JP3319037B2 - Manufacturing method of electronic ceramic material powder - Google Patents

Manufacturing method of electronic ceramic material powder

Info

Publication number
JP3319037B2
JP3319037B2 JP13175593A JP13175593A JP3319037B2 JP 3319037 B2 JP3319037 B2 JP 3319037B2 JP 13175593 A JP13175593 A JP 13175593A JP 13175593 A JP13175593 A JP 13175593A JP 3319037 B2 JP3319037 B2 JP 3319037B2
Authority
JP
Japan
Prior art keywords
water
material powder
polymer compound
electronic ceramic
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13175593A
Other languages
Japanese (ja)
Other versions
JPH06345517A (en
Inventor
百合子 月岡
参省 岡部
幸生 浜地
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP13175593A priority Critical patent/JP3319037B2/en
Publication of JPH06345517A publication Critical patent/JPH06345517A/en
Application granted granted Critical
Publication of JP3319037B2 publication Critical patent/JP3319037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子セラミックス材料粉
末の製造方法、特に、凝集性が少なく分散性に優れた微
細な電子セラミックス材料粉末の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electronic ceramic material powder, and more particularly to a method for producing a fine electronic ceramic material powder having little cohesion and excellent dispersibility.

【0002】[0002]

【従来の技術】従来、微細な電子セラミックス材料粉
末、例えば、一般式ABO3で表されるペロブスカイト
構造の複合酸化物からなる微細な電子セラミックス材料
粉末を製造する方法としては、Aサイト金属の水酸化物
の溶液とBサイト金属の加水分解性有機金属化合物溶液
とを80〜95℃の加温状態で反応させて複合酸化物を
生成させ、この液相反応により得られた沈澱物を100
℃前後の空気中で乾燥させる方法、及び前記液相反応に
より得られた沈澱物を濾別、水洗して不純物を除去した
後、エタノール、メタノール、イソプロパノール、アセ
トン等の親水性有機溶剤で洗浄、濾別して水分を除去
し、これを100℃前後の空気中で乾燥させる方法が知
られている。
2. Description of the Related Art Conventionally, as a method for producing fine electronic ceramic material powder, for example, fine electronic ceramic material powder composed of a composite oxide having a perovskite structure represented by the general formula ABO 3 , there is known a method of producing water of A-site metal. The solution of the oxide and the solution of the hydrolyzable organometallic compound of the B-site metal are reacted in a heated state at 80 to 95 ° C. to form a composite oxide, and the precipitate obtained by this liquid phase reaction is reduced to 100%.
A method of drying in air at about ° C., and a precipitate obtained by the liquid phase reaction is filtered off, washed with water to remove impurities, and then washed with a hydrophilic organic solvent such as ethanol, methanol, isopropanol, and acetone. There is known a method of removing water by filtration and drying the same in air at about 100 ° C.

【0003】[0003]

【発明が解決しようとする課題】前記方法では液相反応
により材料粉末の超微細化が可能であるが、生成した複
合酸化物をそのまま乾燥させて水分を除去する前者の方
法では、乾燥させた材料粉末の粒子表面に吸着している
水分が比較的多く、その吸着水に起因する粉末粒子間に
働く液架橋力によって凝集を生じ、超微粒子が得られる
という湿式法の利点が失われるという問題がある。ま
た、後者の方法では有機溶剤で洗浄を行うため前者に比
べて粒子表面の吸着水量は少ないが、親水性の有機溶剤
の場合、いくらか水分を含むため、乾燥粒子表面に水の
吸着が起こり凝集を生じ易いという問題があった。しか
も、材料粉末に凝集が生じた場合、電子セラミックスの
焼結体を得る際、その焼結性及び緻密性が著しく阻害さ
れ、所望の特性の電子セラミックス部品を得ることは困
難であった。また、前記ペロブスカイト構造の複合酸化
物に限らず、その原料である炭酸塩や酸化物の場合に
も、液相反応により生成した沈澱物を濾別、水洗した
後、蒸発乾燥させたものであっても粒子表面に吸着水が
多いため凝集し易く、他の原料と配合した際、均一に分
散せず、組成の不均一な電子セラミックスしか得られな
いという問題があった。
In the above method, the material powder can be made ultrafine by a liquid phase reaction. However, in the former method in which the produced composite oxide is dried as it is to remove water, the composite oxide is dried. A relatively large amount of water adsorbed on the particle surface of the material powder, causing agglomeration due to the liquid crosslinking force acting between the powder particles caused by the adsorbed water, losing the advantage of the wet method of obtaining ultrafine particles. There is. In the latter method, the amount of water adsorbed on the particle surface is smaller than that in the former method because the solvent is washed with an organic solvent. There is a problem that is easily generated. In addition, when agglomeration occurs in the material powder, when obtaining a sintered body of electronic ceramic, its sinterability and denseness are significantly impaired, and it has been difficult to obtain an electronic ceramic part having desired characteristics. Further, not only the complex oxide having a perovskite structure but also a carbonate or an oxide as a raw material, a precipitate formed by a liquid phase reaction is separated by filtration, washed with water, and then evaporated and dried. However, since there is a large amount of adsorbed water on the particle surface, the particles are easily aggregated, and when mixed with other raw materials, they are not uniformly dispersed, and only electronic ceramics having a non-uniform composition can be obtained.

【0004】従って、本発明は、液相反応により得られ
る超微細な材料粉末が得られるという利点を損なうこと
なく、凝集性が少なく分散性の良好な電子セラミックス
材料粉末を得られるようにすることを課題とするもので
ある。
Accordingly, an object of the present invention is to provide an electronic ceramic material powder having less cohesiveness and good dispersibility without impairing the advantage that an ultrafine material powder obtained by a liquid phase reaction can be obtained. Is the subject.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するための手段として、液相反応により生成した電子
セラミックス材料粉末を水洗、濾別して含水スラリーを
得、該含水スラリーを親油性高分子化合物と混練し水分
を分離した後、前記親油性高分子化合物の可溶な有機溶
剤と混練し、親水性高分子化合物を除去するようにした
ものである。
According to the present invention, as a means for solving the above-mentioned problems, an electronic ceramic material powder produced by a liquid phase reaction is washed with water and separated by filtration to obtain a water-containing slurry. After kneading with a molecular compound and separating water, it is kneaded with an organic solvent in which the lipophilic polymer compound is soluble to remove the hydrophilic polymer compound.

【0006】電子セラミックス材料粉末としては、炭酸
塩、酸化物及び一般式ABO3で表されるペロブスカイ
ト構造の複合酸化物などが挙げられるが、前記ペロブス
カイト構造の複合酸化物は、Aサイト金属の水酸化物の
溶液とBサイト金属の加水分解性有機金属化合物溶液と
を反応させ複合酸化物を生成させ、これを濾別、水洗し
て含水スラリーを得るのが好ましい。
[0006] Examples of the electronic ceramic material powder include carbonates, oxides, and complex oxides having a perovskite structure represented by the general formula ABO 3. It is preferable that the solution of the oxide and the solution of the hydrolyzable organometallic compound of the B-site metal are reacted to form a composite oxide, which is separated by filtration and washed with water to obtain a water-containing slurry.

【0007】親油性高分子化合物としては、親油性のあ
る高分子化合物であれば任意のものを使用でき、代表的
なものとしては、アルキッド系樹脂が挙げられるが、こ
れに限定されるものではなく、エポキシ化フェノール樹
脂についても使用することができる。詳細には、アルキ
ッド系樹脂としては、平均官能基が2以下で、2価の酸
および2価のアルコールより得られる、すなわち2−2
官能基原料より得られるアルキッド樹脂を用いることが
できる。その他、3価の原料を用いても1価の原料を併
用したアルキッド樹脂も非転化型樹脂となるので使用す
ることができる。またエポキシ化フェノール樹脂として
は、ヒドロキノニル−3−エポキシプロパルおよびP.
P−ジフエニロールプロピル−3−エポキシプロパンを
アルデヒドと縮合した可溶性エポキシ化フェーノール樹
脂がある。
As the lipophilic polymer compound, any compound can be used as long as it is a lipophilic polymer compound. A typical example is an alkyd-based resin, but is not limited thereto. However, epoxidized phenol resins can also be used. Specifically, the alkyd resin has an average functional group of 2 or less and is obtained from a divalent acid and a dihydric alcohol, that is, 2-2.
An alkyd resin obtained from a functional group raw material can be used. In addition, even if a trivalent raw material is used, an alkyd resin using a monovalent raw material in combination can also be used because it becomes a non-invertable resin. Epoxidized phenolic resins include hydroquinonyl-3-epoxypropal and P.I.
There is a soluble epoxidized phenolic resin obtained by condensing P-diphenylolpropyl-3-epoxypropane with an aldehyde.

【0008】また、前記有機溶剤としては、芳香族炭化
水素、エステル類及びケトン類などが挙げられるが、親
油性高分子化合物の可溶なものであれば任意のものを使
用できる。
[0008] Examples of the organic solvent include aromatic hydrocarbons, esters and ketones. Any organic solvent can be used as long as it is soluble in the lipophilic polymer compound.

【0009】[0009]

【作用】液相反応により得られた電子セラミックス材料
粉末を濾別、水洗した後、親油性高分子化合物と混練す
ると、電子セラミックス材料粉末表面に高分子被膜が形
成される。親油性高分子化合物が発水性を有しているた
め、電子セラミックス材料粉末粒子表面から水分を分離
する作用が起こり、含水スラリーから電子セラミック材
料粉末と水分が分離される。次いで、この水分を分離し
た電子セラミック材料粉末スラリーを前記親油性高分子
化合物と相溶性のある有機溶剤と混合すると、複合酸化
物粒子表面に付着している親油性高分子化合物が溶解
し、そのスラリーを濾過すると、材料粉末表面から親油
性高分子化合物から分離され、次いでこれを乾燥させる
ことにより有機溶剤が容易に除去される。
The electronic ceramic material powder obtained by the liquid phase reaction is separated by filtration, washed with water, and kneaded with a lipophilic polymer compound to form a polymer film on the surface of the electronic ceramic material powder. Since the lipophilic polymer compound has water-repellency, an action of separating water from the surface of the electronic ceramic material powder particles occurs, and the electronic ceramic material powder and the water are separated from the water-containing slurry. Next, when the electronic ceramic material powder slurry from which the water was separated was mixed with an organic solvent compatible with the lipophilic polymer compound, the lipophilic polymer compound attached to the surface of the composite oxide particles was dissolved, and When the slurry is filtered, it is separated from the lipophilic polymer compound from the surface of the material powder, and then the organic solvent is easily removed by drying.

【0010】以下、実施例を挙げて本発明を具体的に説
明する。
Hereinafter, the present invention will be described specifically with reference to examples.

【0011】[0011]

【実施例】水酸化バリウム8水和物とチタン酸テトライ
ソプロピルと出発原料として用い、これらを1:1のモ
ル比で含有し、水酸化ナトリウムを添加して強アルカリ
性にした水溶液を反応槽中で80〜95℃で加熱、撹拌
して加水分解させ、生成したチタン酸バリウムの沈澱物
を濾別した後、水洗、濾過を2回行い、チタン酸バリウ
ム微粉末の含水スラリーを得た。
EXAMPLE A barium hydroxide octahydrate and tetraisopropyl titanate were used as starting materials, and these were contained in a molar ratio of 1: 1. After heating and stirring at 80 to 95 ° C. for hydrolysis, a precipitate of barium titanate generated was separated by filtration, washed with water and filtered twice to obtain a water-containing slurry of barium titanate fine powder.

【0012】この含水スラリー50gに対してアルキッ
ド樹脂6gを加え、ウルトラディスパーサで60分間混
練した後、分離した水分を除去し、更にアルキッド樹脂
14gを添加して60分間混練した。この混練物から分
離した水分を再度除去した後、トルエン200mlを加え
て60分間混練し、次いで濾過してチタン酸バリウム粉
末をアルキッド樹脂溶液から分離した。濾別したチタン
酸バリウム粉末にトルエン200mlを再度加え、混練、
洗浄を行った後、再度粉末を濾別し、100℃で5時間
乾燥させてチタン酸バリウム粉末を得た。
6 g of alkyd resin was added to 50 g of this water-containing slurry, kneaded with an ultra disperser for 60 minutes, the separated water was removed, and 14 g of alkyd resin was added and kneaded for 60 minutes. After removing the water separated from the kneaded material again, 200 ml of toluene was added and kneaded for 60 minutes, and then filtered to separate the barium titanate powder from the alkyd resin solution. 200 ml of toluene was added again to the filtered barium titanate powder, and kneaded.
After washing, the powder was filtered off again and dried at 100 ° C. for 5 hours to obtain a barium titanate powder.

【0013】比較の為、前記実施例で得た含水スラリー
50gに対してメタノール100mlを加え、ウルトラデ
ィスパーサで60分間混練して分散させた後、チタン酸
バリウム粉末を濾別した。さらに、濾別したチタン酸バ
リウム粉末にアセトン100mlを加え、ウルトラディス
パーサで60分間混練して分散させた後、チタン酸バリ
ウム粉末を濾別し、100℃で5時間乾燥させて比較試
料としてのチタン酸バリウム粉末を得た。
For comparison, 100 g of methanol was added to 50 g of the water-containing slurry obtained in the above example, kneaded and dispersed with an ultra disperser for 60 minutes, and the barium titanate powder was filtered off. Further, 100 ml of acetone was added to the filtered barium titanate powder, kneaded and dispersed with an ultra disperser for 60 minutes, and then the barium titanate powder was separated by filtration, dried at 100 ° C. for 5 hours, and used as a comparative sample. Barium titanate powder was obtained.

【0014】実施例のチタン酸バリウム粉末と比較試料
を赤外線吸収スペクトル分析し、(3400cm-1のチタ
ン酸バリウムのピークの高さ)/(560cm-1のOH基の
ピークの高さ)で粉体中に存在するOH基の割合を求め
たところ、実施例のものでは0.012であるのに対し
て、比較試料では0.160であった。このことから本
発明方法により得たチタン酸バリウム粉末は、水の吸着
量が約10分の1に減少していることが判る。
[0014] The comparative sample with the barium titanate powder of Example and infrared absorption spectrum analysis, the powder in (the height of the peak of barium titanate 3400 cm -1) / (height of the peak of the OH groups of 560 cm -1) When the ratio of the OH groups present in the body was determined, the ratio was 0.012 in the example and 0.160 in the comparative sample. From this, it can be seen that the barium titanate powder obtained by the method of the present invention has a water adsorption amount reduced to about 1/10.

【0015】また、実施例の試料と比較試料にそれぞれ
蒸留水を加え、超音波で分散処理した後、遠心沈降法粒
度分布測定装置を用いて粒度分布測定を行ったところ、
実施例のものではD50は0.24μmであるのに対し
て、比較試料ではD50=1.8μmであった。これは本
発明方法により得られたチタン酸バリウム粉末が一次粒
子に近い状態で分散されていることを意味し、従って、
本発明のものは比較試料に比べて分散性が著しく向上し
ていることが判る。
Further, distilled water was added to each of the sample of the example and the comparative sample, and the mixture was dispersed by ultrasonic waves, and then subjected to particle size distribution measurement using a centrifugal sedimentation particle size distribution analyzer.
In the example, the D 50 was 0.24 μm, whereas in the comparative sample, D 50 was 1.8 μm. This means that the barium titanate powder obtained by the method of the present invention is dispersed in a state close to primary particles,
It can be seen that the dispersibility of the present invention is remarkably improved as compared with the comparative sample.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
は、液相反応により生成された複合酸化物からなる含水
スラリーを親油性高分子化合物と混練し、水分を分離し
た後、濾別し、次いでその親油性高分子化合物を該高分
子と相溶性のある有機溶剤で洗浄、除去して乾燥させる
ようにしたので、電子セラミックス材料粉末の表面に吸
着していた水分が除去され、凝集の原因となる液架橋力
が著しく低減でき、従って、凝集性が少なく分散性に優
れた電子セラミックス材料粉末を容易に製造することが
でき、ひいては電子セラミックス部品の特性を向上させ
ることができる。
As is apparent from the above description, the present invention provides a method of kneading a water-containing slurry composed of a composite oxide produced by a liquid phase reaction with a lipophilic polymer compound, separating water, and then filtering off. Then, the lipophilic polymer compound is washed with an organic solvent compatible with the polymer, removed and dried, so that the water adsorbed on the surface of the electronic ceramic material powder is removed, and the lipophilic polymer compound is coagulated. The liquid cross-linking force which causes the above can be remarkably reduced, so that it is possible to easily produce an electronic ceramic material powder having a small cohesive property and an excellent dispersibility, and thus the characteristics of the electronic ceramic component can be improved.

【0017】また、本発明方法において、親油性高分子
化合物で水分を除去して得られるスラリー中の材料粉末
は、水の吸着が少なく有機系溶剤に分散し易いため、有
機溶剤に分散させた後、乾燥工程を省略して、直接バイ
ンダ樹脂を加えて混合し、シート成形することができ、
従って、乾燥時の凝集をも防止できるので、より微細な
粒子からなる均一な組成のセラミックグリーンシートを
得ることもできる。
In the method of the present invention, the material powder in the slurry obtained by removing water with the lipophilic polymer compound has low water adsorption and is easily dispersed in an organic solvent. Later, the drying step is omitted, the binder resin is directly added and mixed, and the sheet can be formed,
Therefore, aggregation during drying can be prevented, and a ceramic green sheet having a uniform composition of finer particles can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂部 行雄 京都府長岡京市天神二丁目26番10号 株 式会社村田製作所内 (56)参考文献 特開 平5−4817(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/622 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukio Sakabe 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Murata Manufacturing Co., Ltd. (56) References JP-A-5-4817 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/622

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液相反応により生成した材料粉末を水
洗、濾別して含水スラリーを得、該含水スラリーを親油
性高分子化合物と混練し、水分を分離した後、前記親油
性高分子化合物の可溶な有機溶剤と混練し、親油性高分
子化合物を除去することを特徴とする電子セラミックス
材料粉末の製造方法。
1. A material powder produced by a liquid phase reaction is washed with water and separated by filtration to obtain a water-containing slurry. The water-containing slurry is kneaded with a lipophilic polymer compound, water is separated, and then the lipophilic polymer compound is removed. A method for producing an electronic ceramic material powder, comprising kneading with a soluble organic solvent to remove a lipophilic polymer compound.
【請求項2】 前記材料粉末が一般式ABO3で表され
るペロブスカイト構造を有し、Aサイト金属の水酸化物
の溶液とBサイト金属の加水分解性有機金属化合物の溶
液とを反応させて得られる複合酸化物からなる請求項1
に記載の方法。
2. The method according to claim 1, wherein the material powder has a perovskite structure represented by the general formula ABO 3 and reacts a solution of a hydroxide of an A-site metal with a solution of a hydrolyzable organometallic compound of a B-site metal. 2. A composite oxide comprising the obtained composite oxide.
The method described in.
JP13175593A 1993-06-02 1993-06-02 Manufacturing method of electronic ceramic material powder Expired - Fee Related JP3319037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13175593A JP3319037B2 (en) 1993-06-02 1993-06-02 Manufacturing method of electronic ceramic material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13175593A JP3319037B2 (en) 1993-06-02 1993-06-02 Manufacturing method of electronic ceramic material powder

Publications (2)

Publication Number Publication Date
JPH06345517A JPH06345517A (en) 1994-12-20
JP3319037B2 true JP3319037B2 (en) 2002-08-26

Family

ID=15065433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13175593A Expired - Fee Related JP3319037B2 (en) 1993-06-02 1993-06-02 Manufacturing method of electronic ceramic material powder

Country Status (1)

Country Link
JP (1) JP3319037B2 (en)

Also Published As

Publication number Publication date
JPH06345517A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
DE69118876T2 (en) DIELECTRIC CERAMIC COMPOSITIONS AND METHOD FOR INCREASING YOUR DIELECTRICAL PROPERTIES
JP2004517795A (en) Coated barium titanate-based particles and manufacturing method
CN1313842A (en) Barium titanate dispersions
WO1998030498A1 (en) Method of making barium titanate
US6893623B2 (en) Perovskite titanium-type composite oxide particle and production process thereof
US6353528B1 (en) Solid activated carbon, process for manufacturing the same and electric double layer capacitor using the same
EP0894779A1 (en) Process for preparing ceramic powder
US4595580A (en) Method for manufacturing fine powder of barium zirconate
JP3319037B2 (en) Manufacturing method of electronic ceramic material powder
US20060243943A1 (en) Perovskite titanium-type composite oxide particle and production process thereof
JP2006199578A (en) Titanium-containing perovskite-type composite oxide, production process thereof and capacitor
CN106478089B (en) A kind of preferred orientation BaTiO3/SrTiO3The preparation method of nano composite ceramic
CN1800099A (en) Barium titanium oxalate power and method for manufacturing titanium type perovskite ceramic raw material powder
JP4073018B2 (en) Raw material powder for sintered barium titanate
JP2002145614A (en) Titanium oxide sol composition
JP2557344B2 (en) Method for treating inorganic hydroxide precipitate
KR100708488B1 (en) Highly dispersible crystalline barium titanate in organic medium and the method of preparing the same
JP3182849B2 (en) Method for producing raw material powder of dielectric ceramic composition
JPH0573696B2 (en)
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JP4076033B2 (en) Manufacturing method of ceramic extrusion molding
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
WO1985001933A1 (en) Process for preparing fine particles of ba(zrxti1-x)o3 solid solution
CN109880170B (en) Synthesis and application of palygorskite functionalized three-dimensional composite flame retardant
JPH0573695B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees