JP3321738B2 - Method of forming antireflection film - Google Patents

Method of forming antireflection film

Info

Publication number
JP3321738B2
JP3321738B2 JP01413894A JP1413894A JP3321738B2 JP 3321738 B2 JP3321738 B2 JP 3321738B2 JP 01413894 A JP01413894 A JP 01413894A JP 1413894 A JP1413894 A JP 1413894A JP 3321738 B2 JP3321738 B2 JP 3321738B2
Authority
JP
Japan
Prior art keywords
film
antireflection film
wavelength
refractive index
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01413894A
Other languages
Japanese (ja)
Other versions
JPH07221004A (en
Inventor
久嗣 白井
政男 金沢
伸二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP01413894A priority Critical patent/JP3321738B2/en
Publication of JPH07221004A publication Critical patent/JPH07221004A/en
Application granted granted Critical
Publication of JP3321738B2 publication Critical patent/JP3321738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フォトリソグラフィー
工程において被エッチング体上に形成される反射防止膜
を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an antireflection film formed on an object to be etched in a photolithography process.

【0002】[0002]

【従来の技術】半導体装置の製造方法において必須のフ
ォトリソグラフィー工程においては、被エッチング体で
ある半導体基板やその上に形成される金属膜等の上に反
射防止膜を形成し、その上にフォトレジストを塗布し、
その上にマスクを使用する等して、被エッチング体の選
択された領域に対応するフォトレジスト膜を露光してレ
ジストパターンを形成し、このレジストパターンをマス
クとして使用してエッチングをなしていた。反射防止膜
が形成されておらず、被エッチング膜の上に直接フォト
レジスト膜が形成されていると、フォトレジスト膜と被
エッチング膜との界面で露光光が反射し、この反射光に
よってもフォトレジスト膜が露光されるため、フォトリ
ソグラフィー法によって形成されるパターンが不正確に
なるからである。
2. Description of the Related Art In a photolithography process essential in a method of manufacturing a semiconductor device, an antireflection film is formed on a semiconductor substrate to be etched or a metal film formed thereon, and a photolithography is formed thereon. Apply resist,
A photoresist pattern corresponding to a selected region of the object to be etched is exposed by using a mask or the like to form a resist pattern, and etching is performed using the resist pattern as a mask. If the antireflection film is not formed and the photoresist film is formed directly on the film to be etched, the exposure light is reflected at the interface between the photoresist film and the film to be etched, and the reflected light causes This is because the pattern formed by the photolithography method becomes inaccurate because the resist film is exposed.

【0003】この反射防止膜としては、従来、アモルフ
ァス炭素膜、窒化チタン膜、スパッタシリコン膜等が使
用されていた。露光光としては、従来、波長が365n
mの紫外光が一般に使用されていたが、この波長の紫外
光を露光光として使用した場合、屈折率が2.17であ
り減衰係数が0.31であるアモルファス炭素の膜が反
射防止膜として極めて有効であることが知られているか
らである。なお、窒化チタンやスパッタシリコンの屈折
率や減衰係数は上記の値とは相違するが、厚さを最適値
に選ぶことにより、反射防止膜としてある程度有効であ
ることが知られている。
Conventionally, an amorphous carbon film, a titanium nitride film, a sputtered silicon film, or the like has been used as the antireflection film. Conventionally, the exposure light has a wavelength of 365 n.
m is generally used, but when ultraviolet light of this wavelength is used as exposure light, an amorphous carbon film having a refractive index of 2.17 and an attenuation coefficient of 0.31 is used as an antireflection film. This is because it is known to be extremely effective. Although the refractive index and the attenuation coefficient of titanium nitride and sputtered silicon are different from the above values, it is known that the antireflection film is effective to some extent by selecting the optimum thickness.

【0004】[0004]

【発明が解決しようとする課題】ところが、アモルファ
ス炭素の膜を形成するには多額の費用を必要とすると云
う欠点があり、また、窒化チタンやスパッタシリコンは
反射防止膜としての効果が必ずしも満足すべきものでな
いと云う欠点がある。
However, forming an amorphous carbon film has the drawback that it requires a large amount of cost, and titanium nitride and sputtered silicon must always satisfy the effect as an antireflection film. There is a drawback that it is not a kimono.

【0005】本発明の目的は、製造原価がそれ程高くな
く、しかも、反射防止膜としての効果が十分高い反射防
止膜を形成する方法を提供することにある。
An object of the present invention is to provide a method for forming an anti-reflection film whose production cost is not so high and whose effect as an anti-reflection film is sufficiently high.

【0006】[0006]

【課題を解決するための手段】上記の目的は、シリコン
をターゲットとし、不活性ガスと窒素ガスとの混合ガス
の中に含まれる窒素ガスの量を30%乃至40%にして
なすスパッタ法を使用して、一窒化一シリコン(Si
N)の膜を形成することによって達成される。
The object of the present invention is to provide a silicon
Mixed gas of inert gas and nitrogen gas
30% to 40% of the amount of nitrogen gas contained in
Using the sputtering method, the silicon mononitride (Si
This is achieved by forming a film of N) .

【0007】上記の方法で得られた一窒化一シリコン
(SiN)の膜は、屈折率も減衰係数もアモルファス炭
素膜のそれに近く、反射防止膜として、特に有効であ
る。
The silicon mononitride obtained by the above method
The (SiN) film has both a refractive index and an attenuation coefficient of amorphous carbon.
It is close to that of the base film, and is particularly effective as an anti-reflection film.
You.

【0008】[0008]

【作用】本発明の発明者は、シリコンは屈折率が6.5
1であり減衰係数が2.71であり、一方、四窒化三シ
リコン(Si3 4 )は屈折率が2.10であり減衰係
数が0である点に着目して、一窒化一シリコン(Si
N)は屈折率と減衰係数とがこれらの値の中間になり、
その結果、これらの値がアモルファス炭素の値に近くな
り、屈折率が2.17に近く減衰係数が0.31に近く
にならないかと推測して、化学量論的組成(Si
3 4 )より窒素成分が少ない窒化シリコンの膜を形成
して、これの屈折率と減衰係数とを測定して、図1
(a)(b)に示す結果を得た。図1(a)(b)は、
シリコンをターゲットとし、アルゴンガスと窒素ガスと
の混合ガス中でなすスパッタ法を使用して窒化シリコン
の膜を形成するにあたり、アルゴンガスと窒素ガスとの
混合ガス中に含まれる窒素ガスの量を0%から60%の
間に変化させて窒素成分が化学量論的組成(Si
3 4 )より少ない窒化シリコンの膜を形成し、その各
々に対して、波長が365nmの紫外光と波長が248
nmの紫外光とを使用して屈折率と減衰係数とを測定し
たものであるが、波長が365nmの紫外光である場
合、窒素ガスの量が約35%であると屈折率が2.34
であり、減衰係数が0.06であり、また、波長が24
8nmの紫外光である場合、窒素ガスの量が約35%で
あると屈折率が2.60であり、減衰係数が0.30で
あり、いずれもおゝむね満足すべき値であることを確認
した。なお、上記のスパッタ条件で形成した窒化シリコ
ンは、おゝむね一窒化一シリコンであることも確認し
た。
According to the present invention, silicon has a refractive index of 6.5.
1 and an attenuation coefficient of 2.71, while trisilicon tetranitride (Si 3 N 4 ) has a refractive index of 2.10 and an attenuation coefficient of 0. Si
N) is such that the refractive index and the attenuation coefficient are intermediate between these values,
As a result, these values are close to those of amorphous carbon, and it is estimated that the refractive index is close to 2.17 and the attenuation coefficient is close to 0.31, and the stoichiometric composition (Si
A film of silicon nitride having a lower nitrogen content than 3 N 4 ) was formed, and its refractive index and extinction coefficient were measured.
The results shown in (a) and (b) were obtained. FIGS. 1 (a) and 1 (b)
In forming a silicon nitride film using a sputtering method performed in a mixed gas of argon gas and nitrogen gas with silicon as a target, the amount of nitrogen gas contained in the mixed gas of argon gas and nitrogen gas is reduced. By changing the nitrogen component from 0% to 60%, the stoichiometric composition (Si
3 N 4 ) less silicon nitride films are formed, each having an ultraviolet light wavelength of 365 nm and a wavelength of 248
The refractive index and the extinction coefficient were measured using ultraviolet light having a wavelength of 365 nm. In the case of ultraviolet light having a wavelength of 365 nm, the refractive index was 2.34 when the amount of nitrogen gas was about 35%.
, The attenuation coefficient is 0.06, and the wavelength is 24
In the case of 8 nm ultraviolet light, when the amount of nitrogen gas is about 35%, the refractive index is 2.60, the attenuation coefficient is 0.30, and both values are almost satisfactory values. confirmed. Note that it was also confirmed that the silicon nitride formed under the above sputtering conditions was substantially monosilicon mononitride.

【0009】次に、反射率は定在波の大きさ(光強度の
周期の振幅を1周期の平均値で除した値)におゝむね比
例する点に着目して、上記の一窒化一シリコンの膜(波
長が365nmである紫外光で測定した場合、屈折率が
2.34であり、減衰係数が0.06であり、波長が2
48nmである紫外光で測定した場合、屈折率が2.6
0であり、減衰係数が0.30である一窒化一シリコン
の膜)を、厚さを種々に変えて、タングステン膜(波長
が365nmである紫外光で測定した場合、屈折率は
2.20であり、減衰係数は2.45であり、波長が2
48nmである紫外光で測定した場合、屈折率は2.6
0であり、減衰係数は0.30である。)上に形成し
て、定在波を測定し、図2(a)(b)に示す結果を得
た。図2(a)(b)によれば、前者の場合(波長が3
65nmである紫外光の場合)、一窒化一シリコンの膜
の厚さが、250Å近傍と、1,000Å近傍と、1,
800Å近傍とにおいて、定在波の大きさは0.4以下
となり、反射防止膜として適当であることが確認され、
また、後者の場合(波長が248nmである紫外光の場
合)、一窒化一シリコンの膜の厚さが、150Å近傍
と、650Å近傍とにおいて、定在波の大きさは0.4
以下となり、反射防止膜として適当であることが確認さ
れた。
Next, paying attention to the fact that the reflectance is substantially proportional to the magnitude of the standing wave (the value obtained by dividing the amplitude of the light intensity cycle by the average value of one cycle), the above-mentioned mono-nitride is considered. Silicon film (measured with ultraviolet light having a wavelength of 365 nm, a refractive index of 2.34, an attenuation coefficient of 0.06, and a wavelength of 2
When measured with ultraviolet light of 48 nm, the refractive index is 2.6.
The refractive index is 2.20 when a tungsten film (ultraviolet light having a wavelength of 365 nm) is measured for a tungsten film (ultraviolet light having a wavelength of 365 nm) by changing the thickness of a monosilicon mononitride film having an attenuation coefficient of 0.30. , The attenuation coefficient is 2.45, and the wavelength is 2
The refractive index is 2.6 when measured with ultraviolet light of 48 nm.
0 and the attenuation coefficient is 0.30. ) And standing waves were measured, and the results shown in FIGS. 2 (a) and 2 (b) were obtained. According to FIGS. 2A and 2B, the former case (wavelength is 3
(In the case of ultraviolet light of 65 nm), the thickness of the monosilicon mononitride film is about 250 °, about 1,000 °,
In the vicinity of 800 °, the magnitude of the standing wave was 0.4 or less, and it was confirmed that the standing wave was suitable as an antireflection film.
In the latter case (in the case of ultraviolet light having a wavelength of 248 nm), when the thickness of the monosilicon mononitride film is around 150 ° and around 650 °, the size of the standing wave is 0.4.
The results were as follows, and it was confirmed that the film was suitable as an antireflection film.

【0010】[0010]

【実施例】以下、図面を参照して、本発明の一実施例に
係る反射防止膜の形成方法について、さらに説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for forming an antireflection film according to one embodiment of the present invention will be further described below with reference to the drawings.

【0011】図3参照 半導体装置本体1上に、ボロンとリンとを含むシリケー
トグラス膜2を厚さ300nmにCVD法を使用して形
成し、タングステン膜3を厚さ350nmにCVD法を
使用して形成し、本実施例に係る一窒化一シリコンの膜
4を厚さ50nmにスパッタ法を使用して形成した。ス
パッタ条件は、大きさ約60リットルのスパッタ装置
に、ガス圧が2.5mTorrになるように、アルゴン等の
不活性ガスと窒素ガスとを60SCCM供給し、同時
に、窒素ガスを30SCCM供給した。堆積時間は40
秒であった。次に、フォトレジスト膜5を厚さ1.7μ
mにスピンコートした。
Referring to FIG. 3, a silicate glass film 2 containing boron and phosphorus is formed on a semiconductor device main body 1 to a thickness of 300 nm by a CVD method, and a tungsten film 3 is formed to a thickness of 350 nm by a CVD method. The film 4 of monosilicon mononitride according to the present example was formed to a thickness of 50 nm by using a sputtering method. The sputtering conditions were such that an inert gas such as argon and a nitrogen gas were supplied at 60 SCCM and a nitrogen gas was supplied at 30 SCCM to a sputtering apparatus having a size of about 60 liters so that the gas pressure became 2.5 mTorr. Deposition time is 40
Seconds. Next, a photoresist film 5 having a thickness of 1.7 μm is formed.
m was spin-coated.

【0012】図4参照 ライン−スペース0.45μmのマスク6を使用し、波
長365nmの紫外光をもって露光し、現像したとこ
ろ、ライン−スペース0.45μmのレジストパターン
51が得られた。
Referring to FIG. 4, exposure was performed using ultraviolet light having a wavelength of 365 nm using a mask 6 having a line-space of 0.45 μm, followed by development. As a result, a resist pattern 51 having a line-space of 0.45 μm was obtained.

【0013】図5参照 このレジストパターン51をマスクとして、一窒化一シ
リコンの反射防止膜4とタングステン膜3とをエッチン
グしたところ、ライン−スペース0.45μmの反射防
止膜41とタングステン膜31とが得られた。なお、不
活性ガスとしては、アルゴンガスの他に、キセノン、ク
リプトン等を用いることも可能である。また、窒素ガス
のみとしてもよい。
Referring to FIG. 5, using the resist pattern 51 as a mask, the anti-reflection film 4 and the tungsten film 3 made of mono-silicon mononitride are etched. Obtained. Note that, as the inert gas, xenon, krypton, or the like can be used in addition to the argon gas. Alternatively, only nitrogen gas may be used.

【0014】[0014]

【発明の効果】以上説明したとおり、本発明に係る反射
防止膜の形成方法には、シリコンをターゲットとし、窒
素ガスを化学量論的組成に対応する量より少なく、特
に、アルゴンガスと窒素ガスとの混合ガス中に含まれる
窒素ガスの量をおよそ30乃至40%としてあるスパッ
タ法が使用されており、その結果、反射防止膜の屈折率
と減衰係数とは、露光光が365nmのときそれぞれ約
2.34と約0.06であり、露光光が248nmのと
きそれぞれ約2.60と約0.30であり、また、反射
防止膜の厚さも、定在波の大きさが0.4以下と小さく
なるようにされているので、本発明に係る反射防止膜の
形成方法を使用して形成された反射防止膜の反射防止効
果は極めて大きい。
As described above, in the method for forming an antireflection film according to the present invention, silicon is used as a target, and nitrogen gas is used in an amount smaller than the amount corresponding to the stoichiometric composition. A sputtering method is used in which the amount of nitrogen gas contained in the mixed gas is approximately 30 to 40%, and as a result, the refractive index and the attenuation coefficient of the antireflection film are respectively reduced when the exposure light is 365 nm. It is about 2.34 and about 0.06, respectively, about 2.60 and about 0.30 when the exposure light is 248 nm, and the thickness of the antireflection film is 0.4 mm. The antireflection effect of the antireflection film formed by using the method for forming an antireflection film according to the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)(b)は、シリコンをターゲットと
し、アルゴンガスと窒素ガスとの混合ガス中でなすスパ
ッタ法を使用して窒化シリコンの膜を形成するにあた
り、アルゴンガスと窒素ガスとの混合ガス中に含まれる
窒素ガスの量を変化させて窒化シリコンの膜を形成し、
その各々に対して、波長が365nmの紫外光と波長が
248nmの紫外光とを使用して屈折率と減衰係数とを
測定したグラフである。
FIGS. 1 (a) and 1 (b) show an example in which a silicon nitride film is formed using a sputtering method in a mixed gas of an argon gas and a nitrogen gas, using a silicon gas as a target. Changing the amount of nitrogen gas contained in the mixed gas with the gas to form a silicon nitride film,
It is the graph which measured the refractive index and the extinction coefficient using ultraviolet light with a wavelength of 365 nm and ultraviolet light with a wavelength of 248 nm for each of them.

【図2】図2(a)(b)は、図1(a)(b)に示し
た最適値(アルゴンガスと窒素ガスとの混合ガス中に含
まれる窒素ガスの量が約36%である場合)の一窒化一
シリコン膜の定在波の大きさと膜厚との関係を示すグラ
フである。
FIGS. 2 (a) and 2 (b) show the optimum values shown in FIGS. 1 (a) and 1 (b) (when the amount of nitrogen gas contained in a mixed gas of argon gas and nitrogen gas is about 36%). 6 is a graph showing the relationship between the magnitude of the standing wave and the film thickness of a monosilicon mononitride film (in some cases).

【図3】本発明の一実施例に係る反射防止膜の形成方法
の第1工程完了後の断面図である。
FIG. 3 is a cross-sectional view after a first step of a method of forming an anti-reflection film according to an embodiment of the present invention.

【図4】本発明の一実施例に係る反射防止膜の形成方法
の第2工程完了後の断面図である。
FIG. 4 is a cross-sectional view after completion of a second step of the method for forming an anti-reflection film according to one embodiment of the present invention.

【図5】本発明の一実施例に係る反射防止膜の形成方法
の第3工程完了後の断面図である。
FIG. 5 is a cross-sectional view after a third step of the method for forming an antireflection film according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体装置本体 2 シリケートグラス膜 3 タングステン膜 31 エッチングされたタングステン膜 4 本発明に係る一窒化一シリコンの膜 41 反射防止膜 5 フォトレジスト膜 51 レジストパターン 6 マスク DESCRIPTION OF SYMBOLS 1 Semiconductor device main body 2 Silicate glass film 3 Tungsten film 31 Etched tungsten film 4 Monosilicon mononitride film according to the present invention 41 Antireflection film 5 Photoresist film 51 Resist pattern 6 Mask

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−201700(JP,A) 特開 平5−55130(JP,A) 特開 昭59−6540(JP,A) 特開 昭64−46932(JP,A) 特開 平1−241125(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 7/11 503 G03F 7/20 - 7/24 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-201700 (JP, A) JP-A-5-55130 (JP, A) JP-A-59-6540 (JP, A) JP-A 64-64 46932 (JP, A) JP-A-1-241125 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/027 G03F 7/11 503 G03F 7/ 20-7/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコンをターゲットとし、不活性ガス
と窒素ガスとの混合ガス中に含まれる窒素ガスの量を3
0%乃至40%にしてなすスパッタ法を使用して、窒化
シリコン膜を形成することを特徴とする反射防止膜の形
成方法。
1. An inert gas which targets silicon.
The amount of nitrogen gas contained in the mixed gas of
Nitriding using a sputtering method of 0% to 40%
A method for forming an antireflection film, comprising forming a silicon film .
JP01413894A 1994-02-08 1994-02-08 Method of forming antireflection film Expired - Lifetime JP3321738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01413894A JP3321738B2 (en) 1994-02-08 1994-02-08 Method of forming antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01413894A JP3321738B2 (en) 1994-02-08 1994-02-08 Method of forming antireflection film

Publications (2)

Publication Number Publication Date
JPH07221004A JPH07221004A (en) 1995-08-18
JP3321738B2 true JP3321738B2 (en) 2002-09-09

Family

ID=11852794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01413894A Expired - Lifetime JP3321738B2 (en) 1994-02-08 1994-02-08 Method of forming antireflection film

Country Status (1)

Country Link
JP (1) JP3321738B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7076971B2 (en) * 2017-09-28 2022-05-30 キヤノン株式会社 Imaging equipment and its manufacturing method and equipment

Also Published As

Publication number Publication date
JPH07221004A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
JP3320685B2 (en) Fine pattern forming method
US5672243A (en) Antireflection coating for highly reflective photolithographic layers comprising chromium oxide or chromium suboxide
US5539249A (en) Method and structure for forming an integrated circuit pattern on a semiconductor substrate
US6441452B2 (en) Method of reducing defects in anti-reflective coatings and semiconductor structures fabricated thereby
US20010046791A1 (en) Use of silicon oxynitride arc for metal layers
JP2000040671A (en) Method for forming metallic wiring of semiconductor element using titanium aluminum nitride anti-reflection film
US6133613A (en) Anti-reflection oxynitride film for tungsten-silicide substrates
JP3511802B2 (en) Method of forming metal wiring
JP3321738B2 (en) Method of forming antireflection film
JPH0435743B2 (en)
JP3031896B2 (en) Method for reducing the influence of reflection during the execution of photolithography
US6017816A (en) Method of fabricating A1N anti-reflection coating on metal layer
JP3289606B2 (en) Blank for halftone type phase shift mask and halftone type phase shift mask
JPH0851072A (en) Forming method of resist pattern and antireflection film
JP3185871B2 (en) Method for manufacturing semiconductor device
JP2000512079A (en) Step of etching gate by MOS technology using SiON-based hard mask
JPH06224118A (en) Microscopic pattern forming method
JPH06132286A (en) Semiconductor device and manufacture thereof
JPH0855790A (en) Resist pattern formation method and reflection preventive film formation method
JP3257245B2 (en) Method of forming fine pattern
JPH0855791A (en) Resist pattern formation method and reflection preventive film formation method
JPH06110198A (en) Method for lowering reflectivity of substrate surface
JPS61198156A (en) Improved photomask blank
JP2551079B2 (en) Method of manufacturing low reflection molybdenum silicide mask material
GB2145539A (en) Optical preparation of molybdenum surfaces

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140628

Year of fee payment: 12

EXPY Cancellation because of completion of term