JP3319880B2 - Anode for producing hypochlorite and method for producing the same - Google Patents

Anode for producing hypochlorite and method for producing the same

Info

Publication number
JP3319880B2
JP3319880B2 JP17068494A JP17068494A JP3319880B2 JP 3319880 B2 JP3319880 B2 JP 3319880B2 JP 17068494 A JP17068494 A JP 17068494A JP 17068494 A JP17068494 A JP 17068494A JP 3319880 B2 JP3319880 B2 JP 3319880B2
Authority
JP
Japan
Prior art keywords
anode
oxide
weight
producing
hypochlorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17068494A
Other languages
Japanese (ja)
Other versions
JPH0835089A (en
Inventor
修 有元
剛陸 岸
Original Assignee
クロリンエンジニアズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クロリンエンジニアズ株式会社 filed Critical クロリンエンジニアズ株式会社
Priority to JP17068494A priority Critical patent/JP3319880B2/en
Publication of JPH0835089A publication Critical patent/JPH0835089A/en
Application granted granted Critical
Publication of JP3319880B2 publication Critical patent/JP3319880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塩化物イオンを電解酸
化する場合に使用する陽極及びその製造方法に関し、と
くに次亜塩素酸塩の電気分解による製造に好適な陽極及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode used for electrolytic oxidation of chloride ions and a method for producing the same, and more particularly to an anode suitable for producing hypochlorite by electrolysis and a method for producing the same.

【0002】[0002]

【従来の技術】塩化物イオンを電解酸化し次亜塩素酸イ
オンを製造するための、貴金属酸化物の被膜を有する陽
極は周知である。例えば、MODERN CHLOR−
ALKALI TECHNOLOGY (KEVIN
WALL著、ELLIS HORWOOD LIMIT
ED発行、1986年、P.400)には、白金めっ
き、白金と酸化イリジウム混合物、酸化ルテニウムと酸
化チタンの混合物からなる電極被膜を有する電極が記載
されている。また、特開昭63−199887号公報に
は酸化イリジウム、特開平4−277081号公報には
白金とパラジウム合金の被膜を有する電極がそれぞれ記
載されている。さらに、特開昭63−143277号公
報にはパラジウム、ルテニウム、チタンの酸化物と白金
からなる被膜を有する電極が記載されている。
2. Description of the Related Art Anodes having a coating of a noble metal oxide for electrolytic oxidation of chloride ions to produce hypochlorite ions are well known. For example, MODERN CHLOR-
ALKALI TECHNOLOGY (KEVIN
WALL, ELLIS HORWOOD LIMIT
ED, 1986, P.E. 400) describes an electrode having an electrode coating composed of platinum plating, a mixture of platinum and iridium oxide, and a mixture of ruthenium oxide and titanium oxide. Japanese Patent Application Laid-Open No. 63-199887 describes an iridium oxide, and Japanese Patent Application Laid-Open No. 4-277081 describes an electrode having a coating of platinum and a palladium alloy. Further, JP-A-63-143277 discloses an electrode having a coating composed of an oxide of palladium, ruthenium and titanium and platinum.

【0003】これらの従来の電極を陽極とした場合に
は、塩化物イオンから次亜塩素酸イオンを製造するため
の陽極被膜は、食塩分解率が低く、低濃度の次亜塩素酸
イオンを含有する溶液を製造する場合は、概ね満足でき
る電流効率が得られるが、食塩分解率が高い場合や有効
塩素濃度が4重量%以上の次亜塩素酸イオン含有溶液を
製造する場合は、電流効率が低く工業的に満足できない
ものである。
When these conventional electrodes are used as anodes, the anode coating for producing hypochlorite ions from chloride ions has a low salt decomposition rate and contains low concentrations of hypochlorite ions. When a solution is prepared, a satisfactory current efficiency can be obtained. However, when a salt decomposition rate is high or when a solution containing hypochlorite ions having an effective chlorine concentration of 4% by weight or more is manufactured, the current efficiency is improved. It is low and cannot be industrially satisfactory.

【0004】[0004]

【発明が解決しようとする課題】本発明は、食塩分解率
を上げても電流効率が高く、しかも有効塩素濃度4重量
%以上のものが高電流効率で得られる陽極を提供するこ
とを課題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an anode which has a high current efficiency even when the salt decomposition rate is increased and which has an effective chlorine concentration of 4% by weight or more with a high current efficiency. Is what you do.

【0005】[0005]

【課題を解決するための手段】本発明は、導電性基体上
に電極活性被覆を形成した次亜塩素酸塩製造用の陽極に
おいて、10〜45重量%の酸化パラジウムと、15〜
45重量%の酸化ルテニウムと、10〜40重量%の二
酸化チタンと、10〜20重量%の白金とともに、さら
に2〜10重量%のコバルト、ランタン、セリウムおよ
びイットリウムから選ばれる少なくとも1種の金属の酸
化物を含有する被膜を有するものであり、また、導電性
基体上に電極活性被膜を形成した次亜塩素酸塩製造用の
陽極を製造する方法において、ルテニウム、チタン、白
金のそれぞれの化合物を含有する溶液にパラジウム酸化
物並びにコバルト、ランタン、セリウムおよびイットリ
ウムから選ばれる少なくとも1種の金属の酸化物を分散
させてスラリー状塗布液を形成し、これを電極基体上に
塗布し、酸素含有雰囲気において焼成する前記の次亜塩
素酸塩製造用の陽極の製造方法である。
According to the present invention, there is provided an anode for producing hypochlorite having an electrode active coating formed on a conductive substrate, comprising 10 to 45% by weight of palladium oxide and 15 to 45% by weight.
45% by weight of ruthenium oxide, 10 to 40% by weight of titanium dioxide, 10 to 20% by weight of platinum, and 2 to 10% by weight of at least one metal selected from cobalt, lanthanum, cerium and yttrium. It has a coating containing an oxide, and, in a method for producing an anode for the production of hypochlorite having an electrode active coating formed on a conductive substrate, ruthenium, titanium, each compound of platinum A palladium oxide and an oxide of at least one metal selected from cobalt, lanthanum, cerium and yttrium are dispersed in the contained solution to form a slurry-like coating solution, which is coated on an electrode substrate, and an oxygen-containing atmosphere is formed. And a method for producing an anode for producing hypochlorite.

【0006】また、スラリー状塗布液が、固体成分とし
て、パラジウムの酸化物並びにコバルト、ランタン、セ
リウム、イットリウムから選ばれる少なくとも1種の金
属の酸化物とともに、塩化ルテニウム、塩化白金酸、ブ
トキシチタン、およびブタノールからなる溶液からなる
陽極の製造方法である。
[0006] Further, the slurry-like coating solution comprises, as solid components, ruthenium chloride, chloroplatinic acid, butoxytitanium, together with palladium oxide and at least one metal oxide selected from cobalt, lanthanum, cerium and yttrium. And a method for producing an anode comprising a solution comprising butanol.

【0007】すなわち、本発明の電極活性被膜を形成し
た陽極は、従来より陽極用の電極活性被膜として使用さ
れているパラジウム、ルテニウムおよびチタンのそれぞ
れの酸化物と白金に加えてコバルト、ランタン、セリウ
ム、イットリウムから選ばれる少なくとも1種の金属の
酸化物を含有したものである。
That is, the anode on which the electrode active film of the present invention is formed is made of cobalt, lanthanum, cerium in addition to the respective oxides and platinum of palladium, ruthenium and titanium conventionally used as the electrode active film for the anode. And oxides of at least one metal selected from yttrium.

【0008】本発明の陽極被膜の組成は、酸化パラジウ
ム10〜45重量%、酸化ルテニウム15〜45重量
%、二酸化チタン10〜40重量%、白金10〜20重
量%に加えて、酸化コバルト、酸化ランタン、酸化セリ
ウム、酸化イットリウムのうち少なくとも1種を2〜1
0重量%添加することが好ましい。
The composition of the anodic coating of the present invention comprises 10 to 45% by weight of palladium oxide, 15 to 45% by weight of ruthenium oxide, 10 to 40% by weight of titanium dioxide, and 10 to 20% by weight of platinum. At least one of lanthanum, cerium oxide and yttrium oxide is 2-1
It is preferable to add 0% by weight.

【0009】コバルト、ランタン、セリウム、イットリ
ウムのそれぞれの酸化物のうち少なくとも1種の混合割
合が、2重量%未満あるいは10重量%以上の場合は、
食塩分解率が高い場合や次亜塩素酸イオン濃度が4重量
%以上では、塩化物イオン酸化の効率が低下するため好
ましくない。
When the mixing ratio of at least one of the respective oxides of cobalt, lanthanum, cerium and yttrium is less than 2% by weight or more than 10% by weight,
When the salt decomposition rate is high or the hypochlorite ion concentration is 4% by weight or more, the efficiency of chloride ion oxidation is reduced, which is not preferable.

【0010】また、コバルト、ランタン、セリウム、イ
ットリウムのそれぞれの酸化物を2種以上を使用する場
合には、酸化物の合計の存在割合を上記の範囲内とすれ
ばよい。
When two or more oxides of cobalt, lanthanum, cerium and yttrium are used, the total content of the oxides may be within the above range.

【0011】本発明の陽極の製造は、酸化物の固体成分
とともに金属成分を含有する溶液を含むスラリー状塗布
液を塗布し、乾燥した後に酸素含有雰囲気中において焼
成することによって得ることができる。スラリー状塗布
液の固体成分は、パラジウムの酸化物とコバルト、ラン
タン、セリウム、イットリウムから選ばれる少なくとも
1種の金属の酸化物を含有し、溶液成分として塩化ルテ
ニウム、塩化白金酸、ブトキシチタン等の金属成分を有
機溶剤に溶解したものが好ましく、有機溶剤としては、
ブタノールを用いることができる。また、スラリー状塗
布液とすることによってスラリー状塗布液に固形成分と
して添加した酸化物が電極活性被膜の生成に悪影響を及
ぼすことはなく、電解特性の優れた陽極を得ることがで
きる。
The production of the anode of the present invention can be obtained by applying a slurry coating solution containing a solution containing a metal component together with a solid component of an oxide, followed by drying and firing in an oxygen-containing atmosphere. The solid component of the slurry-like coating solution contains an oxide of palladium and an oxide of at least one metal selected from cobalt, lanthanum, cerium, and yttrium, and includes ruthenium chloride, chloroplatinic acid, butoxytitanium, and the like as solution components. It is preferable that the metal component is dissolved in an organic solvent, and as the organic solvent,
Butanol can be used. Further, by using the slurry-like coating solution, an oxide added as a solid component to the slurry-like coating solution does not adversely affect the formation of the electrode active film, and an anode having excellent electrolytic characteristics can be obtained.

【0012】スラリー状塗布液に使用する固体成分の粒
径は0.1μm以上1μm未満がよく、固体成分の粒径
が0.1μm未満の場合は、塩化物イオンの酸化効率の
上昇の効果が十分ではなく、粒径が小さいために成分の
調製に特殊な装置が必要となる。また、固体成分の粒径
が1μm以上の場合は、基体表面に均一に塗布すること
が困難となり好ましくない。
The particle size of the solid component used in the slurry coating solution is preferably 0.1 μm or more and less than 1 μm. When the particle size of the solid component is less than 0.1 μm, the effect of increasing the oxidation efficiency of chloride ions is reduced. Insufficient and small particle size requires special equipment for component preparation. On the other hand, if the particle size of the solid component is 1 μm or more, it is difficult to apply the solid component uniformly on the substrate surface, which is not preferable.

【0013】本発明で使用するコバルト、ランタン、セ
リウム、イットリウムのそれぞれの酸化物としては、C
23、Co34 、La23、CeO2、Y23の化学
式を有するものが好ましい。これらの酸化物は、製造す
る方法は問わないが、金属塩水溶液とアルカリを反応さ
せた後加熱脱水したものが好適である。また、単一の金
属の酸化物、2種以上の金属の共晶酸化物、2種以上の
金属酸化物の混合物であることができる。
The oxides of cobalt, lanthanum, cerium, and yttrium used in the present invention include C
Those having a chemical formula of o 2 O 3 , Co 3 O 4 , La 2 O 3 , CeO 2 , Y 2 O 3 are preferable. These oxides may be produced by any method, but those obtained by reacting an aqueous metal salt solution with an alkali and then dehydrating by heating are preferable. Further, it may be a single metal oxide, a eutectic oxide of two or more metals, or a mixture of two or more metal oxides.

【0014】スラリー状塗布液は使用時に、適切な撹拌
をして固体成分が常に一定濃度で懸濁している状態とす
ることが望ましい。塗布液量が少ない場合は、マグネッ
トスターラーや筆による撹拌で十分であるが、塗布液量
が多い場合は、撹拌機やシェカー等による撹拌がよい。
It is desirable that the slurry-like coating liquid is appropriately stirred at the time of use so that the solid component is always suspended at a constant concentration. When the amount of the coating liquid is small, stirring with a magnet stirrer or a brush is sufficient, but when the amount of the coating liquid is large, stirring with a stirrer or a shaker is preferable.

【0015】本発明の陽極は、電極基体にサンドブラス
トや酸処理によるエッチング等による表面の粗面化等の
前処理を施した後に、水洗、乾燥しスラリー状塗布液を
塗布する。塗布はブラシ、刷毛、ロール等を使用するの
がよい。塗布液を塗った基体は室温で乾燥され、さらに
電気炉で加熱される。
The anode of the present invention is prepared by subjecting the electrode substrate to a pretreatment such as surface roughening by sandblasting or etching with an acid treatment, and then washing with water and drying to apply a slurry coating solution. It is preferable to use a brush, a brush, a roll, or the like for application. The substrate coated with the coating solution is dried at room temperature and further heated in an electric furnace.

【0016】スラリー状塗布液の塗布、乾燥、加熱焼成
工程は、5〜10回繰り返し、所定の厚みの被膜を形成
することができる。焼成は、電気炉中で酸素含有雰囲気
において400〜600℃で5〜30分間の加熱を行う
ことによって行うことができる。
The steps of applying, drying and heating and baking the slurry-like coating solution are repeated 5 to 10 times to form a film having a predetermined thickness. The firing can be performed by heating at 400 to 600 ° C. in an oxygen-containing atmosphere in an electric furnace for 5 to 30 minutes.

【0017】スラリー状塗布液を電極基体への塗布回数
が少ないと過電圧が高いとか陽極活性が低いといったこ
とがおこり、また塗布回数が多いと回数に見合うだけの
過電圧低下や陽極活性向上が得られないので、5〜10
回が好ましい。
If the number of times the slurry-like coating solution is applied to the electrode substrate is small, the overvoltage is high or the anode activity is low, and if the number of coatings is large, the overvoltage is reduced and the anode activity is improved in proportion to the number. No, 5-10
Times are preferred.

【0018】以上のようにして得られた、陽極の電極活
性被膜はスラリー状塗布液中の固体成分であるパラジウ
ム、コバルト、ランタン、セリウム、イットリウム等の
金属の酸化物が酸化ルテニウム、酸化チタン、白金の多
孔状混合マトリックスで固定された構成となっており、
また多孔状混合マトリックスの結晶構造には、スラリー
状塗布液の固体成分は何ら影響を与えないので機械的強
度の大きい被膜ができる。
The electrode active film of the anode obtained as described above is obtained by converting solid oxides of metals such as palladium, cobalt, lanthanum, cerium and yttrium into ruthenium oxide, titanium oxide and the like. It is fixed by a porous mixed matrix of platinum,
Further, since the solid component of the slurry-like coating liquid has no effect on the crystal structure of the porous mixed matrix, a film having high mechanical strength can be formed.

【0019】本発明の陽極の基体には、チタン、タンタ
ル等の薄膜形成性金属が使用できるが、チタンが最も好
ましい。
As the substrate of the anode of the present invention, a thin film-forming metal such as titanium or tantalum can be used, but titanium is most preferable.

【0020】陽極の基体の形状は、棒状、円筒状、板
状、エキスパンデッドメタル状、穿孔板状、簾状等の任
意の形状のものが使用できる。
The shape of the substrate of the anode may be any shape such as a bar, a cylinder, a plate, an expanded metal, a perforated plate, and a mat.

【0021】本発明によって得られた陽極は、食塩濃度
25〜320グラム/リットルの塩水を隔膜なしで電解
し、有効塩素濃度0.1〜80グラム/リットルの次亜
塩素酸ナトリウム溶液を製造するのに適している。低濃
度の次亜塩素酸塩を得る場合には、低濃度の食塩水溶液
を使用し、高濃度の次亜塩素酸塩を得る場合には、高濃
度の食塩水溶液を使用することが好ましい。また、電気
分解は、電流密度1〜50A/dm2 、温度5〜40℃
で行うことができる。
The anode obtained according to the present invention is obtained by electrolyzing salt water having a salt concentration of 25 to 320 g / l without a diaphragm to produce a sodium hypochlorite solution having an effective chlorine concentration of 0.1 to 80 g / l. Suitable for When obtaining a low concentration of hypochlorite, it is preferable to use a low-concentration saline solution, and when obtaining a high-concentration hypochlorite, it is preferable to use a high-concentration saline solution. The electrolysis is performed at a current density of 1 to 50 A / dm 2 and a temperature of 5 to 40 ° C.
Can be done with

【0022】[0022]

【作用】本発明の陽極は、パラジウム、ルテニウム、チ
タンのそれぞれの酸化物、白金及びコバルト、ランタ
ン、セリウム、イットリウムの少なくとも1種の酸化物
からなる被膜を電極活性物質として電極基体上に形成し
たものであり、食塩水の電気分解に使用した場合には、
食塩分解率を上昇させても電流効率の低下が少なく、ま
た4重量%以上の有効塩素濃度を有する高濃度の次亜塩
素酸ナトリウム溶液を得ることができる。
In the anode of the present invention, a coating composed of oxides of palladium, ruthenium and titanium, and at least one oxide of platinum, cobalt, lanthanum, cerium and yttrium is formed on an electrode substrate as an electrode active material. When used for electrolysis of saline,
Even if the salt decomposition rate is increased, a decrease in current efficiency is small, and a high-concentration sodium hypochlorite solution having an effective chlorine concentration of 4% by weight or more can be obtained.

【0023】[0023]

【実施例】以下に本発明の実施例を示し、本発明をさら
に詳細に説明する。
The present invention will be described in more detail with reference to the following examples.

【0024】実施例1 縦、横5cmのチタン板をサンドブラストとシュウ酸に
よるエッチングによって表面の粗面化等の前処理をし前
処理したチタンに、塩化ルテニウム、テトラ−n−ブト
キシチタン、塩化白金酸を含有する溶液に、酸化パラジ
ウム粒子とともに、四三酸化コバルト、酸化ランタン、
酸化セリウム、酸化イットリウムから選ばれる少なくと
も1種の酸化物を含有するスラリーを調整し、得られた
スラリーを塗布乾燥し、空気含有雰囲気において電気炉
で500℃で10分間焼成する操作を4回繰り返し行
い、さらに1回塗布乾燥し同様に30分間電気炉で加熱
焼成し、表1に組成を記載の被膜を有する試料番号1〜
12の陽極を形成した。
Example 1 A titanium plate having a length of 5 cm and a width of 5 cm was subjected to pretreatment such as surface roughening by sandblasting and etching with oxalic acid, and the pretreated titanium was added to ruthenium chloride, tetra-n-butoxytitanium and platinum chloride. In a solution containing an acid, along with palladium oxide particles, cobalt trioxide, lanthanum oxide,
An operation of preparing a slurry containing at least one oxide selected from cerium oxide and yttrium oxide, applying and drying the obtained slurry, and baking at 500 ° C. for 10 minutes in an electric furnace in an air-containing atmosphere is repeated four times. The sample was further coated and dried once, and then baked by heating in an electric furnace for 30 minutes in the same manner.
Twelve anodes were formed.

【0025】得られた陽極を以下の方法によって評価を
行いその結果を表1に記載する。
The obtained anode was evaluated by the following methods, and the results are shown in Table 1.

【0026】縦30mm、横115mm、高さ80mm
の電解槽に、本発明の陽極を取り付けるとともに、縦5
0mm、横10mmのチタン板を陰極として電極間距離
2mmで陽極面積を基準にして電流密度40A/dm2
で、250グラム/リットルの濃度の食塩水を電気分解
し、電解液の有効塩素濃度が4重量%になった時の平均
電流効率を求め、得られた電流効率を表1に示す。
Height 30 mm, width 115 mm, height 80 mm
The anode of the present invention is attached to the
The current density is 40 A / dm 2 based on the anode area at a distance between the electrodes of 2 mm using a 0 mm, 10 mm wide titanium plate as the cathode.
Then, the saline solution having a concentration of 250 g / liter was electrolyzed, and the average current efficiency when the effective chlorine concentration of the electrolytic solution became 4% by weight was obtained. The obtained current efficiency is shown in Table 1.

【0027】比較例1 コバルト、ランタン、セリウム、イットリウムのいずれ
の酸化物も用いなかった点を除いて実施例1と同様に表
1に記載の組成を有する陽極を製造し、実施例1と同様
に評価をしその結果を試料番号13〜16として表1に
示す。
Comparative Example 1 An anode having the composition shown in Table 1 was produced in the same manner as in Example 1 except that no oxide of cobalt, lanthanum, cerium, or yttrium was used. And the results are shown in Table 1 as sample numbers 13 to 16.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 実施例1と同様に製造した陽極を、電解温度23〜25
℃、電流密度20A/dm2 、塩水濃度28グラム/リ
ットルに電解条件を変更し、有効塩素濃度が12000
ppmになった時の平均電流効率を求めた。評価結果を
電極の組成とともに、表2に試料番号17〜28として
示す。
Example 2 An anode manufactured in the same manner as in Example 1 was used at an electrolysis temperature of 23 to 25.
C, current density 20 A / dm 2 , salt water concentration 28 g / l, and the effective chlorine concentration was 12,000.
The average current efficiency at the time of ppm was determined. The evaluation results are shown in Table 2 as sample numbers 17 to 28 together with the compositions of the electrodes.

【0030】比較例2 コバルト、ランタン、セリウム、イットリウムのいずれ
の金属の酸化物も用いなかった点を除いて実施例1と同
様に表1に記載の組成を有する陽極を製造し、実施例1
と同様に評価をし、その結果を電極組成とともに、試料
番号29〜32として表2に示す。
Comparative Example 2 An anode having the composition shown in Table 1 was produced in the same manner as in Example 1 except that oxides of any of the metals cobalt, lanthanum, cerium and yttrium were not used.
The results are shown in Table 2 as sample numbers 29 to 32 together with the electrode composition.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例3 実施例1と同様の電解条件で、電解性能の経時変化を測
定した。試料番号33は試料番号2と、34は6と、3
5は8と、36は11と同一組成である。電流効率を表
3に示す。
Example 3 Under the same electrolysis conditions as in Example 1, the change over time in the electrolysis performance was measured. Sample No. 33 is Sample No. 2, 34 is 6 and 3
5 has the same composition as 8 and 36 has the same composition as 11. Table 3 shows the current efficiency.

【0033】比較例3 コバルト、ランタン、セリウム、イットリウムのいずれ
の金属のアセチルアセトナートを用いて、酸化パラジウ
ムのみスラリー状で、他はすべて液状とした塗布液を調
整し、試料番号33〜36と同一組成の陽極を作成し
た。試料番号37は33と、38は34と、39は35
と、そして40は36とそれぞれ同一組成に調整した。
実施例3と同様の電解条件で、電解性能の経時変化を測
定し、電流効率を表3に示す。
Comparative Example 3 Using acetylacetonate of any metal of cobalt, lanthanum, cerium and yttrium, a coating solution in which only palladium oxide was in a slurry state and all others were in a liquid state was prepared. An anode having the same composition was prepared. Sample No. 37 is 33, 38 is 34, and 39 is 35
And 40 were adjusted to the same composition as 36.
Under the same electrolysis conditions as in Example 3, the change over time in electrolysis performance was measured, and the current efficiency is shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】以上のように、本発明の陽極は、酸化物
の固体成分と金属成分含有溶液を含有するスラリー状の
塗布液を塗布して焼成した被膜を有しており、塩化物イ
オンの酸化効率が高く、高い電流効率で高濃度次亜塩素
酸イオンを生成できるので、従来の陽極より低い電力原
単位で高濃度の次亜塩素酸塩を得ることが製造できる。
As described above, the anode of the present invention has a coating obtained by applying a slurry coating solution containing a solution containing a solid component of an oxide and a metal component and firing it. Since the oxidization efficiency is high and high-concentration hypochlorite ions can be generated with high current efficiency, it is possible to produce high-concentration hypochlorite with a lower power consumption unit than conventional anodes.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性基体上に電極活性被覆を形成した
次亜塩素酸塩製造用の陽極において、10〜45重量%
の酸化パラジウムと、15〜45重量%の酸化ルテニウ
ムと、10〜40重量%の二酸化チタンと、10〜20
重量%の白金とともに、さらに2〜10重量%のコバル
ト、ランタン、セリウムおよびイットリウムから選ばれ
る少なくとも1種の金属の酸化物を含有する被膜を有す
ることを特徴とする次亜塩素酸塩製造用の陽極。
1. An anode for producing hypochlorite having an electrode active coating formed on a conductive substrate, comprising 10 to 45% by weight.
Palladium oxide, 15 to 45% by weight ruthenium oxide, 10 to 40% by weight titanium dioxide, 10 to 20% by weight.
Characterized in that it has a coating containing an oxide of at least one metal selected from the group consisting of cobalt, lanthanum, cerium and yttrium together with 2% by weight of platinum together with 2% by weight of platinum. anode.
【請求項2】 導電性基体上に電極活性被膜を形成した
次亜塩素酸塩製造用の陽極を製造する方法において、ル
テニウム、チタン、白金のそれぞれの化合物を含有する
溶液にパラジウム酸化物並びにコバルト、ランタン、セ
リウムおよびイットリウムから選ばれる少なくとも1種
の金属の酸化物を分散させてスラリー状塗布液を形成
し、これを電極基体上に塗布し、酸素含有雰囲気におい
て焼成することを特徴とする請求項1記載の次亜塩素酸
塩製造用の陽極の製造方法。
2. A method for producing an anode for producing hypochlorite having an electrode active film formed on a conductive substrate, the method comprising the steps of: adding palladium oxide and cobalt to a solution containing each compound of ruthenium, titanium and platinum; An oxide of at least one metal selected from the group consisting of lanthanum, cerium and yttrium is dispersed to form a slurry coating solution, which is coated on an electrode substrate and fired in an oxygen-containing atmosphere. Item 6. The method for producing an anode for producing hypochlorite according to Item 1.
JP17068494A 1994-07-22 1994-07-22 Anode for producing hypochlorite and method for producing the same Expired - Fee Related JP3319880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17068494A JP3319880B2 (en) 1994-07-22 1994-07-22 Anode for producing hypochlorite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17068494A JP3319880B2 (en) 1994-07-22 1994-07-22 Anode for producing hypochlorite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0835089A JPH0835089A (en) 1996-02-06
JP3319880B2 true JP3319880B2 (en) 2002-09-03

Family

ID=15909483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17068494A Expired - Fee Related JP3319880B2 (en) 1994-07-22 1994-07-22 Anode for producing hypochlorite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3319880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058702A (en) 2015-09-28 2018-06-01 가부시키가이샤 오사카소다 Electrode for Chlorine Generation and Manufacturing Method Thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293178A (en) * 2002-04-04 2003-10-15 Daiso Co Ltd Method for preparing chemical for water treatment
EP1489200A1 (en) * 2003-06-19 2004-12-22 Akzo Nobel N.V. Electrode
KR102605336B1 (en) * 2018-07-12 2023-11-22 주식회사 엘지화학 Electrode for electrolysis, method for producing the same, and electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058702A (en) 2015-09-28 2018-06-01 가부시키가이샤 오사카소다 Electrode for Chlorine Generation and Manufacturing Method Thereof
EP3358043A4 (en) * 2015-09-28 2019-06-26 Osaka Soda Co., Ltd. Electrode for generating chlorine, and method for manufacturing same

Also Published As

Publication number Publication date
JPH0835089A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
DE3874495T2 (en) ELECTRODE CATALYST AND ITS MANUFACTURING METHOD.
JP3319887B2 (en) Method for producing hypochlorite
EP0090425B1 (en) Electrolysis electrode and production method thereof
DE60019256T2 (en) CATHODE FOR THE ELECTROLYSIS OF AQUEOUS SOLUTIONS
US4297195A (en) Electrode for use in electrolysis and process for production thereof
JP3883597B2 (en) Novel stable coating solutions for producing improved electrocatalytic mixed oxide coatings on metal substrates or metal-coated conductive substrates, and dimensionally stable anodes produced from such solutions
JPH0694597B2 (en) Electrode used in electrochemical process and manufacturing method thereof
JP3319880B2 (en) Anode for producing hypochlorite and method for producing the same
JPS6160147B2 (en)
CA1101742A (en) Process for preparing insoluble electrode
EP0046449A1 (en) Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
DE2818829A1 (en) METHOD OF MANUFACTURING AN INSOLUBLE ELECTRODE
CA2030092C (en) Electrocatalytic coating
DE602004001230T2 (en) METHOD FOR PRODUCING METAL OXIDE COATING ON A CONDUCTIVE SUBSTRATE, ACTIVATED CATHODE THEREOF AND ITS USE IN ELECTROLYSIS OF AQUEOUS ALKALICHLORIDE SOLUTIONS
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
KR890003514B1 (en) Cathode for electrolysis and a process for making the said cathode
EP0245201B1 (en) Anode for electrolyses
Narasimham et al. Lead dioxide anode in the preparation of perchlorates
EP0435434B1 (en) Metal electrodes for electrochemical processes
US5230780A (en) Electrolyzing halogen-containing solution in a membrane cell
CN86102066A (en) About electrolysis cathode and its process for making
US4010091A (en) Novel electrode for electrolysis cell
KR20200076275A (en) Electrode for Electrolysis
JPS62260086A (en) Electrode for electrolysis and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees