin obtained by condensation of a ketone and formaldehyde. The ketones used here are classified into anones (using cyclohexanone, methylcyclohexanone, etc.) and acetophenones (using acetophenone, ethylphenylketone, etc.). In the case of using in the present invention, anones are particularly preferable, and softening is preferred. The point is preferably 70 to 120 ° C.

【0022】本発明における低分子量ポリスチレン
(b)はオリゴスチレンとも言い、数平均分子量300
〜5000の液状もしくは固体のスチレン樹脂またはα
−メチルスチレン樹脂である。その組成、製造法は特に
限定しないが、分子量は3000以下のほうが好まし
い。
Low molecular weight polystyrene in the present invention
(B) is also called oligostyrene and has a number average molecular weight of 300.
~ 5000 liquid or solid styrene resins or α
-A methylstyrene resin. The composition and production method are not particularly limited, but the molecular weight is preferably 3000 or less.

【0023】本発明におけるマレイン酸樹脂(c)はロ
ジン変性マレイン酸樹脂とも言い、ポリエステル樹脂の
一種で、ロジンと無水マレイン酸から三塩基酸の付加物
を作り、多価アルコールでエステル化したものである。
無水マレイン酸の付加量、多価アルコールの種類、エス
テル化度の違いで軟化点、溶解性など種々の異なった性
質のものが得られるが、軟化点が80〜150℃のもの
が好ましい。
The maleic acid resin (c) in the present invention is also referred to as a rosin-modified maleic acid resin and is a kind of polyester resin which is obtained by forming an adduct of tribasic acid from rosin and maleic anhydride and esterifying it with a polyhydric alcohol. It is.
Depending on the amount of maleic anhydride added, the type of polyhydric alcohol, and the degree of esterification, various properties such as softening point and solubility can be obtained, but those having a softening point of 80 to 150 ° C are preferred.

【0024】本発明におけるロジン系樹脂(d)はアビ
エチン酸が主成分であるガムロジン、ウッドロジン、ト
ール油ロジン(以下これらをロジンと称する)、ロジン
を水素ガスと反応させた水素添加ロジン、脂肪酸の分子
間での水素の移動により脱水素されて安定な芳香環を持
つデヒドロアビエチン酸と水添されたジヒドロアビエチ
ン酸が生成する反応により得られる不均化ロジン、ロジ
ンの2量体を主成分とする重合ロジン、及びこれらのロ
ジン、変性ロジンをグリセリン、ペンタエリスリトール
等でエステル化したロジンエステルである。樹脂(d)
は変性物を含めると多種にわたるが、特にロジンエステ
ルが好ましい。
The rosin resin (d) in the present invention is gum rosin, wood rosin, tall oil rosin (hereinafter referred to as rosin) whose main component is abietic acid, hydrogenated rosin obtained by reacting rosin with hydrogen gas, and fatty acid The main component is a disproportionated rosin and rosin dimer obtained by the reaction of dehydrobietic acid having a stable aromatic ring and hydrogenated dihydroabietic acid being dehydrogenated by the transfer of hydrogen between molecules. And rosin esters obtained by esterifying these rosins and modified rosins with glycerin, pentaerythritol and the like. Resin (d)
Although there are many kinds including modified products, rosin esters are particularly preferred.

【0025】本発明におけるテルペン系樹脂(e)はα
−ピネンを主成分とし、β−ピネン、カンフェン、ジペ
ンテンなどの環状テルペンより成っているテレビン油を
原料とした樹脂である。これはその組成によりα−ピネ
ン系、β−ピネン系、α−ピネンとフェノールとをカチ
オン重合して得られるテルペンフェノールに分類される
が、特にα−ピネン系またはテルペンフェノールが好ま
しい。
In the present invention, the terpene resin (e) is α
-A resin made from turpentine as a raw material, the main component being pinene, and the cyclic terpene such as β-pinene, camphene and dipentene. These are classified into α-pinene-based, β-pinene-based, and terpene phenols obtained by cationic polymerization of α-pinene and phenol, and α-pinene-based or terpene phenols are particularly preferred.

【0026】[0026]

【0027】これら(a)〜(e)の樹脂群から選ばれ
た少なくとも一種の樹脂の添加量としてはポリ塩化ビニ
ル系樹脂100重量部に対して5重量部以上200重量
部以下、さらには10重量部以上100重量部以下が好
ましい。5重量部以下では損失係数はあまり向上せず、
また200重量部を超えて添加すると加工性が極端に低
下する。
The amount of addition of at least one resin selected from the resin group (a) to (e) is 5 to 200 parts by weight, preferably 10 to 100 parts by weight of the polyvinyl chloride resin. The amount is preferably not less than 100 parts by weight and not more than 100 parts by weight. Below 5 parts by weight, the loss factor does not improve much,
Further, if it is added in excess of 200 parts by weight, the processability is extremely reduced.

【0028】さらに、本発明における石油樹脂とはナフ
サなどの熱分解により副生する多数の不飽和炭化水素を
含む分解油留分を重合させて樹脂化したものである。分
解油留分とはC5留分及びC6〜C11留分のBTX抽
出残留分であり、これらの重合方法はカチオン重合、熱
重合、ラジカル重合などが挙げられるが特に限定される
ものではない。また、樹脂化したものに無水マレイン酸
などの極性基を付加したりカルボキシル基を導入するな
ど官能基の導入や、モノマ−の添加により変成した石油
樹脂も当然含まれる。石油樹脂の添加により損失係数の
最大値は大きく向上するが、本発明ではBTX抽出残留
分を重合したいわゆるC9系石油樹脂が好ましく、特に
C9成分のインデンとスチレンを50wt%以上含有す
るものが好ましく、さらにはインデンとスチレンの比率
はスチレンが半分以上を占めるほうが望ましい。また、
その数平均分子量が500以上1500以下である方が
好ましい。ただし、本発明で使用する石油樹脂はこの記
載に限定されるものではない。
Further, the petroleum resin in the present invention is a resin obtained by polymerizing a cracked oil fraction containing a large number of unsaturated hydrocarbons by-produced by thermal decomposition of naphtha or the like. The cracked oil fraction is a BTX extraction residue of a C5 fraction and a C6 to C11 fraction, and their polymerization methods include, but are not particularly limited to, cationic polymerization, thermal polymerization, and radical polymerization. Further, a petroleum resin modified by the introduction of a functional group such as addition of a polar group such as maleic anhydride or the introduction of a carboxyl group or the addition of a monomer is also included in the resin. Although the maximum value of the loss coefficient is greatly improved by adding a petroleum resin, in the present invention, a so-called C9 petroleum resin obtained by polymerizing a BTX extraction residue is preferable, and particularly, a resin containing 50% by weight or more of indene and styrene of the C9 component is preferable. In addition, the ratio of indene to styrene is preferably such that styrene accounts for more than half. Also,
It is preferable that the number average molecular weight is 500 or more and 1500 or less. However, the petroleum resin used in the present invention is not limited to this description.

【0029】石油樹脂の添加量はポリ塩化ビニル系樹脂
100重量部に対して5重量部以上200重量部以下、
さらには10重量部以上100重量部以下が好ましい。
5重量部未満では損失係数はあまり向上せず、また20
0重量部を超えて添加すると加工性が極端に悪化する。
また、(a)〜(e)の樹脂と石油樹脂を合わせて10
重量部以上100重量部以下がより好ましい。
The amount of the petroleum resin is from 5 to 200 parts by weight based on 100 parts by weight of the polyvinyl chloride resin.
Further, the amount is preferably from 10 parts by weight to 100 parts by weight.
If the amount is less than 5 parts by weight, the loss factor does not improve much,
If added in excess of 0 parts by weight, the processability will be extremely deteriorated.
In addition, the resin (a) to (e) and the petroleum resin
More than 100 parts by weight is more preferable.

【0030】本発明による振動エネルギ−吸収材には、
ポリ塩化ビニル系樹脂に通常添加される炭酸カルシウ
ム、タルク等に代表される無機充填材、三酸化アンチモ
ンやホウ酸亜鉛に代表される難燃剤、マイカやグラファ
イトに代表されるフレ−ク状充填材などを必要に応じて
添加することができる。
The vibration energy absorbing material according to the present invention includes:
Inorganic fillers such as calcium carbonate and talc which are usually added to polyvinyl chloride resins, flame retardants such as antimony trioxide and zinc borate, and flake-like fillers such as mica and graphite And the like can be added as needed.

【0031】また、必要に応じて通常ポリ塩化ビニル系
樹脂の改質に用いられるアクリロニトリル−ブタジエン
ゴム,エチレン−酢酸ビニル共重合体,アクリル樹脂等
をブレンドすることもできる。
If necessary, acrylonitrile-butadiene rubber, ethylene-vinyl acetate copolymer, acrylic resin and the like which are usually used for modifying polyvinyl chloride resin can be blended.

【0032】本発明による振動エネルギ−吸収材は従来
のポリ塩化ビニル系樹脂の成形加工法であるカレンダ−
加工、押し出し加工、射出成形、発泡成形、圧縮成形等
の手法により自由に成形加工することができる。
The vibration energy absorbing material according to the present invention is a calender made by a conventional polyvinyl chloride resin molding method.
It can be formed freely by a method such as processing, extrusion, injection molding, foam molding, compression molding and the like.

【0033】本発明により得られた振動エネルギ−吸収
材は精密電子機器,精密測定機器等のように振動により
その精度に影響が生じるような支持部材、電子部品製造
ライン等の製造工程に精度が要求されるような設備の防
振材、パッキング,ガスケット等の固定部材、音響機器
等の積層部材に使用できる。さらに自動車や産業機器な
どの振動の激しい部位に直接貼り付けて振動を抑制した
り、ステンレス鋼板やアルミ板等の金属材料を始めとす
る木材、無機材料等の他材料と複合して用いることもで
きる。
The vibration energy absorbing material obtained according to the present invention has high accuracy in the manufacturing process of a support member or an electronic component manufacturing line where the accuracy is affected by vibration, such as precision electronic equipment and precision measuring equipment. It can be used as a vibration-proof material for equipment as required, a fixing member such as packing and gasket, and a laminated member such as audio equipment. Furthermore, it can be directly attached to highly vibrating parts such as automobiles and industrial equipment to suppress vibrations, or used in combination with other materials such as metal materials such as stainless steel plates and aluminum plates, wood, inorganic materials, etc. it can.

【0034】[0034]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to these examples.

【0035】[0035]

【0036】[0036]

【0037】実施例 エチレン−塩化ビニル共重合樹脂(リューロン E−2
800,東ソー(株)製)100重量部、フタル酸エス
テルとしてジシクロヘキシルフタレート(DCHP、大
阪有機化学(株)製)40重量部、リン酸エステルとし
てトリキシレニルホスフェート(TXP、大八化学
(株)製)70重量部、ケトン樹脂(ケトンレジンK−
90,荒川化学工業(株)製)20重量部、安定剤とし
てOG−756(水澤化学(株)製)5重量部、難燃剤
として三酸化アンチモン(ATOX−S、日本精鉱
(株)製)7重量部を混合し、温度150℃にて約5分
間ロール混練し、厚み0.2mmのシートを得た。
Example 1 Ethylene-vinyl chloride copolymer resin (Ryuron E-2)
800, manufactured by Tosoh Corporation) 100 parts by weight, phthalic acid S
Dicyclohexyl phthalate (DCHP, large
Osaka Organic Chemical Co., Ltd.) 40 parts by weight, phosphate ester
Trixylenyl phosphate (TXP, Daihachi Chemical
70 parts by weight, ketone resin (ketone resin K-
90, Arakawa Chemical Industry Co., Ltd.) 20 parts by weight, as stabilizer
OG-756 (manufactured by Mizusawa Chemical Co., Ltd.) 5 parts by weight, flame retardant
As antimony trioxide (ATOX-S, Nippon Concentrate)
7 parts by weight) and mixed at a temperature of 150 ° C for about 5 minutes.
Roll kneading was performed to obtain a sheet having a thickness of 0.2 mm.

【0038】実施例 実施例1においてケトン樹脂の代わりに低分子量ポリス
チレン(ハイマーST95,三洋化成工業(株)製)2
0重量部を用いた以外は全く同一の操作により目的の組
成物を得た。
Example 2 In Example 1, low molecular weight polystyrene (Hymer ST95, manufactured by Sanyo Chemical Industries, Ltd.) was used instead of the ketone resin.
The desired composition was obtained by exactly the same operation except that 0 parts by weight was used.

【0039】実施例3,4 実施例において用いた低分子量ポリスチレンの代わり
に軟化点の異なる低分子量ポリスチレン(ハイマーST
120,ハイマーSB150,三洋化成工業(株)製)
20重量部を用いた以外は全く同一の操作により目的の
組成物を得た。
Examples 3 and 4 Instead of the low molecular weight polystyrene used in Example 2 , low molecular weight polystyrenes having different softening points (Hymer ST
120, Hymer SB150, manufactured by Sanyo Chemical Industry Co., Ltd.)
A target composition was obtained by exactly the same operation except that 20 parts by weight was used.

【0040】実施例 実施例1においてケトン樹脂の代わりにマレイン酸樹脂
(トラフィックス4102P、荒川化学工業(株)製)
20重量部を用いた以外は全く同一の操作により目的の
組成物を得た。
Example 5 A maleic acid resin (traffics 4102P, manufactured by Arakawa Chemical Industries, Ltd.) was used instead of the ketone resin in Example 1.
A target composition was obtained by exactly the same operation except that 20 parts by weight was used.

【0041】実施例 実施例1においてケトン樹脂の代わりに不均化ロジン
(ロンジスR、荒川化学工業(株)製)20重量部を用
いた以外は全く同一の操作により目的の組成物を得た。
Example 6 The same procedure as in Example 1 was repeated except that 20 parts by weight of disproportionated rosin (Longis R, manufactured by Arakawa Chemical Industry Co., Ltd.) was used instead of the ketone resin to obtain the desired composition. Was.

【0042】実施例 実施例1においてケトン樹脂の代わりに水添ロジンエス
テル(超淡色ロジンエステルKE−311、荒川化学工
業(株)製)20重量部を用いた以外は全く同一の操作
により目的の組成物を得た。
Example 7 The procedure was performed in exactly the same manner as in Example 1 except that 20 parts by weight of hydrogenated rosin ester (ultra-light rosin ester KE-311, manufactured by Arakawa Chemical Industry Co., Ltd.) was used instead of the ketone resin. Was obtained.

【0043】実施例 実施例1においてケトン樹脂の代わりにロジンエステル
(スーパーエステルA−100、荒川化学工業(株)
製)20重量部を用いた以外は全く同一の操作により目
的の組成物を得た。
Example 8 A rosin ester (Superester A-100, Arakawa Chemical Industries, Ltd.) was used in Example 1 in place of the ketone resin.
Except for using 20 parts by weight) to obtain the target composition.

【0044】実施例 実施例1においてケトン樹脂の代わりにロジン(ガムロ
ジンCG−WW、荒川化学工業(株)製)20重量部を
用いた以外は全く同一の操作により目的の組成物を得
た。
Example 9 The same procedure as in Example 1 was repeated, except that 20 parts by weight of rosin (gum rosin CG-WW, manufactured by Arakawa Chemical Industry Co., Ltd.) was used instead of the ketone resin to obtain a target composition. .

【0045】実施例10 実施例1においてケトン樹脂の代わりにテルペン樹脂
(YSレジンTO−105、安原油脂(株)製)20重
量部を用いた以外は全く同一の操作により目的の組成物
を得た。
Example 10 The same procedure as in Example 1 was repeated, except that 20 parts by weight of a terpene resin (YS Resin TO-105, manufactured by Yasuhara Yushi Co., Ltd.) was used instead of the ketone resin. Was.

【0046】[0046]

【0047】[0047]

【0048】[0048]

【0049】実施例11 実施例5においてさらに実施例6で用いた不均化ロジン
20重量部を加えた以外は全く同一の操作により目的の
組成物を得た。
Example 11 A target composition was obtained in exactly the same manner as in Example 5, except that 20 parts by weight of the disproportionated rosin used in Example 6 was added.

【0050】[0050]

【0051】実施例12 実施例7においてジシクロヘキシルフタレートを20重
量部にして、さらに石油樹脂(ペトコールLX−T、東
ソー(株)製)20重量部を加えた以外は全く同一の操
作により目的の組成物を得た。
Example 12 The same procedure as in Example 7 was repeated except that dicyclohexyl phthalate was used in an amount of 20 parts by weight and petroleum resin (Petokol LX-T, manufactured by Tosoh Corporation) was added in an amount of 20 parts by weight. I got something.

【0052】比較例1 実施例1においてケトン樹脂を加えない以外は全く同一
の操作により目的の組成物を得た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that no ketone resin was added, to obtain a target composition.

【0053】比較例2 比較例1においてジシクロヘキシルフタレ−トを60重
量部にした以外は全く同一の操作により目的の組成物を
得た。
Comparative Example 2 The same procedure as in Comparative Example 1 was repeated except that the amount of dicyclohexyl phthalate was changed to 60 parts by weight, to obtain a target composition.

【0054】比較例3 比較例1においてジシクロヘキシルフタレ−トを90重
量部にした以外は全く同一の操作により目的の組成物を
得た。
Comparative Example 3 The same procedure as in Comparative Example 1 was repeated except that the amount of dicyclohexyl phthalate was changed to 90 parts by weight to obtain a target composition.

【0055】[損失係数(tanδ)の評価]実施例・
比較例で得られた組成物のシ−トを、非共振型強制振動
法に基づく測定装置である粘弾性アナライザ−RSAI
I(レオメトリックス・ファ−イ−スト社製)を用いて
昇温速度2℃/分、測定周波数10Hzにより損失係数
の測定を行った。この時の損失係数のピ−ク値、及びそ
の時の温度を表1に示す。
[Evaluation of Loss Factor (tan δ)]
A sheet of the composition obtained in the comparative example was subjected to a viscoelastic analyzer RSAI, which is a measuring device based on a non-resonant type forced vibration method.
I (manufactured by Rheometrics Fast Company) was used to measure the loss coefficient at a heating rate of 2 ° C./min and a measurement frequency of 10 Hz. Table 1 shows the peak value of the loss coefficient at this time and the temperature at that time.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【発明の効果】以上の説明から明らかなように、本発明
によればポリ塩化ビニル系樹脂に特定のフタル酸エステ
ル、またはフタル酸エステル及びリン酸エステルと、特
定の樹脂を複合化させることによって、優れた経済性と
高い損失係数を有した振動エネルギ−吸収材が得られ
る。
As is apparent from the above description, according to the present invention, a polyvinyl chloride resin is combined with a specific phthalate, or a phthalate and a phosphate, and a specific resin. Thus, a vibration energy absorbing material having excellent economic efficiency and a high loss coefficient can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08L 45:02) C08L 45:02) (C08L 27/06 (C08L 27/06 61:00) 61:00) (C08L 27/06 (C08L 27/06 93:00) 93:00) (C08L 27/06 (C08L 27/06 25:06) 25:06) (56)参考文献 特開 平4−117455(JP,A) 特開 昭61−192753(JP,A) 特開 平3−70758(JP,A) 特開 平4−57835(JP,A) 特開 平4−153208(JP,A) 特開 平4−81444(JP,A) 特開 平3−59055(JP,A) 特開 昭59−1557(JP,A) 特開 昭53−121847(JP,A) 特開 昭58−208016(JP,A) 特開 昭49−90335(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 27/06 C08L 57/02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI C08L 45:02) C08L 45:02) (C08L 27/06 (C08L 27/06 61:00) 61:00) (C08L 27 / 06 (C08L 27/06 93:00) 93:00) (C08L 27/06 (C08L 27/06 25:06) 25:06) (56) References JP-A-4-117455 (JP, A) JP-A JP-A-61-192753 (JP, A) JP-A-3-70758 (JP, A) JP-A-4-57835 (JP, A) JP-A-4-153208 (JP, A) JP-A-4-81444 (JP JP-A-3-59055 (JP, A) JP-A-59-1557 (JP, A) JP-A-53-121847 (JP, A) JP-A-58-208016 (JP, A) JP-A-58-208016 49-90335 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C08L 27/06 C08L 57/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリ塩化ビニル系樹脂100重量部に対し
て下記(I)の構造を有するフタル酸エステル、または
該フタル酸エステル及び下記(II)の構造を有するリ
ン酸エステルを5〜200重量部、及び下記(a)〜
(e)の群から選ばれた少なくとも一種の樹脂を5〜2
00重量部含んでなるポリ塩化ビニル系樹脂組成物。 【化1】 【化2】 (式中、R1,R2はC3〜C8からなる単環式炭化水素、
3〜R5はC6〜C9からなる芳香族単環式炭化水素であ
る。) (a)ケトン樹脂 (b)低分子量ポリスチレン (c)マレイン酸樹脂 (d)ロジン系樹脂 (e)テルペン系樹脂
1. A phthalic acid ester having the following structure (I), or a phthalic acid ester and a phosphoric acid ester having the following structure (II): 5 to 200 parts by weight based on 100 parts by weight of a polyvinyl chloride resin. And the following (a) to
(E) at least one resin selected from the group consisting of 5-2
A polyvinyl chloride resin composition comprising 00 parts by weight. Embedded image Embedded image (Wherein R 1 and R 2 are monocyclic hydrocarbons consisting of C 3 to C 8 ,
R 3 to R 5 are an aromatic monocyclic hydrocarbon composed of C 6 to C 9 . (A) Ketone resin (b) Low molecular weight polystyrene (c) Maleic resin (d) Rosin resin (e) Terpene resin
【請求項2】ポリ塩化ビニル系樹脂100重量部に対
し、石油樹脂を5〜200重量部含んでなる請求項1に
記載のポリ塩化ビニル系樹脂組成物。
2. The polyvinyl chloride resin composition according to claim 1, comprising 5 to 200 parts by weight of a petroleum resin based on 100 parts by weight of the polyvinyl chloride resin.
【請求項3】請求項1または請求項2に記載の組成物か
らなる振動エネルギー吸収材。
3. A vibration energy absorbing material comprising the composition according to claim 1 or 2.
JP27055991A 1991-09-24 1991-09-24 Polyvinyl chloride resin composition Expired - Fee Related JP3321815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27055991A JP3321815B2 (en) 1991-09-24 1991-09-24 Polyvinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27055991A JP3321815B2 (en) 1991-09-24 1991-09-24 Polyvinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPH0578537A JPH0578537A (en) 1993-03-30
JP3321815B2 true JP3321815B2 (en) 2002-09-09

Family

ID=17487859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27055991A Expired - Fee Related JP3321815B2 (en) 1991-09-24 1991-09-24 Polyvinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JP3321815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757056B1 (en) * 2007-05-08 2007-09-11 (주)한국전설엔지니어링 Power distributor control system
WO2018143002A1 (en) * 2017-02-03 2018-08-09 三井化学株式会社 Resin composition and molded body formed therefrom

Also Published As

Publication number Publication date
JPH0578537A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
JP3256548B2 (en) Free radical polymerizable composition containing p-halogenated aniline derivative
US4670485A (en) Hardenable polyester molding materials
JP4503579B2 (en) Damping material
JP5197111B2 (en) Damping material composition and damping structure using the same
JP6619525B2 (en) Optical pressure-sensitive adhesive composition and optical pressure-sensitive adhesive layer containing the cured product
JP3321815B2 (en) Polyvinyl chloride resin composition
JP3298122B2 (en) Polyvinyl chloride resin composition
CN112708205B (en) Low-odor impact-resistant scratch-resistant polypropylene composition and preparation method thereof
JP3151945B2 (en) Polyvinyl chloride resin composition
JPH0565382A (en) Polyvinyl chloride resin composition
JP3177654B2 (en) Vibration energy absorber
JP4822661B2 (en) Vibration energy absorber
JP3141504B2 (en) Polyvinyl chloride resin composition
JP3077299B2 (en) Vibration energy absorber
JP4364005B2 (en) Vibration control and sound insulation sheet for folded plate roof, vibration control and sound insulation material, and folded plate roof
US5777065A (en) Polyesters from dilute dicyclopentadiene
JP3536404B2 (en) Polyvinyl chloride resin composition
JPH06155666A (en) Damping sound-insulating sheet
JP3339487B2 (en) Polyvinyl chloride resin composition and vibration energy absorbing material comprising the same
EP0483863B1 (en) Poly(vinyl chloride)-based resin composition
EP0810263B1 (en) A block copolymer-based elastomeric composition
JP3206057B2 (en) Ethylene-vinyl acetate copolymer composition
JP3383995B2 (en) Vibration energy absorber
JP2004123939A (en) Adhesive composition for laminating glass
JPH0725971B2 (en) Methyl methacrylate-α-methylstyrene copolymer resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080628

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090628

LAPS Cancellation because of no payment of annual fees