JP3320190B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3320190B2
JP3320190B2 JP04812094A JP4812094A JP3320190B2 JP 3320190 B2 JP3320190 B2 JP 3320190B2 JP 04812094 A JP04812094 A JP 04812094A JP 4812094 A JP4812094 A JP 4812094A JP 3320190 B2 JP3320190 B2 JP 3320190B2
Authority
JP
Japan
Prior art keywords
pure water
hydrochloric acid
cleaned
cleaning
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04812094A
Other languages
Japanese (ja)
Other versions
JPH07263392A (en
Inventor
洋輝 小川
修三 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP04812094A priority Critical patent/JP3320190B2/en
Publication of JPH07263392A publication Critical patent/JPH07263392A/en
Application granted granted Critical
Publication of JP3320190B2 publication Critical patent/JP3320190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、詳しくは、ウェハ表面の表面状態の保障技術に
適用することができ、特に、既存の装置を用いつつ、純
水洗浄過程でウェハ表面に成長する酸化物を安価にかつ
簡便に抑制することができる半導体装置の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a technique for guaranteeing a surface condition of a wafer surface. The present invention relates to a method for manufacturing a semiconductor device capable of easily and inexpensively suppressing oxides growing on a wafer surface.

【0002】近年、半導体装置の高集積化が進むに連
れ、製造工程におけるウェハ表面の洗浄の役割は益々重
要となっている。そして、そのウェハ洗浄の役割は、ウ
ェハ表面の異物及び汚染物質の除去の他に、近年、その
ウェハ表面状態を保障することに拡張されてきている。
これらの洗浄の役割の中でも、本発明は、特にウェハ表
面状態の保障に関する。
In recent years, as semiconductor devices have become highly integrated, the role of cleaning the wafer surface in the manufacturing process has become increasingly important. In addition, the role of the wafer cleaning has recently been extended to guarantee the condition of the wafer surface, in addition to the removal of foreign substances and contaminants on the wafer surface.
Among these cleaning roles, the present invention particularly relates to ensuring the surface condition of the wafer.

【0003】[0003]

【従来の技術】従来、半導体装置の製造工程における洗
浄工程は、主としてSiウェハ等の被洗浄物表面の異物
あるいは汚染物の除去を主眼においている。しかしなが
ら、近年、半導体装置の高集積化に伴い、それを構成す
る各種の膜の膜厚が益々薄くなってきている。このこと
は、各種の膜に占める界面構造の割合が相対的に大きく
なることを示し、その化学的な構造が膜自体の質を左右
する可能性がある。即ち、被洗浄物の表面状態によって
は、その後のその上に形成する膜の膜質を左右する可能
性があり、これらは当然デバイスの電気的な特性あるい
は信頼性に影響を及ぼす。
2. Description of the Related Art Conventionally, a cleaning process in a manufacturing process of a semiconductor device mainly focuses on removing foreign substances or contaminants on the surface of an object to be cleaned such as a Si wafer. However, in recent years, with the increase in the degree of integration of semiconductor devices, the thicknesses of various films constituting the semiconductor devices have become increasingly smaller. This indicates that the proportion of the interface structure in the various films becomes relatively large, and the chemical structure may affect the quality of the film itself. That is, depending on the surface condition of the object to be cleaned, there is a possibility that the film quality of the film formed thereon may be influenced, and these naturally affect the electrical characteristics or reliability of the device.

【0004】従来の半導体装置の製造方法においては、
弗酸等の化学処理によって半導体あるいはその上に成膜
した膜の表面を露出した後、その表面上に存在する微粒
子等の異物あるいは金属等の不純物を除去するために、
純水を用いて洗浄を行っている。しかしながら、この純
水洗浄方法では、純水洗浄の過程で酸化物が被洗浄物表
面に新たに形成されるという問題があった。このよう
に、半導体やその上に成膜した膜表面に酸化物が形成さ
れた状態でデバイスを作成すると、デバイスの電気的特
性等が低下してしまう。
In a conventional method of manufacturing a semiconductor device,
After exposing the surface of the semiconductor or the film formed thereon by chemical treatment such as hydrofluoric acid, in order to remove foreign substances such as fine particles or impurities such as metal present on the surface,
Cleaning is performed using pure water. However, this pure water cleaning method has a problem that an oxide is newly formed on the surface of the object to be cleaned in the process of pure water cleaning. As described above, when a device is manufactured in a state where an oxide is formed on the surface of a semiconductor or a film formed thereon, the electrical characteristics and the like of the device deteriorate.

【0005】上記した純水洗浄での酸化物の成長につい
ては、例えばM.Morita et al.:App
l.Phys.Lett.55(1989)562.で
報告されたものがあり、これは純水の溶存酸素量に依存
することが判っている。このため、この溶存酸素量を低
減させれば、この純水洗浄時に生じる酸化物の成長を抑
制することができる。このような背景から、近年、この
溶存酸素量を制御できる純水作製装置が注目されてきて
いる。この純水作製装置によれば、純水中の溶存酸素量
を低減することができるため、純水洗浄時の被加工物表
面に成長する酸化物を抑制することができるという利点
を有する。
The growth of oxides in the above-described pure water cleaning is described in, for example, M. See Morita et al. : App
l. Phys. Lett. 55 (1989) 562. It has been found that this depends on the dissolved oxygen content of pure water. Therefore, if the amount of dissolved oxygen is reduced, it is possible to suppress the growth of oxides generated during the pure water cleaning. From such a background, in recent years, attention has been paid to a pure water producing apparatus capable of controlling the amount of dissolved oxygen. According to this pure water producing apparatus, since the amount of dissolved oxygen in pure water can be reduced, there is an advantage that oxides that grow on the surface of the workpiece during pure water cleaning can be suppressed.

【0006】[0006]

【発明が解決しようとする課題】上記した純水作製装置
を用いた従来の半導体装置の製造方法では、純水中の溶
存酸素量を低減することができるため、純水洗浄時の被
加工物表面に成長する酸化物を抑制することができると
いう利点を有しているが、この装置は、純水中の溶存酸
素量を制御する複雑で高価な制御機構等を有する等、コ
ストが増加するうえ、既存の半導体工場にこれを導入し
ようとすると、非常に大掛かりで面倒であるという問題
があった。
In the conventional method of manufacturing a semiconductor device using the above-described pure water producing apparatus, the amount of dissolved oxygen in pure water can be reduced, and therefore, the work piece during pure water cleaning can be reduced. Although it has the advantage of being able to suppress oxides growing on the surface, this device has a complicated and expensive control mechanism for controlling the amount of dissolved oxygen in pure water, which increases costs. Furthermore, there is a problem that it is very large and troublesome to introduce this into an existing semiconductor factory.

【0007】そこで、既存の装置を用いつつ純水洗浄過
程で被加工物表面に成長する酸化物を安価にかつ簡便に
抑制することができる半導体装置の製造方法を提供する
ことを目的としている。
Accordingly, it is an object of the present invention to provide a method of manufacturing a semiconductor device capable of easily and inexpensively suppressing oxides growing on the surface of a workpiece in a pure water cleaning process while using existing equipment.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
被洗浄物表面から酸化物を除去処理した後、被洗浄物表
面を純水に塩酸を添加した塩酸水溶液で洗浄する工程を
含むことを特徴とするものである。請求項2記載の発明
は、上記請求項1の発明において、前記被洗浄物表面の
酸化物除去処理は、弗酸及び緩衝弗酸処理のうち、少な
くともどちらか一方の処理で行うことを特徴とするもの
である。
According to the first aspect of the present invention,
After removing the oxide from the surface of the object to be cleaned, the method includes a step of cleaning the surface of the object to be cleaned with an aqueous hydrochloric acid solution obtained by adding hydrochloric acid to pure water. According to a second aspect of the present invention, in the first aspect of the present invention, the oxide removal treatment on the surface of the object to be cleaned is performed by at least one of hydrofluoric acid and buffered hydrofluoric acid. Is what you do.

【0009】請求項3記載の発明は、上記請求項1,2
記載の発明において、前記塩酸水溶液の塩酸濃度は、少
なくとも10ppm以上であることを特徴とするもので
ある。請求項4記載の発明は、上記請求項1乃至3記載
の発明において、前記被洗浄物は、シリコンあるいはそ
の上に形成した各種の膜であることを特徴とするもので
ある。
The third aspect of the present invention is directed to the first and second aspects.
In the invention described above, the hydrochloric acid aqueous solution has a hydrochloric acid concentration of at least 10 ppm or more. According to a fourth aspect of the present invention, in the first to third aspects, the object to be cleaned is silicon or various films formed thereon.

【0010】請求項5記載の発明は、被洗浄物を洗浄槽
内に作製した塩酸水溶液中に投入して洗浄を行った後、
更に同一槽内に純水を供給して洗浄を行うことを特徴と
するものである。請求項6記載の発明は、上記請求項5
記載の発明において、前記被洗浄物の投入は、前記洗浄
槽内に作製した前記塩酸水溶液に純水を供給し始めてか
ら行うことを特徴とするものである。
[0010] According to a fifth aspect of the present invention, after the object to be cleaned is poured into an aqueous hydrochloric acid solution prepared in a cleaning tank to perform cleaning,
Further, the cleaning is performed by supplying pure water into the same tank. The invention according to claim 6 is the invention according to claim 5.
In the invention described above, the charging of the object to be cleaned is performed after pure water is supplied to the aqueous hydrochloric acid solution prepared in the cleaning tank.

【0011】請求項7記載の発明は、上記請求項5,6
記載の発明において、前記塩酸水溶液の塩酸濃度は、少
なくとも10000ppm以上であることを特徴とする
ものである。請求項8の発明は、上記請求項5乃至7記
載の発明において、前記被洗浄物は、シリコンあるいは
その上に形成した各種の膜であることを特徴とするもの
である。
[0011] The invention according to claim 7 is the invention according to claims 5 and 6.
In the invention described above, the hydrochloric acid concentration of the aqueous hydrochloric acid solution is at least 10,000 ppm or more. According to an eighth aspect of the present invention, in the above-described fifth to seventh aspects, the object to be cleaned is silicon or various films formed thereon.

【0012】請求項9記載の発明は、上記請求項5乃至
8記載の発明において、前記洗浄は、前記被洗浄物表面
から酸化物を除去する処理の後に行うことを特徴とする
ものである。請求項10記載の発明は、上記請求項5乃
至9記載の発明において、前記被洗浄物表面の酸化物除
去処理は、弗酸及び緩衝弗酸処理のうち、少なくともど
ちらか一方の処理で行うことを特徴とするものである。
According to a ninth aspect of the present invention, in the above-described fifth to eighth aspects, the cleaning is performed after the treatment for removing the oxide from the surface of the object to be cleaned. According to a tenth aspect of the present invention, in the above-described fifth to ninth aspects, the oxide removal treatment on the surface to be cleaned is performed by at least one of hydrofluoric acid and buffered hydrofluoric acid treatments. It is characterized by the following.

【0013】請求項11記載の発明は、上記請求項5,
6記載の発明において、前記純水の供給量は、塩酸水溶
液の塩酸濃度が10ppm未満にならない量であること
を特徴とするものである。
[0013] The invention according to claim 11 is the fifth invention.
6. The invention according to claim 6, wherein the supply amount of the pure water is an amount such that the hydrochloric acid concentration of the aqueous hydrochloric acid solution does not become less than 10 ppm.

【0014】[0014]

【作用】本発明者は、鋭意検討した結果、純水中に存在
するO2 を反応させて汚染源とはならない別の化合物に
生成することができれば、純水中の溶存酸素量を低減す
ることができることに着目し、純水に塩酸を添加した塩
酸水溶液で被洗浄物表面を洗浄したところ、純水中に存
在するO2 をHCl水溶液を構成するH+ によってH2
Oに還元することができるため、純水中の溶存酸素量を
低減することができ、その結果、洗浄時に被洗浄物表面
に酸化物を生じ難くすることができた。なお、HClの
HとClは、電気陰性度に差があるため、Hの電子がC
l側に偏っており、このため、両者のHとClは、純水
中でイオン性となっている。
The present inventors have conducted intensive studies and found that if O 2 present in pure water can be reacted to form another compound that does not become a pollutant, the amount of dissolved oxygen in pure water can be reduced. When the surface of the object to be cleaned was washed with an aqueous hydrochloric acid solution obtained by adding hydrochloric acid to pure water, O 2 present in the pure water was converted into H 2 by H + constituting the aqueous HCl solution.
Since it can be reduced to O, the amount of dissolved oxygen in pure water can be reduced, and as a result, oxides can be hardly generated on the surface of the object to be cleaned during cleaning. Since H and Cl of HCl have a difference in electronegativity, the electrons of H are C
H and Cl of both are ionic in the pure water.

【0015】このため、前述の如く、純水中に存在する
2 をHCl水溶液を構成するH+によってH2 Oに還
元することができる。この時、塩酸水溶液の塩酸濃度
は、通常の純水の溶存酸素量が室温、大気気圧下で約1
0ppmであることを考慮すると、少なくとも10pp
m以上であるのが好ましく、この場合、純水中の溶存酸
素量を効率良く低減することができる。ここで、塩酸濃
度を10ppmより小さくすると、HCl水溶液を構成
するH+ の量が減って純水中の溶存酸素量を低減する効
果が小さくなる。また、塩酸水溶液の濃度は、少なくと
も1vol%以上であるのが好ましく、この場合、純水
中の溶存酸素量を効率良く低減することができる。ここ
で、塩素濃度を1vol%より小さくすると、HCl水
溶液を構成するH+ の量が減って純水中の溶存酸素量を
低減する効果が小さくなる。
For this reason, as described above, O 2 present in pure water can be reduced to H 2 O by H + constituting an aqueous HCl solution. At this time, the hydrochloric acid concentration of the aqueous hydrochloric acid solution is such that the amount of dissolved oxygen in ordinary pure water is about 1 at room temperature and atmospheric pressure.
Considering 0 ppm, at least 10 pp
m or more, and in this case, the amount of dissolved oxygen in pure water can be efficiently reduced. Here, when the hydrochloric acid concentration is less than 10 ppm, the amount of H + constituting the aqueous HCl solution is reduced, and the effect of reducing the amount of dissolved oxygen in pure water is reduced. Further, the concentration of the aqueous hydrochloric acid solution is preferably at least 1 vol% or more. In this case, the amount of dissolved oxygen in pure water can be efficiently reduced. Here, when the chlorine concentration is less than 1 vol%, the amount of H + constituting the aqueous HCl solution is reduced, and the effect of reducing the amount of dissolved oxygen in pure water is reduced.

【0016】本発明に係る洗浄は、被洗浄物洗浄槽内に
作製した塩酸水溶液中に投入して行えばよく、また、こ
の投入後に通常の流水純水洗浄を行うように構成しても
よく、この場合、塩酸水溶液処理で除去できなかった表
面の異物等を効率良く除去することができる。この時、
被洗浄物の投入は、洗浄内に作製した塩酸水溶液に純水
を供給し始めてから行うように構成してもよく、この場
合、工場内でロボットを使って自動ライン化を実現する
ことができる。
The cleaning according to the present invention may be carried out by charging the aqueous solution of hydrochloric acid prepared in the cleaning tank for the object to be cleaned, or may be configured to perform normal running pure water cleaning after the charging. In this case, foreign substances on the surface that could not be removed by the hydrochloric acid aqueous solution treatment can be efficiently removed. At this time,
The object to be cleaned may be introduced after pure water is supplied to the hydrochloric acid aqueous solution prepared in the cleaning, and in this case, automatic production can be realized using a robot in the factory. .

【0017】本発明に係る被洗浄物は、シリコンあるい
はその上に形成したゲート酸化膜等の各種の膜に好まし
く適用させることができる。また、本発明に係る洗浄
は、前記被洗浄物表面から酸化物を除去する処理の後に
行う場合に好ましく適用させることができる。この被洗
浄物表面の酸化物除去処理は、弗酸あるいは緩衝弗酸処
理で行うのが好ましく、この場合、被洗浄物表面に生じ
た酸化物を効率良く除去することができる。
The object to be cleaned according to the present invention can be preferably applied to various films such as silicon or a gate oxide film formed thereon. Further, the cleaning according to the present invention can be preferably applied when the cleaning is performed after the treatment for removing the oxide from the surface of the object to be cleaned. This treatment for removing oxides on the surface of the object to be cleaned is preferably performed by hydrofluoric acid or buffered hydrofluoric acid treatment. In this case, oxides generated on the surface of the object to be cleaned can be efficiently removed.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して説明
する。まず、被洗浄物をHF処理した後に、通常の純水
洗浄する比較例の洗浄方法について説明する。図1はH
F処理を施した直後とその後の通常のオーバーフロー純
水洗浄を10分間行った時のSi(100)表面のSi
−H伸縮振動による吸収の現れる波数範囲の赤外吸収ス
ペクトルを示す図である。HF処理は、Si等の被洗浄
物表面に生じているSiO2 を除去し、その後、被洗浄
物のSi表面をHで終端することが知られている。この
図1には、被洗浄物の最表面のSi原子にHが1つ結合
したモノハイドライド(〜2080cm-1)、2つ結合
したダイハイドライド(〜2110cm-1)、3つ結合
したトリハイドライド(〜2130cm-1)で終端され
ており、酸化物等が存在していないことを示している。
また、この後に通常のオーバーフロー純水洗浄を10分
間行った場合の赤外吸収スペクトルも同図に示してい
る。この場合、HF処理後直後の場合と異なり、215
0〜2300cm-1の周辺に吸収が現れている。この吸
収は、Si表面のSi−H結合のバックボンドのSi−
Si結合の間にOが入り込んだSi−H結合による吸収
であり、これから、純水洗浄時に被洗浄物のSi表面に
再度酸化物が成長しているのが判る。即ち、比較例の洗
浄方法では、HF処理によって被洗浄物のSi表面の酸
化物(SiO2 )を除去しても、その後に表面の異物、
あるいは不純物を除去する目的で行う純水洗浄過程で新
たに被洗浄物のSi表面に酸化物が成長してしまうとい
う問題が生じる。
Embodiments of the present invention will be described below with reference to the drawings. First, a description will be given of a cleaning method of a comparative example in which an object to be cleaned is subjected to HF treatment and then normal pure water cleaning. FIG. 1 shows H
Immediately after the F treatment and after the normal overflow pure water cleaning for 10 minutes, the Si (100) surface Si
It is a figure which shows the infrared absorption spectrum of the wave number range where the absorption by -H stretching vibration appears. It is known that the HF treatment removes SiO 2 generated on the surface of the object to be cleaned, such as Si, and then terminates the Si surface of the object to be cleaned with H. The Figure 1, Monohydride H to Si atoms of the outermost surface bound one of the object to be cleaned (~2080cm -1), 2 single bound dihydride (~2110cm -1), 3 single bound tri hydride (〜2130 cm −1 ), indicating that no oxide or the like is present.
The infrared absorption spectrum when normal overflow pure water washing is performed for 10 minutes thereafter is also shown in FIG. In this case, unlike the case immediately after the HF processing, 215
Absorption appears around 0-2300 cm -1 . This absorption is due to the Si—H bond of the Si—H bond on the Si surface.
This is absorption due to the Si—H bond in which O has entered between the Si bonds, and it can be seen from this that the oxide has grown again on the Si surface of the object to be cleaned during the pure water cleaning. That is, in the cleaning method of the comparative example, even if the oxide (SiO 2 ) on the Si surface of the object to be cleaned is removed by the HF treatment, foreign matter on the surface,
Alternatively, there arises a problem that an oxide newly grows on the Si surface of the object to be cleaned in a pure water cleaning process performed for the purpose of removing impurities.

【0019】(実施例1)次に、図2はHF処理後にオ
ーバーフロー純水洗浄を10分間行った比較例の場合と
HF処理後に洗浄槽内に作製した1000ppmのHC
l溶液に10分間浸漬した場合の本実施例1の場合のS
i(100)表面のSi−H伸縮振動による吸収の現れ
る波数範囲の赤外吸収スペクトルを示す図である。この
図2から、純水に塩酸を添加したHCl溶液で被洗浄物
を洗浄する本実施例1では、塩酸を添加しないで純水で
洗浄する比較例の場合よりも、被洗浄物のSi表面に酸
化物の成長が抑制されていることが判る。
(Example 1) Next, FIG. 2 shows a comparative example in which overflow pure water cleaning was performed for 10 minutes after HF treatment and a 1000 ppm HC produced in a cleaning tank after HF treatment.
1 in Example 1 when immersed in a solution for 10 minutes.
It is a figure which shows the infrared absorption spectrum of the wave number range in which the absorption by the Si-H stretching vibration of the i (100) surface appears. From FIG. 2, it can be seen that in the first embodiment in which the object to be cleaned is washed with an HCl solution in which hydrochloric acid is added to pure water, the Si surface of the object to be cleaned is greater than in the comparative example in which cleaning is performed with pure water without adding hydrochloric acid. It can be seen that oxide growth was suppressed.

【0020】このように、本実施例1では、純水に塩酸
を添加した塩酸水溶液で被洗浄物表面を洗浄したため、
純水中に存在するO2 をHCl水溶液を構成するH+
よってH2 Oに還元することができるため、純水の溶存
酸素量を低減することができ、その結果、洗浄時に被洗
浄物表面に酸化物を形成し難くすることができる。な
お、塩酸(HCl)のHとClは、電気陰性度に差があ
るため、Hの電子がCl側に偏っており、このため、両
者のHとClは、純水中でイオン性となっている。この
ため、前述の如く、純水中に存在するO2 をHCl水溶
液を構成するH+によってH2 Oに還元することができ
る。
As described above, in the first embodiment, since the surface of the object to be cleaned is washed with the hydrochloric acid aqueous solution obtained by adding hydrochloric acid to pure water.
O 2 present in the pure water can be reduced to H 2 O by H + constituting the aqueous HCl solution, so that the amount of dissolved oxygen in the pure water can be reduced. It is possible to make it difficult to form an oxide. Since H and Cl of hydrochloric acid (HCl) have a difference in electronegativity, electrons of H are biased toward the Cl side. Therefore, both H and Cl become ionic in pure water. ing. Therefore, as described above, O 2 present in pure water can be reduced to H 2 O by H + constituting an aqueous HCl solution.

【0021】(実施例2)次に、図3はHF処理後にオ
ーバーフロー純水洗浄を10分間行った比較例の場合と
HF処理後に10000ppm(1vel%)のHCl
溶液にSi(100)ウェハを投入し、引き続き同一槽
に純水を供給しながらオーバーフロー洗浄を10分間行
った本実施例2の場合のSi(100)表面のSi−H
伸縮振動による吸収の現れる波数範囲の赤外吸収スペク
トルを示す図である。この図3から、HCl溶液に被洗
浄物を投入した後、純水洗浄する本実施例2では、若干
酸化物の成長が認められるが、比較例の純水洗浄の場合
と比較すると、明らかに酸化物の成長が抑制されている
ことが判る。
(Example 2) Next, FIG. 3 shows a case of a comparative example in which overflow pure water cleaning was performed for 10 minutes after the HF treatment, and 10,000 ppm (1 vel%) of HCl after the HF treatment.
A Si (100) wafer was put into the solution, and overflow cleaning was performed for 10 minutes while continuously supplying pure water to the same tank.
It is a figure which shows the infrared absorption spectrum of the wave number range in which the absorption by stretching vibration appears. As can be seen from FIG. 3, oxides were slightly grown in Example 2 in which the object to be cleaned was poured into the HCl solution and then washed with pure water. It can be seen that oxide growth is suppressed.

【0022】このように、本実施例2では、純水に塩酸
を添加した塩酸水溶液で被洗浄物表面を洗浄したため、
純水中に存在するO2 をHCl水溶液を構成するH+
よってH2 Oに還元することができるため、純水の溶存
酸素量を低減することができ、その結果、洗浄時に被洗
浄物表面に酸化物を形成し難くすることができる。な
お、塩酸(HCl)のHとClは、電気陰性度に差があ
るため、Hの電子がCl側に偏っており、このため、両
者のHとClは、純水中でイオン性となっている。この
ため、前述の如く、純水中に存在するO2 をHCl水溶
液を構成するH+によってH2 Oに還元することができ
る。
As described above, in the second embodiment, the surface of the object to be cleaned is washed with the hydrochloric acid aqueous solution obtained by adding hydrochloric acid to pure water.
O 2 present in the pure water can be reduced to H 2 O by H + constituting the aqueous HCl solution, so that the amount of dissolved oxygen in the pure water can be reduced. It is possible to make it difficult to form an oxide. Since H and Cl of hydrochloric acid (HCl) have a difference in electronegativity, electrons of H are biased toward the Cl side. Therefore, both H and Cl become ionic in pure water. ing. Therefore, as described above, O 2 present in pure water can be reduced to H 2 O by H + constituting an aqueous HCl solution.

【0023】また、本実施例2では、被洗浄物を塩酸水
溶液で処理した後、純水を供給しながら流水洗浄を行っ
ているため、塩酸水溶液処理で除去できなかった異物等
を効率良く除去することができる。なお、本実施例2に
おいては、被洗浄物の投入を、洗浄槽内に作製した塩酸
水溶液に純水を供給し始めてから行うように構成しても
よく、上記と同様の効果を得ることができる。
In the second embodiment, after the object to be cleaned is treated with an aqueous solution of hydrochloric acid and then washed with running water while supplying pure water, foreign substances which cannot be removed by the treatment with the aqueous solution of hydrochloric acid can be efficiently removed. can do. In the second embodiment, the cleaning object may be charged after pure water is supplied to the hydrochloric acid aqueous solution prepared in the cleaning tank, and the same effect as described above may be obtained. it can.

【0024】また、上記実施例2においては、洗浄初期
の塩酸濃度を10000ppm(1vel%)している
ため、純水を供給しながら流水洗浄を行っても、塩酸濃
度が10ppm以下に下がらないようにしているため、
洗浄液中の溶存酸素量が低減したままの状態を保つこと
ができる。なお、上記実施例1,2においては、洗浄中
の塩酸水溶液の塩酸濃度は、少なくとも10ppm以上
であるのが好ましく、特に実施例2においては、純水供
給前の塩酸濃度が10000ppm以上であることが好
ましい。この場合、純水中の溶存酸素量を効率良く低減
することができる。
In Example 2, the hydrochloric acid concentration in the initial stage of the washing is 10,000 ppm (1 vel%), so that the hydrochloric acid concentration does not drop to 10 ppm or less even if the washing is carried out with running pure water. Because
It is possible to maintain a state in which the amount of dissolved oxygen in the cleaning liquid has been reduced. In Examples 1 and 2, the hydrochloric acid concentration of the aqueous hydrochloric acid solution during washing is preferably at least 10 ppm, and particularly in Example 2, the hydrochloric acid concentration before pure water supply was 10,000 ppm or more. Is preferred. In this case, the amount of dissolved oxygen in pure water can be efficiently reduced.

【0025】上記実施例1,2は、被洗浄物をシリコン
で構成する好ましい態様の場合について説明したが、本
発明においては、例えば、そのSi上に形成したゲート
酸化膜等の各種の膜にも好ましく適用させることができ
る。
In the first and second embodiments, the preferred embodiment in which the object to be cleaned is made of silicon has been described. However, in the present invention, for example, various films such as a gate oxide film formed on the Si are used. Can also be preferably applied.

【0026】[0026]

【発明の効果】本発明によれば、既存の装置を用いつつ
純粋洗浄過程で被加工表面に成長する酸化物を安価にか
つ簡便に抑制することができるという効果がある。
According to the present invention, there is an effect that oxides that grow on the surface to be processed during the pure cleaning process can be easily and inexpensively controlled using an existing apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較例のHF処理直後とその後オーバーフロー
純水洗浄を10分間行った時のSi(100)表面のS
i−H伸縮振動による吸収の現れる波数範囲の赤外吸収
スペクトルを示す図である。
FIG. 1 shows the S (100) surface of Si (100) surface immediately after the HF treatment of a comparative example and after the overflow pure water cleaning was performed for 10 minutes.
It is a figure which shows the infrared absorption spectrum of the wave number range in which the absorption by iH stretching vibration appears.

【図2】HF処理後にオーバーフロー純水洗浄を10分
間行った比較例の場合とHF処理後に0.1vol%
(1000ppm)のHCl溶液に10分間浸漬した本
実施例1の場合のSi(100)表面のSi−H伸縮振
動による吸収の現れる波数範囲の赤外吸収スペクトルを
示す図である。
FIG. 2 shows the case of a comparative example in which overflow pure water cleaning was performed for 10 minutes after the HF treatment, and 0.1 vol% after the HF treatment.
It is a figure which shows the infrared-absorption spectrum of the wave number range in which the absorption by Si-H stretching vibration of the Si (100) surface in the case of this Example 1 immersed in (1000 ppm) HCl solution for 10 minutes appears.

【図3】HF処理後にオーバーフロー純水洗浄を10分
間行った比較例の場合とHF処理後に1vol%(10
000ppm)のHCl溶液にウェハを投入し、引き続
きオーバーフロー純水洗浄を10分間行った本実施例2
の場合のSi(100)表面のSi−H伸縮振動による
吸収の現れる波数範囲の赤外吸収スペクトルを示す図で
ある。
FIG. 3 shows a case of a comparative example in which overflow pure water cleaning was performed for 10 minutes after HF treatment, and 1 vol% (10%) after HF treatment.
Example 2 in which the wafer was put into an HCl solution of 2,000 ppm, and then the wafer was washed with overflowed pure water for 10 minutes.
FIG. 9 is a diagram showing an infrared absorption spectrum in a wave number range in which absorption due to Si—H stretching vibration of the Si (100) surface occurs in the case of FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−21595(JP,A) 特開 平5−175182(JP,A) 特開 平3−228327(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 H01L 21/306 H01L 21/308 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-21595 (JP, A) JP-A-5-175182 (JP, A) JP-A-3-228327 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 21/304 H01L 21/306 H01L 21/308

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被洗浄物表面から酸化物を除去処理した
後、被洗浄物表面を純水に塩酸を添加した塩酸水溶液で
洗浄する工程を含むことを特徴とする半導体装置の製造
方法。
1. A method for manufacturing a semiconductor device, comprising: after removing an oxide from a surface of an object to be cleaned, cleaning the surface of the object to be cleaned with an aqueous hydrochloric acid solution obtained by adding hydrochloric acid to pure water.
【請求項2】前記被洗浄物表面の酸化物除去処理は、弗
酸及び緩衝弗酸処理のうち、少なくともどちらか一方の
処理で行うことを特徴とする請求項1記載の半導体装置
の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the oxide removal treatment on the surface of the object to be cleaned is performed by at least one of hydrofluoric acid treatment and buffered hydrofluoric acid treatment. .
【請求項3】前記塩酸水溶液の塩酸濃度は、少なくとも
10ppm以上であることを特徴とする請求項1又は
記載の半導体装置の製造方法。
Wherein the hydrochloric acid concentration of the aqueous hydrochloric acid solution, according to claim 1 or 2, characterized in that at least 10ppm or more
The manufacturing method of the semiconductor device described in the above .
【請求項4】前記被洗浄物は、シリコンあるいはその上
に形成した各種の膜であることを特徴とする請求項1乃
至3記載の半導体装置の製造方法。
4. The method according to claim 1, wherein the object to be cleaned is silicon or various films formed thereon.
【請求項5】被洗浄物を洗浄槽内に作製した塩酸水溶液
中に投入して洗浄を行った後、更に同一槽内に純水を供
給して洗浄を行うことを特徴とする半導体装置の製造方
法。
5. The semiconductor device according to claim 1, wherein the object to be cleaned is poured into an aqueous hydrochloric acid solution prepared in a cleaning tank to perform cleaning, and then pure water is further supplied to the same tank to perform cleaning. Production method.
【請求項6】前記被洗浄物の投入は、前記洗浄槽内に作
製した前記塩酸水溶液に純水を供給し始めてから行うこ
とを特徴とする請求項5記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 5, wherein the object to be cleaned is charged after pure water is supplied to the aqueous hydrochloric acid solution prepared in the cleaning tank.
【請求項7】前記塩酸水溶液の塩酸濃度は、少なくとも
10000ppm以上であることを特徴とする請求項
5,6記載の半導体装置の製造方法。
7. The method according to claim 5, wherein a hydrochloric acid concentration of the hydrochloric acid aqueous solution is at least 10,000 ppm or more.
【請求項8】前記被洗浄物は、シリコンあるいはその上
に形成した各種の膜であることを特徴とする請求項5乃
至7記載の半導体装置の製造方法。
8. The method according to claim 5, wherein the object to be cleaned is silicon or various films formed thereon.
【請求項9】前記洗浄は、前記被洗浄物表面から酸化物
を除去する処理の後に行うことを特徴とする請求項5乃
至8記載の半導体装置の製造方法。
9. The method of manufacturing a semiconductor device according to claim 5, wherein said cleaning is performed after a process of removing an oxide from the surface of the object to be cleaned.
【請求項10】前記被洗浄物表面の酸化物除去処理は、
弗酸及び緩衝弗酸処理のうち、少なくともどちらか一方
の処理で行うことを特徴とする請求項5乃至9記載の半
導体装置の製造方法。
10. The process for removing oxides on the surface of the object to be cleaned,
10. The method of manufacturing a semiconductor device according to claim 5, wherein at least one of hydrofluoric acid and buffered hydrofluoric acid treatment is performed.
【請求項11】前記純水の供給量は、塩酸水溶液の塩酸
濃度が10ppm未満にならない量であることを特徴と
する請求項5,6記載の半導体装置の製造方法。
11. The method according to claim 5, wherein the supply amount of the pure water is such that the hydrochloric acid concentration of the aqueous hydrochloric acid solution does not become less than 10 ppm.
JP04812094A 1994-03-18 1994-03-18 Method for manufacturing semiconductor device Expired - Lifetime JP3320190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04812094A JP3320190B2 (en) 1994-03-18 1994-03-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04812094A JP3320190B2 (en) 1994-03-18 1994-03-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07263392A JPH07263392A (en) 1995-10-13
JP3320190B2 true JP3320190B2 (en) 2002-09-03

Family

ID=12794475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04812094A Expired - Lifetime JP3320190B2 (en) 1994-03-18 1994-03-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3320190B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204478A (en) 1998-01-19 1999-07-30 Mitsubishi Electric Corp Method and apparatus for cleaning semiconductor substrate
JP6529715B2 (en) * 2013-11-29 2019-06-12 株式会社Sumco Method of manufacturing silicon wafer
CN107863288A (en) * 2016-09-22 2018-03-30 中芯国际集成电路制造(上海)有限公司 A kind of method for cleaning Semiconductor substrate

Also Published As

Publication number Publication date
JPH07263392A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
JP4667860B2 (en) Method for wet cleaning of material surface and manufacturing process of electronic, optical or optoelectronic device using the same
EP1737026B1 (en) Method of surface treating III-V semiconductor compound based substrates and method of manufacturing III-V compound semiconductors
JPH0878377A (en) Cleaning method before heat treatment
JPH08264500A (en) Cleaning of substrate
JPH04234118A (en) Reduction in introduced granular sub- stances on semiconductor wafer
US5567244A (en) Process for cleaning semiconductor devices
EP0718873A2 (en) Cleaning process for hydrophobic silicon wafers
JPH08250460A (en) Surface treating solution for semiconductor substrate and method and device for treating surface of semiconductor substrate using the solution
JPH09293701A (en) Manufacture of semiconductor
JPH085655B2 (en) Cleaning method for polycrystalline silicon
JP3320190B2 (en) Method for manufacturing semiconductor device
WO2023218828A1 (en) Cleaning solution and wafer cleaning method
US7132372B2 (en) Method for preparing a semiconductor substrate surface for semiconductor device fabrication
JP2713787B2 (en) Semiconductor wet cleaning method
JP3076202B2 (en) Method of depositing polysilicon film for EG
JP2884948B2 (en) Semiconductor substrate processing method
JP2843946B2 (en) Silicon substrate surface cleaning method
EP1132951A1 (en) Process of cleaning silicon prior to formation of the gate oxide
JP3337895B2 (en) Semiconductor substrate cleaning method
JPH11283924A (en) Semiconductor wafer manufacture
JPS63129633A (en) Surface treatment for semiconductor
JP3595681B2 (en) Manufacturing method of epitaxial wafer
JP2001326209A (en) Method for treating surface of silicon substrate
JP3336175B2 (en) Silicon wafer and cleaning method thereof
JP3489329B2 (en) Silicon wafer surface treatment method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140621

Year of fee payment: 12

EXPY Cancellation because of completion of term