JP3319172B2 - Signal conversion method and signal conversion device - Google Patents
Signal conversion method and signal conversion deviceInfo
- Publication number
- JP3319172B2 JP3319172B2 JP21863794A JP21863794A JP3319172B2 JP 3319172 B2 JP3319172 B2 JP 3319172B2 JP 21863794 A JP21863794 A JP 21863794A JP 21863794 A JP21863794 A JP 21863794A JP 3319172 B2 JP3319172 B2 JP 3319172B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- data storage
- odd
- basic
- grid point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Processing Or Creating Images (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
- Color Image Communication Systems (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、カラープリンタ、カラ
ー複写機、カラースキャナ等のカラー信号を変換する色
信号変換装置や3次元グラフィックスや3次元CADな
どにおいて座標信号を変換するための座標信号変換装置
といった3つの入力信号を1つの出力信号に変換する信
号変換方法及び信号変換装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color signal converter for converting color signals, such as a color printer, a color copier, and a color scanner, and coordinates for converting coordinate signals in three-dimensional graphics and three-dimensional CAD. The present invention relates to a signal conversion method for converting three input signals into one output signal, such as a signal conversion device, and a signal conversion device.
【0002】[0002]
【従来の技術】従来より、カラー画像信号のように、3
つの入力信号から1つの出力信号への変換が複雑な場
合、3次元テーブル方式による信号変換方法が知られて
いる。しかしながら、例えば、3つの入力信号X,Y,
Zの値がそれぞれ0−240の241段階とすると、変
換信号は2413=13997521個のデータを持つ
テーブルが必要になり、記憶手段が高価となり実用的で
ない。2. Description of the Related Art Conventionally, as in color image signals, 3
When conversion from one input signal to one output signal is complicated, a signal conversion method using a three-dimensional table method is known. However, for example, three input signals X, Y,
Assuming that the value of Z is 241 steps of 0-240, the converted signal requires a table having 241 3 = 13997521 data, which makes the storage means expensive and impractical.
【0003】そこで、記憶手段のデータ量を減少させる
ために、図11に示すように3次元テーブル補間方式に
よる信号変換方法がある。この方式は3つの入力信号
X,Y,Zの値を直交軸とする大きな立方体が形成し、
大きな立方体を所定の大きさすなわち単位立方体に分割
し、求める変換信号が含まれる単位立方体ABCDEF
GHを切り出し、格子点のデータを補間処理して変換信
号を得る。例えば、3つの入力信号X,Y,Zの格子点
をそれぞれ0、16、32、・・・、240の16段階と
すると、変換信号を得るために163=4096個のデ
ータを用意すればよいことになり、3次元テーブル方式
に比べて、約3400分の1のデータ量で済む。To reduce the amount of data in the storage means, there is a signal conversion method using a three-dimensional table interpolation method as shown in FIG. In this method, a large cube having three values of the input signals X, Y, and Z as orthogonal axes is formed.
A large cube is divided into a predetermined size, that is, a unit cube, and a unit cube ABCDEF containing a conversion signal to be obtained is included.
The GH is cut out, and the data of the lattice point is subjected to interpolation processing to obtain a converted signal. For example, if the grid points of the three input signals X, Y, and Z have 16 levels of 0, 16, 32,..., 240, respectively, 16 3 = 4096 data are prepared in order to obtain a converted signal. This is good, and the data amount is about 1/3400 of that of the three-dimensional table method.
【0004】この方式において格子点数などによってさ
まざまな補間方式があるが、補間に用いる格子点の数が
少ないほど補間処理手段等のハードウエアの規模が小さ
くなることから、図12のように単位立方体を5つの4
面体に分割して4つの格子点のデータから補間処理を行
う方法が特開昭53−123201号公報に開示されて
いる。In this method, there are various interpolation methods depending on the number of grid points and the like. However, as the number of grid points used for interpolation is smaller, the scale of hardware such as interpolation processing means is smaller. The five 4
Japanese Patent Application Laid-Open No. 53-123201 discloses a method of performing interpolation processing from data of four grid points by dividing the data into four planes.
【0005】図12に於いて、補間したい点が4面体A
BCG,ABDE,BEFG,DEHG,BDEGいず
れに含まれるかを判別し、判別された4面体の4つの頂
点のデータをリニアに補間する事により変換信号のデー
タを求めている。In FIG. 12, a point to be interpolated is a tetrahedron A
Which of the BCG, ABDE, BEFG, DEHG, and BDEG is included is determined, and the data of the converted signal is obtained by linearly interpolating the data of the four vertices of the determined tetrahedron.
【0006】[0006]
【発明が解決しようとする課題】かかる信号変換方法に
おいて、外側の4つの4面体ABDE,ABCG,BE
FG,DEGHの体積が単位立方体の6分の1であるの
に対し、中央の4面体ABDEの体積は単位立方体の3
分の1であったり、外側の4つの4面体は長辺と短辺の
差が大きくなっている。このような幾何学的な偏りのた
めに上記分割方式では変換される信号の誤差が大きいと
いう問題点があった。In such a signal conversion method, the four outer tetrahedrons ABDE, ABCG, BE are used.
While the volume of FG and DEGH is 1/6 of the unit cube, the volume of the central tetrahedron ABDE is 3/3 of the unit cube.
The difference between the long side and the short side of the four tetrahedrons that are one-fourth or outside is large. Due to such a geometrical bias, there is a problem that an error of a signal to be converted is large in the above-mentioned division method.
【0007】また、かかる信号変換方法をデジタル回路
で高速処理を実現する場合、異なる4つの格子点のデー
タを同時に読み出す必要があるために、格子点のデータ
を記憶する記憶手段が4つ必要であった。同じ内容の格
子点のデータの記憶手段を4つ持つことは効率が悪く、
全体としての記憶手段のサイズの割には変換される信号
の精度がよくなかった。When high-speed processing of such a signal conversion method is realized by a digital circuit, it is necessary to simultaneously read data of four different grid points, so that four storage means for storing grid point data are required. there were. Having four storage means for grid point data with the same contents is inefficient,
The accuracy of the converted signal was not good for the size of the storage means as a whole.
【0008】本発明は上記問題点を鑑みなされたもので
あり、幾何学的な偏りがない4面体の分割方式により、
変換される信号の精度がよく、4面体の領域ごとの信号
精度のばらつきが少ない信号変換方法を提供することを
目的とする。The present invention has been made in view of the above-mentioned problems, and has a tetrahedral division method having no geometrical deviation.
It is an object of the present invention to provide a signal conversion method in which the accuracy of a signal to be converted is good and the signal accuracy is small for each area of a tetrahedron.
【0009】また、本発明は上記方法で2種類の格子点
記憶手段や補間手段により、4面体の領域ごとの信号精
度のばらつきが少ない信号変換装置を提供することを目
的とする。It is another object of the present invention to provide a signal conversion apparatus in which the variation in signal accuracy for each tetrahedral region is small by using two types of grid point storage means and interpolation means by the above method.
【0010】また、本発明は上記方法で4種類の格子点
記憶手段や補間手段により、4面体の領域ごとの信号精
度のばらつきが少なく低価格の信号変換装置を提供する
ことを目的とする。It is another object of the present invention to provide a low-cost signal conversion device which has a small variation in signal accuracy for each tetrahedral region by using four kinds of grid point storage means and interpolation means by the above method.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に、本発明の信号変換方法は3つの入力信号のそれぞれ
上位のビットから構成される体心立方格子の格子点のデ
ータを補間して出力信号を得る信号変換方法であって、
互い隣接する2つの単位立方体の2つの体心格子点と前
記2つの単位立方体の境界に位置して互いに隣接する2
つの基本格子点を頂点とする4面体に分割し、前記4面
体内のデータは前記4つの頂点のデータを補間処理する
構成とした。In order to achieve the above object, a signal conversion method according to the present invention interpolates data of lattice points of a body-centered cubic lattice composed of upper bits of three input signals. A signal conversion method for obtaining an output signal,
Two body-centered lattice points of two unit cubes adjacent to each other and two adjacent unit cubes located at the boundary between the two unit cubes
The data is divided into tetrahedrons having two basic lattice points as vertices, and the data in the tetrahedron is configured to interpolate the data of the four vertices.
【0012】また、本発明の信号変換装置は、3つの入
力信号のそれぞれ上位のビットから構成される体心立方
格子の格子点のデータを補間して出力信号を得る信号変
換装置であって、互いに隣接する2つの単位立方体の2
つの体心格子点と前記2つの単位立方体の境界に位置し
て互いに隣接する2つの基本格子点を頂点とする4面体
に分割し、前記3つの入力信号が前記4面体のいずれに
存在するかを判別する4面体判別手段と、判別された前
記4面体の頂点のアドレスを生成するアドレス生成手段
と、基本格子点のデータを格納した基本格子点データ記
憶手段と、体心格子点のデータを格納した体心格子点デ
ータ記憶手段と、判別された前記4面体の内のデータを
補間処理するための前記頂点の重み係数を算出する重み
係数算出手段と、基本格子点データ記憶手段と体心格子
点データ記憶手段からのそれぞれ2つの頂点データを重
み係数算出手段からの重み係数に基づいて補間処理を行
う補間手段を具備する構成とした。Further, the signal conversion device of the present invention is a signal conversion device for obtaining an output signal by interpolating data of lattice points of a body-centered cubic lattice composed of upper bits of three input signals, respectively. Two unit cubes adjacent to each other
Dividing into four tetrahedrons having two basic lattice points adjacent to each other at the boundary between two body-center lattice points and the two unit cubes, and determining which of the three input signals exists in the tetrahedron A tetrahedron discriminating means, an address generating means for generating an address of a vertex of the discriminated tetrahedron, a basic grid point data storing means storing basic grid point data, and a data of a body center grid point. A stored body-center grid point data storage means, a weight coefficient calculating means for calculating a weight coefficient of the vertex for interpolating data of the determined tetrahedron, a basic grid point data storage means, and a body-center lattice
It has a configuration comprising an interpolation means for performing interpolation processing each two vertices data from point data storage means on the basis of the weighting factors from the heavy <br/> viewed coefficient calculating means.
【0013】さらに、本発明の信号変換装置は、第一の
実施例の構成において、前記基本格子点データ記憶手段
が偶数点の基本格子点のデータを格納した偶数基本格子
点データ記憶手段と、奇数点の基本格子点のデータを格
納した奇数基本格子点データ記憶手段からなり、前記体
心格子点データ補間手段が偶数点の体心格子点のデータ
を格納した偶数体心格子点データ記憶手段と、奇数点の
体心格子点のデータを格納した奇数体心格子点データ記
憶手段からなる構成とした。ただし、基本格子点と体心
格子点の座標をそれぞれ(l,m,n)、(l−0.
5、m−0.5,n−0.5){l,m,n:整数}と
し、l+m+nが偶数のとき偶数点、l+m+nが奇数
のとき奇数点とする。Further, in the signal converter of the present invention, in the configuration of the first embodiment, the basic grid point data storage means stores even basic grid point data storing data of even basic grid points; An odd-numbered basic lattice point data storage unit storing odd-numbered basic lattice point data, wherein the body-centered lattice point data interpolation unit stores even-numbered body-centered lattice point data; And odd-numbered body-centered grid point data storage means for storing data of odd-numbered body-centered grid points. However, the coordinates of the basic lattice point and the body-center lattice point are (l, m, n) and (l-0.
5, m-0.5, n-0.5) {1, m, n: integer}, where l + m + n is an even point when l + m + n is even, and an odd point when l + m + n is odd.
【0014】[0014]
【作用】以上の構成によって、4面体の大きさや形状に
偏りがないため、高精度の変換信号が得られる。According to the above arrangement, since the size and shape of the tetrahedron are not deviated, a highly accurate converted signal can be obtained.
【0015】また、基本格子点データ記憶手段と体心格
子点データ記憶手段によりコストアップなしに高精度の
信号変換装置が得られる。Further, the basic grid point data storage means and the body physique
A high-precision signal conversion device can be obtained without increasing the cost by the child point data storage means .
【0016】さらに、偶数基本データ記憶手段、奇数基
本データ記憶手段、偶数体心データ記憶手段と奇数体心
データ記憶手段により従来より低価格で高精度の信号変
換装置が得られる。Further, the even basic data storage means, the odd basic data storage means, the even body data storage means and the odd body data storage means provide a low cost and high precision signal conversion device as compared with the prior art.
【0017】[0017]
【実施例】以下、本発明の第一の実施例について、図1
から図6を参照しながら説明する。FIG. 1 shows a first embodiment of the present invention.
This will be described with reference to FIG.
【0018】図1は本発明の第一の実施例に於ける信号
変換装置の4面体分割の原理図であり、従来技術で述べ
た3次元テーブル補間方式において単位立方体ABCD
EFGHとそれに隣接する単位立方体EFGHIJKL
を考える。図1に於いて、単位立方体ABCDEFGH
とEFGHIJKLのそれぞれの体心点をP,Qとする
と、8面体EFGHQを切り出し、さらに4つの4面体
FEQP,FGQP,HGQP,HEQPに分割され
る。本発明は互いに隣接する2つの単位立方体の2つの
体心格子点と前記2つの単位立方体の境界に位置して互
いに隣接する2つの基本格子点を頂点とする4面体に分
割し、前記4面体内のデータは前記4つの頂点のデータ
を補間処理することにより得られることを特徴とする。FIG. 1 is a diagram illustrating the principle of tetrahedral division of a signal conversion apparatus according to a first embodiment of the present invention. In the three-dimensional table interpolation method described in the prior art, a unit cube ABCD is used.
EFGH and its adjacent unit cube EFGHIJKL
think of. In FIG. 1, the unit cube ABCDEFGH
Assuming that the respective body-center points of EGFHIJKL and EFGHIJKL are P and Q, the octahedron EFGHQ is cut out and further divided into four tetrahedrons FEQP, FGQP, HGQP, and HEQP. The present invention divides into two tetrahedrons having two body-center lattice points of two unit cubes adjacent to each other and two basic lattice points adjacent to each other at the boundary between the two unit cubes and having two vertices as vertices. The data in the body is obtained by interpolating the data of the four vertices.
【0019】図1では単位立方体ABCDEFGHの上
で隣接する単位立方体EFGHIJKLで形成される8
面体EFGHQPを考えたが、実際には図2(a),
(b),(c)に示したように上下左右前後の6つの8
面体ABCDRP、EFGHQP、ADHESP、BC
GFTP、ABFEUP、CDHGVPが存在し、それ
ぞれの8面体を4つに分割した合計24個の4面体AB
RP、CBRP、CDRP、ADRP、FEQP、FG
QP、HGQP、HEQP、ADSP、HDSP、HE
SP、AESP、CBTP、CGTP、FGTP、FB
TP、ABUP、FBUP、FEUP、AEUP、CD
VP、CGVP、HGVP、HDVPが存在する。In FIG. 1, a unit cube EFGHIJKL formed on an adjacent unit cube ABCDEFGH is formed by 8
Although we considered the face EFGHQP, in actuality, FIG.
(8) As shown in (b) and (c), six 8
Faced ABCDRP, EFGHQP, ADHESP, BC
There are GFTP, ABFEUP, and CDHGVP, and a total of 24 tetrahedral ABs obtained by dividing each octahedron into four are provided.
RP, CBRP, CDRP, ADRP, FEQP, FG
QP, HGQP, HEQP, ADSP, HDSP, HE
SP, AESP, CBTP, CGTP, FGTP, FB
TP, ABUP, FBUP, FEUP, AEUP, CD
There are VP, CGVP, HGVP, and HDVP.
【0020】単位立方体ABCDEFGH内のすべての
点は上記24個の4面体のいずれかに属する。この分割
方式は図12の従来の4面体分割方式に比べて、4面体
の大きさが小さく(単位立方体の12分の1の体積)、
しかも大きさ、形状がすべて同一であるために、変換さ
れる信号の精度がよく、領域ごとに精度のばらつきが少
ない。All points in the unit cube ABCDEFGH belong to any of the above 24 tetrahedrons. In this division method, the size of the tetrahedron is smaller than that of the conventional tetrahedron division method shown in FIG.
Moreover, since the size and shape are all the same, the accuracy of the signal to be converted is good, and the variation in accuracy between regions is small.
【0021】図3は本発明の第一の実施例に於ける信号
変換装置の構成図であり、4面体判定手段2で求めるべ
き点がどの4面体に属するかを特定し、テーブルアドレ
ス生成手段3で特定された4面体の頂点の座標を算出
し、基本格子点データ記憶手段4と体心格子点データ記
憶手段5のアドレスへ変換される。基本格子点データ記
憶手段4と体心格子点データ記憶手段5はアドレス信号
から4面体の頂点のデータを出力する。重み係数算出手
段6は補間すべき点のデータを生成するための特定され
た4面体の頂点の重み係数を算出する。補間手段7は4
面体の頂点のデータと重み係数から求めるべき点のデー
タDAを補間処理する。FIG. 3 is a block diagram of the signal conversion apparatus according to the first embodiment of the present invention, in which the tetrahedron to which the point to be determined by the tetrahedron determination means 2 belongs is specified, and the table address generation means is specified. The coordinates of the vertices of the tetrahedron specified in 3 are calculated, and are converted into the addresses of the basic grid point data storage unit 4 and the body center grid point data storage unit 5. The basic grid point data storage unit 4 and the body center grid point data storage unit 5 output the data of the vertices of the tetrahedron from the address signal. The weight coefficient calculating means 6 calculates a weight coefficient of a vertex of the specified tetrahedron for generating data of a point to be interpolated. The interpolation means 7 is 4
Interpolation processing is performed on data DA of a point to be obtained from the data of the vertices of the face and the weight coefficient.
【0022】以下、信号変換装置1の構成と動作を詳細
に説明する。図3において、3つの8ビットの入力信号
X,Y,Zがそれぞれ上位4ビット信号X’,Y’,
Z’と下位4ビット信号x,y,zに分割され、下位ビ
ット信号x,y,zは4面体判定手段2に入力し、上位
4ビット信号X’,Y’,Z’はアドレス生成手段3に
入力される。なお、本発明では説明の都合上、入力信号
を固定小数点の数とし、上位4ビットが整数部、下位4
ビットを少数部とする。Hereinafter, the configuration and operation of the signal conversion device 1 will be described in detail. In FIG. 3, three 8-bit input signals X, Y, and Z are higher-order 4-bit signals X ', Y',
Z 'and the lower 4-bit signals x, y, z are input to the tetrahedron determination means 2, and the upper 4-bit signals X', Y ', Z' are output to the address generation means. 3 is input. In the present invention, for convenience of explanation, the input signal is a fixed-point number, the upper 4 bits are an integer part, and the lower 4 bits.
Let bits be the fractional part.
【0023】4面体判定手段2は単位立方体内の求める
べき点が24個の4面体のいずれかに属するかを判定す
るもので、(表1)に示した下位4ビット信号x,y,
zの6つの関係式y−x,y+x−1、z−x,z+x
−1、z−y、z+y−1が正(+)か負(−)である
かで判定され、判定結果を5ビットの4面体判定信号T
Eとして、下位4ビット信号x,y,zとともに出力さ
れる。ただし、関係式の値が0の場合はどちらに判定し
てもかまわないが、ここでは正(+)にしておく。The tetrahedron judging means 2 judges whether the point to be determined in the unit cube belongs to any of the 24 tetrahedrons. The lower 4-bit signals x, y, and
Six relational expressions of z: yx, y + x-1, zx, z + x
It is determined whether -1, zy, z + y-1 is positive (+) or negative (-), and the determination result is a 5-bit tetrahedron determination signal T.
E is output together with the lower 4-bit signals x, y, and z. However, when the value of the relational expression is 0, it does not matter which of the determination is made, but here, it is set to positive (+).
【0024】[0024]
【表1】 [Table 1]
【0025】アドレス生成手段3は入力信号の上位4ビ
ット信号X’,Y’,Z’と4面体判定信号TEから4
つの4面体の座標に対応するテーブルアドレスを出力す
る。The address generating means 3 calculates the four upper bit signals X ', Y', Z 'of the input signal and the tetrahedron determination signal TE
A table address corresponding to the coordinates of the four tetrahedrons is output.
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【表3】 [Table 3]
【0028】4面体の4つの格子点アドレスは2つの基
本格子点アドレスAD0,AD1と2つの体心格子点アド
レスAD2,AD3からなり、4面体判定信号TEに応じ
て(表2)に示した格子点のアドレスとなる。格子点ア
ドレスは入力信号の上位4ビットX’,Y’,Z’を
(表3)に示した演算によりそれぞれ生成された4つの
値X”n,Y”n,Z”n(n=0、1、2、3)より構
成される。The four grid point addresses of the tetrahedron consist of two basic grid point addresses AD0 and AD1 and two body center grid point addresses AD2 and AD3, and are shown in Table 2 according to the tetrahedron determination signal TE. This is the address of the grid point. The grid point address has four values X "n, Y" n, Z "n (n = 0) generated by the upper 4 bits X ', Y', Z 'of the input signal by the operation shown in (Table 3). , 1, 2, 3).
【0029】以上に示した処理により、基本格子点アド
レスAD0,AD1と体心格子点アドレスAD2,AD3が
生成され、それぞれ2つの基本格子点データ記憶手段4
と2つの体心格子点データ記憶手段5に入力される。By the processing described above, basic grid point addresses AD0 and AD1 and body-center grid point addresses AD2 and AD3 are generated, and two basic grid point data storage means 4 are provided.
Is input to the two body-center grid point data storage means 5.
【0030】基本格子点データ記憶手段4と体心格子点
データ記憶手段5は半導体メモリから構成され、アドレ
ス信号AD0、AD1、AD2、AD3が入力されるとその
アドレスに対応するデータDA0、DA1、DA2、DA3
が読み出される。基本格子点データ記憶手段4と体心格
子点データ記憶手段5のデータはアドレスに応じて図4
に示した格子点のデータが格納されている。基本格子点
アドレスAD0、AD1はそのまま基本格子点の座標に対
応するが、体心格子点アドレスAD2、AD3は体心格子
点の座標のX、Y、Zに0.5を加えた値とする。基本
格子点データ記憶手段3と体心格子点データ記憶手段4
からの出力信号DA0、DA1、DA2、DA3は4面体の
各頂点の値であり、補間手段7へ送られる。The basic lattice point data storage means 4 and the body center lattice point data storage means 5 are composed of semiconductor memories, and when an address signal AD0, AD1, AD2, AD3 is input, data DA0, DA1, DA2, DA3
Is read. The data of the basic grid point data storage means 4 and the body center grid point data storage means 5 are stored in accordance with the addresses shown in FIG.
Is stored. The basic lattice point addresses AD0 and AD1 correspond to the coordinates of the basic lattice points as they are, but the body-center lattice point addresses AD2 and AD3 are values obtained by adding 0.5 to the coordinates X, Y and Z of the body-center lattice points. . Basic grid point data storage means 3 and body center grid point data storage means 4
Output signals DA0, DA1, DA2, and DA3 are values of each vertex of the tetrahedron, and are sent to the interpolation means 7.
【0031】重み係数算出手段6は4面体判定手段2か
らの4面体判定信号TEと下位4ビット信号x,y,z
から求められる。The weight coefficient calculating means 6 calculates the tetrahedron determination signal TE from the tetrahedron determination means 2 and the lower 4-bit signals x, y, z.
Required from.
【0032】例えば、4面体がABRPに判定された場
合の係数を求めてみる。図5のようにA、B、R、Pの
各頂点の座標を(0,0,0)、(1,0,0)、
(0.5,0.5,−0.5)、(0.5,0.5,
0.5)とする。4面体内部はリニア補間できるので、
求める内部の点(x,y,z)の値DAは関数f(x,
y,z)で、3変数の1次関数For example, a coefficient when the tetrahedron is determined to be ABRP will be obtained. As shown in FIG. 5, the coordinates of each vertex of A, B, R, and P are (0, 0, 0), (1, 0, 0),
(0.5, 0.5, -0.5), (0.5, 0.5,
0.5). Since the inside of the tetrahedron can be linearly interpolated,
The value DA of the internal point (x, y, z) to be obtained is a function f (x,
y, z), a linear function of three variables
【0033】[0033]
【数1】 (Equation 1)
【0034】で表せる。ここで、a、b、c、dは定数
である。また、4面体の頂点A、B、R、Pの値は図3
で示したようにそれぞれDA0、DA1、DA2、DA3で
あり、それぞれの重み係数をWH0、WH1、WH2、W
H3とすると、4面体の内部の点の値DAは(数2)で
表せる。Can be represented by Here, a, b, c, and d are constants. The values of the vertices A, B, R, and P of the tetrahedron are shown in FIG.
Are DA0, DA1, DA2, and DA3, respectively, and the respective weight coefficients are WH0, WH1, WH2, W
Assuming that H3, the value DA of the point inside the tetrahedron can be expressed by (Equation 2).
【0035】[0035]
【数2】 (Equation 2)
【0036】4面体の頂点の座標と値を(数1)に代入
すると(数3)から数6になる。By substituting the coordinates and values of the vertices of the tetrahedron into (Equation 1), (Equation 3) is converted to (Equation 6).
【0037】[0037]
【数3】 (Equation 3)
【0038】[0038]
【数4】 (Equation 4)
【0039】[0039]
【数5】 (Equation 5)
【0040】[0040]
【数6】 (Equation 6)
【0041】これをa、b、c、dについて解くと(数
7)から(数10)になる。When this is solved for a, b, c, and d, (equation 7) becomes (equation 10).
【0042】[0042]
【数7】 (Equation 7)
【0043】[0043]
【数8】 (Equation 8)
【0044】[0044]
【数9】 (Equation 9)
【0045】[0045]
【数10】 (Equation 10)
【0046】よって、(数1)はTherefore, (Equation 1) is
【0047】[0047]
【数11】 [Equation 11]
【0048】これをDA0、DA1、DA2、DA3につい
て整理すると、When this is arranged for DA0, DA1, DA2, and DA3,
【0049】[0049]
【数12】 (Equation 12)
【0050】となり、(数2)との対応から重み係数W
H0、WH1、WH2、WH3はそれぞれ(数13)から
(数16)となる。From the correspondence with (Equation 2), the weight coefficient W
H0, WH1, WH2, and WH3 are respectively (Expression 13) to (Expression 16).
【0051】[0051]
【数13】 (Equation 13)
【0052】[0052]
【数14】 [Equation 14]
【0053】[0053]
【数15】 (Equation 15)
【0054】[0054]
【数16】 (Equation 16)
【0055】以上の例は4面体がABRP場合の係数で
あるが、他の4面体の場合も同様に求めることができ
る。その結果を(表4)に示した。重み係数算出手段6
は4つの重み係数WH0、WH1、WH2、WH3を補間手
段7に出力する。Although the above example is a coefficient when the tetrahedron is the ABRP, it can be obtained in the same manner when the other tetrahedron is used. The results are shown in (Table 4). Weight coefficient calculation means 6
Outputs four weighting coefficients WH0, WH1, WH2, WH3 to the interpolation means 7.
【0056】[0056]
【表4】 [Table 4]
【0057】補間処理手段7は2つの基本格子点データ
記憶手段4と2つの体心格子点データ補間記憶手段5か
ら頂点のデータDA0、DA1、DA2、DA3と重み係数
算出手段6からの重み係数WH0、WH1、WH2、WH3
を(数2)に示した積和演算を行う。図6は補間手段7
の構成を示したもので、各頂点のデータと重み係数を4
つの乗算器8で積を求め、それぞれの積を加算器9で合
計して、4面体内部のデータを補間して求め、変換信号
DAを出力する。The interpolation processing means 7 receives the vertex data DA 0, DA 1, DA 2, DA 3 from the two basic grid point data storage means 4 and the two body center grid point data interpolation storage means 5, and the weight coefficient from the weight coefficient calculation means 6. WH0, WH1, WH2, WH3
Is calculated by the following equation (2). FIG.
The data of each vertex and the weight coefficient are 4
The products are obtained by the two multipliers 8, the respective products are summed by the adder 9, the data inside the tetrahedron are obtained by interpolation, and the conversion signal DA is output.
【0058】以上により本発明の第一の実施例を終了す
る。本発明の第一の実施例を改良し、データ記憶手段の
容量を小さくした第二の実施例について図7から図10
を参照しながら説明する。第二の実施例は4面体の分割
方法は第一の実施例と同じなのでこの説明は省略する。Thus, the first embodiment of the present invention is completed. FIGS. 7 to 10 show a second embodiment in which the first embodiment of the present invention is improved and the capacity of the data storage means is reduced.
This will be described with reference to FIG. In the second embodiment, the method of dividing the tetrahedron is the same as that of the first embodiment, so that the description is omitted.
【0059】図7は本発明の第二の実施例に於ける信号
変換装置の構成図で、4面体判定手段2で求めるべき点
がどの4面体に属するかを特定し、偶奇アドレス生成手
段11で4面体の頂点の座標を算出し、偶数基本格子点
データ記憶手段12、奇数基本格子点データ記憶手段1
3、偶数体心格子点データ記憶手段14および奇数体心
格子点データ記憶手段14へアドレスを出力する。偶数
基本格子点データ記憶手段12、奇数基本格子点データ
記憶手段13、体心格子点データ記憶手段14および体
心格子点データ記憶手段15はアドレス信号から4面体
の頂点のデータを出力する。偶奇重み係数算出手段16
は補間すべき点のデータを生成するための特定された4
面体の頂点の重み係数を算出する。補間処理手段6は4
面体の頂点のデータと重み係数から求めるべき点のデー
タDTを補間処理する。以下、信号変換装置10の構成
と動作を詳細に説明する。FIG. 7 is a block diagram of a signal conversion apparatus according to a second embodiment of the present invention, in which the tetrahedron to which the point to be determined by the tetrahedron determination means 2 belongs is specified. , The coordinates of the vertices of the tetrahedron are calculated, and the even basic lattice point data storage unit 12 and the odd basic lattice point data storage unit 1 are calculated.
3. The address is output to the even-numbered body-centered lattice point data storage means 14 and the odd-numbered body-centered lattice point data storage means 14. The even basic lattice point data storage unit 12, the odd basic lattice point data storage unit 13, the body center lattice point data storage unit 14, and the body center lattice point data storage unit 15 output the data of the vertices of the tetrahedron from the address signal. Even-odd weight coefficient calculating means 16
Is the specified 4 to generate the data for the point to be interpolated.
Calculate the weight coefficients of the vertices of the face. Interpolation processing means 6
Interpolation processing is performed on the data DT of points to be obtained from the data of the vertices of the face and the weighting coefficients. Hereinafter, the configuration and operation of the signal conversion device 10 will be described in detail.
【0060】図7において、4面体判定手段2は第一の
実施例のそれと同一の構成で4面体判定信号TEとし
て、下位4ビットx,y,zとともに出力される。In FIG. 7, the tetrahedron determination means 2 has the same configuration as that of the first embodiment and outputs a tetrahedron determination signal TE together with the lower four bits x, y, and z.
【0061】図8は、本発明の第二の実施例に於ける信
号変換装置の偶奇アドレス生成手段の構成図であり、第
一の実施例のそれと同一の構成であるアドレス生成手段
2で2つの基本格子点アドレスAD0,AD1と2つの体
心格子点アドレスAD2,AD3を生成する。FIG. 8 is a block diagram of the even / odd address generation means of the signal conversion device according to the second embodiment of the present invention. The address generation means 2 has the same configuration as that of the first embodiment. One basic grid point address AD0, AD1 and two body center grid point addresses AD2, AD3 are generated.
【0062】いま、基本格子点と体心格子点の座標をそ
れぞれ(l,m,n)、(l−0.5,m−0.5,n
−0.5){l,m,n:整数}と表し、l+m+nが
偶数のとき偶数点、l+m+nが奇数のとき奇数点とす
る。図2において、A点が偶数点の時、基本格子点C、
F、Hと体心格子点R,Q,S,T,U,Vは偶数点に
なり、基本格子点B、D、E、Gと体心格子点Pは奇数
点になる。また、A点が奇数点の時、基本格子点C、
F、Hと体心格子点R,Q,S,T,U,Vは奇数点に
なり、基本格子点B、D、E、Gと体心格子点Pは偶数
点になる。このように、A点が偶数点か奇数点によって
各点が偶数点か奇数点なるかが決まる。Now, the coordinates of the basic lattice point and the body-center lattice point are respectively (l, m, n), (l-0.5, m-0.5, n
−0.5) {l, m, n: integer}, where l + m + n is an even number when l + m + n is an even number and an odd number when l + m + n is an odd number. In FIG. 2, when the point A is an even number point, the basic lattice points C,
F and H and the body-center lattice points R, Q, S, T, U, and V are even-numbered points, and the basic lattice points B, D, E, and G and the body-centered lattice point P are odd-numbered points. When the point A is an odd number, the basic lattice point C,
F and H and the body-center lattice points R, Q, S, T, U, and V are odd-numbered points, and the basic lattice points B, D, E, and G and the body-centered lattice point P are even-numbered points. As described above, whether the point A is an even-numbered point or an odd-numbered point is determined depending on whether the point A is an even-numbered point or an odd-numbered point.
【0063】このため、図8の偶奇判別手段17はA点
が偶数点か奇数点かを(表5)に示したように上位4ビ
ット信号X’,Y’,Z’それぞれの最下位ビットX’
0,Y’0,Z’0の値によって判別し、A点が偶数点の
とき0、奇数点のとき1を偶奇判定信号EOとして出力
する。For this reason, the even / odd discriminating means 17 in FIG. 8 determines whether the point A is an even-numbered point or an odd-numbered point, as shown in (Table 5), the least significant bit of each of the upper 4-bit signals X ', Y' and Z '. X '
Judgment is made based on the values of 0, Y'0, and Z'0, and 0 is output as an even-odd determination signal EO when point A is an even-numbered point and 1 when point A is an odd-numbered point.
【0064】[0064]
【表5】 [Table 5]
【0065】図8の偶奇アドレス変換手段18は偶数基
本格子点データ記憶手段12、奇数基本格子点データ記
憶手段13、体心格子点データ記憶手段14および体心
格子点データ記憶手段15へアドレス信号AR0、AR
1、AR2、AR3を生成するためのもので、(表6)に
示したようにテーブルアドレス生成部3からの2つの基
本格子点アドレスAD0,AD1と2つの体心格子点アド
レスAD2,AD3の最下位のビットを捨てて、偶奇判別
手段17からの偶奇判定信号EOにより、4つのマルチ
プレクサ19で交換処理を行い、アドレス信号AR0、
AR1、AR2、AR3を生成する。The even-odd address conversion means 18 in FIG. 8 sends address signals to the even-numbered basic lattice point data storage means 12, the odd-numbered basic lattice point data storage means 13, the body-centered lattice point data storage means 14, and the body-centered lattice point data storage means 15. AR0, AR
1, AR2 and AR3, as shown in Table 6 below. The two basic grid point addresses AD0 and AD1 and the two body center grid point addresses AD2 and AD3 from the table address generator 3 are shown in Table 6. The least significant bits are discarded, and the four multiplexers 19 perform an exchange process based on the even / odd determination signal EO from the even / odd determination means 17, and the address signals AR0,
Generate AR1, AR2, AR3.
【0066】[0066]
【表6】 [Table 6]
【0067】図9は偶数基本格子点データ記憶手段1
2、奇数基本格子点データ記憶手段13、体心格子点デ
ータ記憶手段14および体心格子点データ記憶手段15
の内容を示したもので、各記憶手段に所定の格子点デー
タが格納されており、偶奇アドレス変換手段18からの
はアドレス信号AR0、AR1、AR2、AR3によって補
間処理に必要な4つの頂点のデータDT0,DT1,DT
2,DT3が出力される。FIG. 9 shows an even basic lattice point data storage means 1.
2. Odd basic grid point data storage means 13, body center grid point data storage means 14, and body center grid point data storage means 15
A predetermined grid point data is stored in each storage means, and the even / odd address conversion means 18 outputs four vertices necessary for the interpolation processing by the address signals AR0, AR1, AR2, AR3. Data DT0, DT1, DT
2, DT3 is output.
【0068】図10は偶奇重み係数算出手段16の構成
を示したもので、第一の実施例のそれと同一の構成であ
る重み係数算出手段6は4面体判定手段2からの4面体
判定信号TEと下位4ビット信号x,y,zから重み係
数WH0、WH1、WH2、WH3を生成し、重み係数交換
手段20は偶奇アドレス生成手段11からの偶奇判定信
号EOに応じて重み係数WH0、WH1、WH2、WH3を
4つのマルチプレクサ19で(表7)に示した交換処理
を行い、交換処理された重み係数WT0、WT1、WT
2、WT3を補間手段7に出力する。FIG. 10 shows the configuration of the even-odd weight coefficient calculating means 16. The weight coefficient calculating means 6 having the same structure as that of the first embodiment is provided with a tetrahedron determination signal TE from the tetrahedron determination means 2. Weighting coefficients WH0, WH1, WH2, WH3 are generated from the lower 4-bit signals x, y, z, and the weighting coefficient exchange means 20 outputs the weighting coefficients WH0, WH1,. WH2 and WH3 are subjected to the exchange processing shown in (Table 7) by the four multiplexers 19, and the exchanged weighting coefficients WT0, WT1, WT
2. Output WT3 to the interpolation means 7.
【0069】[0069]
【表7】 [Table 7]
【0070】図7の補間手段8は第一の実施例のそれと
同一の構成で、偶数基本格子点データ記憶手段12、奇
数基本格子点データ記憶手段13、体心格子点データ記
憶手段14および体心格子点データ記憶手段15それぞ
れからの頂点のデータDT0,DT1,DT2,DT3と偶
奇重み係数算出手段16からの重み係数WT0、WT1、
WT2、WT3を(数17)のように積和演算し、変換信
号DTを出力する。The interpolation means 8 of FIG. 7 has the same configuration as that of the first embodiment, and includes even basic grid point data storage means 12, odd basic grid point data storage means 13, body center grid point data storage means 14, and body data. The vertex data DT0, DT1, DT2, DT3 from each of the heart lattice point data storage means 15 and the weight coefficients WT0, WT1,
WT2 and WT3 are subjected to a product-sum operation as in (Equation 17), and a converted signal DT is output.
【0071】[0071]
【数17】 [Equation 17]
【0072】以上の2つの実施例はハードウエアによる
構成を示したが、汎用CPUやDSPを用いてソフトウ
エアでも実現できる。また、本発明の方式をハードウエ
アとソフトウエアの両方で分担して実現させることもで
きる。Although the above two embodiments have shown a hardware configuration, they can also be realized by software using a general-purpose CPU or DSP. Further, the method of the present invention can be realized by sharing both of hardware and software.
【0073】[0073]
【発明の効果】以上の実施例から明らかなように、本発
明によれば、簡単な構成により、低価格で高精度の3次
元の信号変換することができる優れた信号変換装置を実
現できるものである。As is clear from the above embodiments, according to the present invention, an excellent signal conversion device capable of performing low-cost, high-precision three-dimensional signal conversion with a simple configuration can be realized. It is.
【図1】本発明の第一の実施例に於ける信号変換装置の
4面体分割の原理図FIG. 1 is a diagram illustrating the principle of tetrahedral division of a signal converter according to a first embodiment of the present invention.
【図2】本発明の第一の実施例に於ける信号変換装置の
4面体分割の原理図FIG. 2 is a diagram illustrating the principle of tetrahedral division of the signal converter according to the first embodiment of the present invention;
【図3】本発明の第一の実施例に於ける信号変換装置の
構成図FIG. 3 is a configuration diagram of a signal conversion device according to a first embodiment of the present invention.
【図4】本発明の第一の実施例に於ける信号変換装置の
格子点データの説明図FIG. 4 is an explanatory diagram of grid point data of the signal conversion device according to the first embodiment of the present invention.
【図5】本発明の第一の実施例に於ける信号変換装置の
説明図FIG. 5 is an explanatory diagram of a signal conversion device according to the first embodiment of the present invention.
【図6】本発明の第一の実施例に於ける信号変換装置の
補間手段の構成図FIG. 6 is a configuration diagram of an interpolation means of the signal conversion device according to the first embodiment of the present invention.
【図7】本発明の第二の実施例に於ける信号変換装置の
構成図FIG. 7 is a configuration diagram of a signal conversion device according to a second embodiment of the present invention.
【図8】本発明の第二の実施例に於ける信号変換装置の
偶奇アドレス生成手段の構成図FIG. 8 is a configuration diagram of an even-odd address generation means of the signal conversion device according to the second embodiment of the present invention.
【図9】本発明の第二の実施例に於ける信号変換装置の
格子点データの説明図FIG. 9 is an explanatory diagram of grid point data of the signal conversion device according to the second embodiment of the present invention.
【図10】本発明の第二の実施例に於ける信号変換装置
の偶奇重み係数算出手段の構成図FIG. 10 is a configuration diagram of an even-odd weight coefficient calculation unit of the signal conversion device according to the second embodiment of the present invention.
【図11】従来のテーブル補間方式の原理図FIG. 11 is a principle diagram of a conventional table interpolation method.
【図12】従来のテーブル方式の4面体分割の説明図FIG. 12 is an explanatory view of a conventional table-type tetrahedron division.
1 第一の信号変換装置 2 4面体判別手段 3 アドレス生成手段 4 基本格子点データ記憶手段 5 体心格子点データ記憶手段 6 重み係数算出手段 7 補間手段 10 第一の信号変換装置 11 偶奇アドレス生成手段 12 偶数基本格子点データ記憶手段 13 奇数基本格子点データ記憶手段 14 偶数体心格子点データ記憶手段 15 奇数体心格子点データ記憶手段 16 偶奇重み係数算出手段 DESCRIPTION OF SYMBOLS 1 1st signal conversion apparatus 2 tetrahedron discrimination means 3 address generation means 4 basic lattice point data storage means 5 body center lattice point data storage means 6 weight coefficient calculation means 7 interpolation means 10 1st signal conversion apparatus 11 even-odd address generation Means 12 Even basic lattice point data storage means 13 Odd basic lattice point data storage means 14 Even body center lattice point data storage means 15 Odd body center lattice point data storage means 16 Even odd weight coefficient calculation means
フロントページの続き (51)Int.Cl.7 識別記号 FI H04N 1/60 H04N 1/46 Z (56)参考文献 特開 平3−13066(JP,A) 特開 平5−110840(JP,A) 特開 平5−227421(JP,A) 特開 平8−321956(JP,A) 特公 昭58−16180(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G06T 11/60 120 H04N 1/46 H04N 1/60 特許ファイル(PATOLIS) JICSTファイル(JOIS)Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H04N 1/60 H04N 1/46 Z (56) References JP-A-3-13066 (JP, A) JP-A-5-110840 (JP, A) JP-A-5-227421 (JP, A) JP-A-8-321956 (JP, A) JP-B-58-16180 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) G06T 11/60 120 H04N 1/46 H04N 1/60 Patent file (PATOLIS) JICST file (JOIS)
Claims (3)
ら構成される体心立方格子の格子点のデータを補間して
出力信号を得る信号変換方法であって、互いに隣接する
2つの単位立方体の2つの体心格子点と前記2つの単位
立方体の境界に位置して互いに隣接する2つの基本格子
点を頂点とする4面体に分割し、前記4面体内のデータ
は前記4つの頂点のデータを補間処理することにより得
ることを特徴とする信号変換方法。1. A three respective signal conversion method of obtaining an output signal by interpolating the data of lattice points of the constructed body centered cubic lattice from upper bits of the input signal, the two unit cubes that are adjacent to each other It is divided into tetrahedrons whose vertices are two basic lattice points located on the boundary between two body-center lattice points and the two unit cubes, and the data in the tetrahedron is the data of the four vertices. A signal conversion method obtained by performing an interpolation process.
ら構成される体心立方格子の格子点のデータを補間して
出力信号を得る信号変換装置であって、互いに隣接する
2つの単位立方体の2つの体心格子点と前記2つの単位
立方体の境界に位置して互いに隣接する2つの基本格子
点を頂点とする4面体に分割し、前記3つの入力信号が
前記4面体のいずれに存在するかを判別する4面体判別
手段と、判別された前記4面体の頂点のアドレスを生成
するアドレス生成手段と、基本格子点のデータを格納し
た基本格子点データ記憶手段と、体心格子点のデータを
格納した体心格子点データ記憶手段と、判別された前記
4面体の内のデータを補間処理するための前記頂点の重
み係数を算出する重み係数算出手段と、基本格子点デー
タ記憶手段と体心格子点データ記憶手段からのそれぞれ
2つの頂点データを重み係数算出手段からの重み係数に
基づいて補間処理を行う補間手段を具備することを特徴
とする信号変換装置。2. A three signal conversion apparatus for obtaining an output signal by interpolating the data of lattice points of the constructed body centered cubic lattice, respectively from upper bits of the input signal, the two unit cubes that are adjacent to each other It is divided into tetrahedrons having two body lattice points and two basic lattice points adjacent to each other at the boundary between the two unit cubes, and the three input signals are present in any of the tetrahedrons Tetrahedron discriminating means for judging whether or not, an address generating means for generating an address of a vertex of the discriminated tetrahedron, basic grid point data storage means for storing basic grid point data, and data of body center grid points A weight coefficient calculating means for calculating a weight coefficient of the vertex for interpolating the data of the determined tetrahedron, and a basic grid point data.
A signal conversion device comprising interpolation means for performing an interpolation process on each of two vertex data from the data storage means and the body-center grid point data storage means based on the weighting factor from the weighting factor calculation means.
基本格子点のデータを格納した偶数基本格子点データ記
憶手段と、奇数点の基本格子点のデータを格納した奇数
基本格子転データ記憶手段からなり、前記体心格子点デ
ータ補間手段が偶数点の体心格子点のデータを格納した
偶数体心格子点データ記憶手段と、奇数点の体心格子点
のデータを格納した奇数体心格子点データ記憶手段とか
らなることを特徴とする請求項2に記載の信号変換装
置。ただし、基本格子点と体心格子点の座標をそれぞれ
(l,m,n)、(l−0.5,m−0.5,n−0.
5)[l,m,n:整数]と表し、l+m+nが偶数のと
き偶数点、l+m+nが奇数のとき奇数点とする。3. An even-numbered basic grid point data storage means in which the basic grid point data storage means stores even-numbered basic grid point data, and an odd-numbered basic grid inverted data storage in which odd-numbered basic grid point data is stored. Means for storing data of even-numbered body-centered lattice points, wherein the body-centered lattice point data interpolating means stores data of even-numbered body-centered lattice points; and odd-numbered body centers storing data of odd-numbered body-centered lattice points. 3. The signal converter according to claim 2, comprising a grid point data storage unit. Here, the coordinates of the basic lattice point and the body-center lattice point are respectively (l, m, n), (l-0.5, m-0.5, n-0.
5) Expressed as [l, m, n: integer], where l + m + n is an even point when l + m + n is an even number, and an odd point when l + m + n is an odd number.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21863794A JP3319172B2 (en) | 1994-09-13 | 1994-09-13 | Signal conversion method and signal conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21863794A JP3319172B2 (en) | 1994-09-13 | 1994-09-13 | Signal conversion method and signal conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0883330A JPH0883330A (en) | 1996-03-26 |
JP3319172B2 true JP3319172B2 (en) | 2002-08-26 |
Family
ID=16723073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21863794A Expired - Fee Related JP3319172B2 (en) | 1994-09-13 | 1994-09-13 | Signal conversion method and signal conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3319172B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002152534A (en) * | 2000-11-14 | 2002-05-24 | Matsushita Electric Ind Co Ltd | Method and apparatus for converting three-dimensional signal |
JP4836867B2 (en) * | 2007-05-25 | 2011-12-14 | 株式会社リコー | Color conversion apparatus, color conversion method, and color conversion program |
JP2010287918A (en) * | 2007-09-28 | 2010-12-24 | Naltec Inc | Method and device for converting value belonging to space |
-
1994
- 1994-09-13 JP JP21863794A patent/JP3319172B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0883330A (en) | 1996-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5241373A (en) | Apparatus for correction of color signal values | |
US5008752A (en) | Digital image interpolator with multiple interpolation algorithms | |
US4603348A (en) | Method for composing addresses of a memory | |
JP2903807B2 (en) | Color signal conversion method and apparatus | |
JPH07193723A (en) | Chrominance signal processor | |
US5930407A (en) | System and method for efficiently generating cubic coefficients in a computer graphics system | |
JP3319172B2 (en) | Signal conversion method and signal conversion device | |
JP2002152534A (en) | Method and apparatus for converting three-dimensional signal | |
US20010033288A1 (en) | Color conversion apparatus and method with precision enhancement in color conversion | |
US6130674A (en) | Dynamically selectable texture filter for computer graphics | |
JP3286480B2 (en) | Signal conversion method | |
JPH0313066A (en) | Method and apparatus for color correction | |
JP3190545B2 (en) | Interpolation calculation method and data converter | |
KR100313846B1 (en) | Method and device for calculating lod in bilinear mips mapping | |
JP3905182B2 (en) | Image conversion method and apparatus | |
JP3372710B2 (en) | Color signal conversion method | |
JPH08138030A (en) | Method and device for data conversion | |
JP4035176B2 (en) | Image processing apparatus and method | |
JPH11238127A (en) | Common interpolating circuit for pruning radial interpolation and pruning tetrahedral interpolation | |
JPH09261499A (en) | Image processor and its method | |
JP2875451B2 (en) | Color signal conversion method | |
JP2887038B2 (en) | Division processing unit | |
JP2772651B2 (en) | Image enlargement processing device | |
JP3524132B2 (en) | Interpolation calculation method and data conversion device | |
JPH1084492A (en) | Data converter and data conversion method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |