JP3318829B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3318829B2
JP3318829B2 JP31927897A JP31927897A JP3318829B2 JP 3318829 B2 JP3318829 B2 JP 3318829B2 JP 31927897 A JP31927897 A JP 31927897A JP 31927897 A JP31927897 A JP 31927897A JP 3318829 B2 JP3318829 B2 JP 3318829B2
Authority
JP
Japan
Prior art keywords
air
ventilation
cooled
room
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31927897A
Other languages
Japanese (ja)
Other versions
JPH11148762A (en
Inventor
真理子 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31927897A priority Critical patent/JP3318829B2/en
Publication of JPH11148762A publication Critical patent/JPH11148762A/en
Application granted granted Critical
Publication of JP3318829B2 publication Critical patent/JP3318829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce energy loss by providing a fan for passing and circulating the air into and around an object to be heated or cooled, and an air conditioner for blowing heated or cooled air forcibly thereby making uniform the velocity of air flow arriving at the object to be heated or cooled. SOLUTION: A box 4 with a vent is stacked to close a ventilation face 6 and contained in the containing chamber 2 of of the precooling box 1 of an air conditioner. Cooling is then started to supply cold heat from a heat source unit to the cooler 8a of a precooler 8 and a fan 7 is operated along with the fan 8b of the precooler 8 to blow the air in a ventilation chamber 3 to the containing chamber 2 side thus lowering the pressure in the ventilation chamber 3. The air blown into the containing chamber 2 is sucked by the precooler 8 and cooled by the cold heat of the cooler 8a before being blown into the containing chamber 2 by means of the fan 8b. Since the air flow passes substantially uniformly through a wind passage 9 defined by stacking the box 4 with a vent and reaches an object to be cooled at a uniform velocity, energy loss can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置に係
り、より詳しくは、差圧で空気を循環させ被冷却物や被
加熱物等の対象物に均一に吹き付けて冷却又は加熱等す
ることができる空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly, to circulating air at a differential pressure to uniformly blow an object such as an object to be cooled or an object to be cooled or heated. The present invention relates to an air conditioner capable of performing the following.

【0002】[0002]

【従来の技術】一般に、室内における空気調和は、空気
調和装置の吹出口から冷却又は加熱した空気を吹き出し
て室内を循環させ、吸込口からその空気を吸い込んで再
度冷却又は加熱するという循環経路を通して行ってい
る。このとき、室内の被冷却物又は被加熱物を確実に冷
却又は加熱して吸込口に空気を吸い込ませるために、吸
込口近傍の空間を積極的に低圧にして空気の循環を行う
差圧方式を用いることがある。
2. Description of the Related Art In general, air conditioning in a room is performed through a circulation path in which cooled or heated air is blown out from an air outlet of an air conditioner to circulate through the room, and the air is sucked in from an inlet to be cooled or heated again. Is going. At this time, in order to ensure that the object to be cooled or heated in the room is cooled or heated so that air is sucked into the suction port, the pressure in the space near the suction port is positively reduced to circulate air. May be used.

【0003】図12は、例えば特開昭57−16768
号公報に開示された、従来の差圧式予冷装置の一例を示
す側面図である(従来技術1)。貯蔵庫20の側壁下部
に吸込口21を有する側壁面22を設け、この側壁面2
2の上部に開口部23を設けて、この開口部23に予冷
機24を備えた差圧通風式ユニット25を組み込んであ
る。また、送風ダクト26の吐出側を貯蔵庫20内上部
に連結して、差圧通風式ユニット25を貯蔵庫20と一
体にしてある。そして、貯蔵庫20内に通孔付容器27
を搬入し、これを吸込口21の前方に吸込口21を囲ん
で中間に空間ができるようにして2つのブロックに積み
上げてある。
FIG. 12 shows, for example, Japanese Patent Application Laid-Open No. 57-16768.
FIG. 1 is a side view showing an example of a conventional differential pressure type pre-cooling device disclosed in Japanese Unexamined Patent Publication (Kokai) No. H10 (1998). A side wall surface 22 having a suction port 21 is provided below the side wall of the storage 20.
An opening 23 is provided in the upper part of the second unit 2, and a differential pressure ventilation type unit 25 having a precooler 24 is incorporated in the opening 23. The discharge side of the air duct 26 is connected to the upper part of the storage 20, and the differential pressure ventilation type unit 25 is integrated with the storage 20. And the container 27 with a through-hole is stored in the storage 20.
And is stacked on two blocks in front of the suction port 21 so as to surround the suction port 21 so that a space is formed in the middle.

【0004】図13は、例えば特開昭59−13777
4号公報に開示された、従来の差圧式予冷装置の一例を
示す側面図である(従来技術2)。解凍庫30の内部に
は前後に開口部を有し収納棚を設けた解凍台車31がダ
クト状に連結されて格納され、解凍台車31内のダクト
状通路と解凍台車31の上部空間32とで循環空気の送
風路が形成されている。この解凍庫30の一端側には調
整室33が設けられ、調整室33の上部と上部空間32
との境界近傍に予冷機34が設けてある。
FIG. 13 shows, for example, Japanese Patent Laid-Open No. 59-13777.
It is a side view which shows an example of the conventional differential pressure type pre-cooling apparatus disclosed by Japanese Patent No. 4 (Prior Art 2). Inside the thawing cabinet 30, a thawing truck 31 having an opening at the front and back and having a storage shelf is connected and stored in a duct shape, and is formed by a duct-like passage in the thawing truck 31 and an upper space 32 of the thawing truck 31. A ventilation path for circulating air is formed. An adjustment chamber 33 is provided at one end of the thawing chamber 30, and an upper space 32 and an upper space 32 of the adjustment chamber 33 are provided.
A pre-cooler 34 is provided in the vicinity of the boundary with.

【0005】従来技術1及び2で示す差圧式予冷装置の
いずれの場合も、野菜等の被冷却物を急冷以後、常に一
定の予冷温度に維持して、野菜等の呼吸作用を抑制し低
温貯蔵を行っている。
[0005] In any of the differential pressure type pre-cooling apparatuses shown in the prior arts 1 and 2, after the object to be cooled such as vegetables is rapidly cooled, a constant pre-cooling temperature is always maintained to suppress the respiratory action of the vegetables and the like and to store them at low temperature. It is carried out.

【0006】[0006]

【発明が解決しようとする課題】上記のように構成した
差圧式予冷装置では、気流が室内で方向転換し、被冷却
物の表面に到達する際に渦が発生して低圧部が生じ、そ
こに気流が引かれるため一部の収穫箱内に気流がほとん
ど流通せず被冷却物が冷却されない、又は気流の流通し
にくい部分に合せて冷却性能を設定したため余分な冷却
負荷が発生する、などの問題があった。
In the differential pressure type pre-cooling device configured as described above, the air flow changes direction in the room, and when reaching the surface of the object to be cooled, a vortex is generated to generate a low pressure portion. The airflow hardly flows through some harvest boxes because the airflow is drawn, and the cooled object is not cooled, or an extra cooling load is generated because the cooling performance is set according to the part where the airflow is difficult to flow There was a problem.

【0007】本発明は上記のような課題を解決するため
になされたもので、気流が被冷却物又は被加熱物等を冷
却又は加熱等する際に、気流速度の低下や、気流の方向
転換による渦の発生によって生じるエネルギー損失を軽
減することができる差圧式の空気調和装置を得ることを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. When the airflow cools or heats an object to be cooled or an object to be heated, the airflow speed is reduced or the airflow direction is changed. It is an object of the present invention to obtain a differential pressure type air conditioner capable of reducing energy loss caused by generation of a vortex due to air.

【0008】[0008]

【課題を解決するための手段】本発明は、加熱又は冷却
した空気を送風してこの空気を室内に循環させる空気調
和装置であって、被加熱物又は被冷却物の両端に差圧を
設け被加熱物又は被冷却物の内部とその周囲に空気を通
過させて循環させる送風機と、空気循環路の渦発生確率
の高い部位に設けて、気流方向を変化させるとともに、
加熱又は冷却した空気を強制的に吹き出す空気調和機と
を備えた。
SUMMARY OF THE INVENTION The present invention relates to an air conditioner which blows heated or cooled air and circulates the air indoors, wherein a differential pressure is provided at both ends of an object to be heated or cooled. A blower that allows air to pass through and circulates inside and around the object to be heated or cooled, and is provided in a portion of the air circulation path where the probability of vortex generation is high , and changes the airflow direction,
An air conditioner for forcibly blowing heated or cooled air was provided.

【0009】また、加熱又は冷却した空気を送風してこ
の空気を室内に循環させる空気調和装置であって、加熱
又は冷却した空気を強制的に吹き出し被加熱物又は被冷
却物の内部とその周囲に空気を通過させて循環させる空
気調和機と、空気循環路の渦発生確率の高い部位に設
、気流方向を変化させる送風機とを備えた。
An air conditioner for blowing heated or cooled air to circulate the air in a room, wherein the heated or cooled air is forcibly blown out of the object to be heated or the object to be cooled and its surroundings. An air conditioner that allows air to pass through and circulates air, and a blower that is provided at a portion of the air circulation path where the probability of occurrence of vortices is high and that changes the airflow direction are provided.

【0010】[0010]

【0011】[0011]

【発明の実施の形態】[実施の形態1]図1は本発明の
実施の形態1の構成図である。1は差圧予冷式の空気調
和装置の予冷庫、2,3は予冷庫1の収容室及び通気
室、4は収容室2内に収容されて内部に食品等を収容し
た通気孔付箱である。5,6はそれぞれ同一面に設けた
通気遮断板および通気面で、予冷庫1を収容室2と通気
室3とに分離し、かつ収容室2内に収容された通気孔付
箱4の量によってその面積比を変えることができる。7
は通気遮断板5の上方に設けた軸流ファンなどの送風機
で、通気孔付箱4の両端に差圧を設けて通気孔付箱4の
内部とその周囲に空気を通過させて循環させる。
[First Embodiment] FIG. 1 is a configuration diagram of a first embodiment of the present invention. Reference numeral 1 denotes a pre-cooling compartment of a differential pressure pre-cooling type air conditioner, reference numerals 2 and 3 denote a housing room and a ventilation room of the pre-cooling cabinet 1, and 4 denotes a box with a ventilation hole housed in the housing room 2 and housing foods and the like. is there. Reference numerals 5 and 6 denote a ventilation blocking plate and a ventilation surface provided on the same surface, respectively. The pre-cooling cabinet 1 is divided into a housing room 2 and a ventilation room 3, and the amount of the box 4 with a ventilation hole housed in the housing room 2. Can change the area ratio. 7
Is a blower such as an axial fan provided above the ventilation blocking plate 5. Differential pressure is provided at both ends of the box 4 with air holes, and air is circulated inside and around the box 4 with air holes.

【0012】8は通気遮断板5と正対する収容室2の側
壁近傍の上方部位、すなわち、空気循環路の渦発生確率
の高い部位に設けた空気調和機である予冷機で、冷却機
8aと送風機8bとからなり、冷却した空気を強制的に
吹き出す。すなわち、冷却が開始されると、冷熱が熱源
機(図示せず)側から熱伝達媒体によって冷却機8aに
供給されるが、この冷却機8aに空気が接触して冷熱が
伝達され、冷却された空気を送風機8bにより強制的に
吹き出すようになっている。9は通気面6と通気孔付箱
4によって形成された風路である。
Reference numeral 8 denotes a precooler, which is an air conditioner provided in an upper portion near the side wall of the storage chamber 2 facing the ventilation blocking plate 5, that is, a portion having a high vortex generation probability in the air circulation path. The blower 8b forcibly blows out cooled air. That is, when cooling is started, cold heat is supplied to the cooler 8a from the heat source device (not shown) by the heat transfer medium. The forced air is blown out by the blower 8b. 9 is an air path formed by the ventilation surface 6 and the box 4 with ventilation holes.

【0013】上記のように構成した実施の形態1の作用
を説明する。まず、通気孔付箱4を通気遮断板5と同一
面に設けた通気面6を完全に塞ぐようにして積み上げ
て、予冷庫1の収容室2内に収容する。こうして、通気
孔付箱4が収容室2内に収容されると冷却が開始され、
冷熱が熱伝達媒体によって熱源機から予冷機8の冷却機
8aに供給される。また、送風機7と予冷機8内の送風
機8bが動き、通気室3内の空気を強制的に収容室2側
に吹き出して、通気室3は収容室2より圧力が低くな
る。そして、収容室2内に吹き出された空気は予冷機8
に吸い込まれ、冷却機8aの冷熱によって冷却され、予
冷機8内の送風機8bによって予冷機8から収容室2の
床面方向に吹き出す。
The operation of the first embodiment configured as described above will be described. First, the boxes 4 with the ventilation holes are stacked so as to completely cover the ventilation surface 6 provided on the same surface as the ventilation blocking plate 5 and accommodated in the accommodation room 2 of the pre-cooling cabinet 1. In this way, when the box 4 with the ventilation hole is accommodated in the accommodation room 2, cooling is started,
Cold heat is supplied to the cooler 8a of the precooler 8 from the heat source device by the heat transfer medium. In addition, the blower 7 and the blower 8b in the precooler 8 move to force the air in the ventilation chamber 3 to blow out to the accommodation room 2 side, so that the pressure of the ventilation room 3 becomes lower than that of the accommodation room 2. The air blown into the storage chamber 2 is supplied to the pre-cooler 8
And is cooled by the cool heat of the cooler 8a, and is blown out from the precooler 8 toward the floor of the storage room 2 by the blower 8b in the precooler 8.

【0014】こうして、床面方向に吹き出した冷風は、
通気室3が収容室2よりも低圧であることで、通気孔付
箱4を積み上げてできた風路9を通って通気面6を通過
し、通気室3に到達する。その空気は再び送風機7によ
って収容室2側に吹き出される。
Thus, the cool air blown out toward the floor surface is
Since the ventilation chamber 3 has a lower pressure than the accommodation chamber 2, the ventilation chamber 3 passes through the ventilation surface 6 through the air passage 9 formed by stacking the boxes 4 with ventilation holes, and reaches the ventilation chamber 3. The air is blown out again to the storage chamber 2 side by the blower 7.

【0015】上記のように構成した本実施の形態に対し
て、従来技術では、送風機7付近に予冷機8があり、予
冷機8付近には気流方向を変化させる機器は存在しな
い。そのため、いったん吹き出した気流がそのまま終端
までくると、流路幅が拡大し流路両脇に剥離が生じて渦
が発生する。この場合は、流路下流が通風孔付箱群から
なる収容室2より低圧の通気室3への流路であるため、
気流は通気孔付箱群からなる通気室3への流路方向に急
速に方向転換する。
In contrast to the present embodiment configured as described above, in the prior art, there is a pre-cooler 8 near the blower 7, and there is no device near the pre-cooler 8 to change the airflow direction. Therefore, once the blown air flow reaches the end as it is, the width of the flow path increases, and separation occurs on both sides of the flow path, thereby generating a vortex. In this case, the downstream of the flow path is a flow path to the ventilation chamber 3 having a lower pressure than the storage chamber 2 formed of the group of boxes with ventilation holes.
The airflow is rapidly changed in the direction of the flow path to the ventilation chamber 3 composed of a group of boxes with ventilation holes.

【0016】この通風孔付箱4は通風路のみでなく気流
の障壁となるため、その衝突によって方向転換する気流
が発生し、気流はさらに渦に巻き込まれ、渦が発達す
る。このため、気流は通気孔付箱4の流路を通って通気
室3に流れるものばかりでなく、渦にひかれる割合も大
きくなり、発生した渦近傍の流路は気流がほぼ流路と平
行に到達した流路より風量が落ち、風速も低下する。ま
た、全体に気流が通気室3と渦の双方にひかれるため、
収容室2側の気流は全体に上方へひかれる形になり、通
気路下部にも気流が届かなくなる場合がある。
Since the box 4 with the ventilation holes serves as a barrier not only for the ventilation path but also for the airflow, the collision generates an airflow which changes its direction, and the airflow is further entrained in the vortex and the vortex develops. For this reason, the air flow not only flows into the ventilation chamber 3 through the flow path of the box 4 with vents, but also increases the rate of being drawn by the vortex, and the flow near the generated vortex is substantially parallel to the flow path. The air flow drops from the flow path that has reached the, and the wind speed also decreases. Moreover, since the airflow is drawn by both the ventilation chamber 3 and the vortex as a whole,
The airflow on the side of the accommodation room 2 is entirely drawn upward, and the airflow may not reach the lower part of the ventilation path.

【0017】これに対して、本実施の形態1によれば、
収容室2と通気室3に圧力差を生じさせる位置以外に気
流流路が拡大し、かつ最も急速に方向転換する位置にも
強制送風機である予冷機8が存在することになる。従っ
て、流路拡大による気流の剥離に伴う渦発生を解消でき
るので、通気孔付箱4を積み上げてできた風路9内は上
下の区別なくほぼ均一に通気室3の低圧に引かれて気流
が通ることになる。
On the other hand, according to the first embodiment,
The pre-cooler 8, which is a forced air blower, is also present at a position where the air flow path expands and the direction changes most rapidly other than the position where a pressure difference is generated between the storage chamber 2 and the ventilation chamber 3. Therefore, since the vortex generated due to the separation of the air flow due to the expansion of the flow path can be eliminated, the inside of the air passage 9 formed by stacking the boxes 4 with the air holes is almost uniformly drawn by the low pressure of the ventilation chamber 3 without distinction between the upper and lower sides. Will pass.

【0018】[実施例]実施の形態1の実施例を、図
2、図3の差圧予冷時の室内中央断面における気流分布
図及び圧力分布図を用いて説明する。予冷庫1は長さ1
0m、高さ4mで、送風機7及び予冷機8の送風機8b
から吹き出した風は予冷庫幅において均等に長さ方向に
吹き出るものとする。なお、幅方向の気流計算は省略
し、寸法に関しては長さ方向および高さのみ述べる。通
気室3の長さは1m、収容室2の長さは9m、収容室2
内に積み上げた通気孔付箱4は各々高さ0.2mで、パ
レットに5個積み上げたものを2段に積んだ場合とし
て、通気室3と収容室2の境界から長さ6.5m、高さ
2.7mとした。通風路は、各箱およびパレットごとに
あり、計12の通気路があるものとする。
[Embodiment] An embodiment of the first embodiment will be described with reference to the air flow distribution diagram and the pressure distribution diagram in the center cross section of the room during the differential pressure pre-cooling shown in FIGS. Pre-cooler 1 is length 1
0 m, height 4 m, blower 8 b of blower 7 and precooler 8
The wind blown out from the outlet is blown out uniformly in the length direction in the width of the pre-cooling box. The calculation of the airflow in the width direction is omitted, and only the length and height are described with respect to dimensions. The length of the ventilation room 3 is 1 m, the length of the accommodation room 2 is 9 m, and the accommodation room 2
Each of the boxes 4 with vents stacked therein has a height of 0.2 m, and a stack of five pallets stacked in two tiers has a length of 6.5 m from the boundary between the ventilation chamber 3 and the accommodation chamber 2. The height was 2.7 m. There are ventilation paths for each box and pallet, and there are a total of 12 ventilation paths.

【0019】送風機7は通気室3と収容室2の境界の天
井面近傍に取り付けられ、通気室3の空気を吸い込み、
収容室2側へ吹き出す。送風機7と通気孔付箱群モデル
との間の通気室3と収容室2の境界に位置する通気遮断
板5には全く通気がないものとする。予冷機8は収容室
2の側壁近傍に設置し、設置高さは3.2mで、送風機
7の最下部と同じ高さにある。予冷機8の上部にある吸
込口で送風機7から送られてくる空気を吸い込み、予冷
機8内の冷却機8aでその空気を冷却し、予冷機7下部
にある吹出口から収容室2の床面方向に空気を吹き出
す。予冷機8と送風機7の吹出風速は3m/s、各々の
吸込口の圧力は成り行きとした。予冷庫1内定常時を想
定した計算であるので、予冷庫1内の温度はほぼ均一に
なっているものと仮定し、空気温度による密度計算は省
略した。
The blower 7 is mounted near the ceiling at the boundary between the ventilation room 3 and the accommodation room 2 and sucks air in the ventilation room 3.
It blows out to the accommodation room 2 side. It is assumed that the ventilation blocking plate 5 located at the boundary between the ventilation chamber 3 and the accommodation chamber 2 between the blower 7 and the box group model with ventilation holes has no ventilation. The pre-cooler 8 is installed near the side wall of the accommodation room 2, has an installation height of 3.2 m, and is at the same height as the lowermost part of the blower 7. The air sent from the blower 7 is sucked into the suction port at the upper part of the precooler 8, the air is cooled by the cooler 8 a in the precooler 8, and the floor of the accommodation room 2 is blown from the outlet at the lower part of the precooler 7. Blows air toward the surface. The blowing air speed of the precooler 8 and the blower 7 was 3 m / s, and the pressure of each suction port was determined. Since the calculation assumes a steady state in the pre-cooling box 1, the temperature inside the pre-cooling box 1 is assumed to be substantially uniform, and the density calculation based on the air temperature is omitted.

【0020】このとき、通気孔付箱群最上部の通風路の
風速は、収容室2側の空気入口で1.8m/s、収容室
2と通気室3との境界面の空気出口で1.6m/s、通
気孔付箱群最下段の段ボールの通風路の風速は、収容室
2側の空気入口で1.4m/s、収容室2と通気室3と
の境界面の空気出口で1.4m/s、気流が最も流路に
水平にあたる通気孔付箱群下段の最上段の通風孔付箱4
の通風路の風速は、収容室2側の空気入口で1.6m/
s、収容室2と通気室3との境界面の空気出口でも1.
5m/sとなる。
At this time, the wind velocity in the ventilation path at the top of the box group with vent holes is 1.8 m / s at the air inlet on the accommodation room 2 side, and 1 m at the air exit at the interface between the accommodation room 2 and the ventilation room 3. 0.6 m / s, the wind velocity of the cardboard ventilation passage at the bottom of the box group with vent holes is 1.4 m / s at the air inlet on the accommodation room 2 side, and at the air outlet at the boundary between the accommodation room 2 and the ventilation room 3. 1.4 m / s, the uppermost box with ventilation holes at the bottom of the box group with ventilation holes, in which the air flow is most horizontal to the flow path.
Wind velocity at the air inlet on the accommodation room 2 side is 1.6 m /
s, even at the air outlet at the interface between the accommodation room 2 and the ventilation room 3.
5 m / s.

【0021】このときの圧力は、通気孔付箱群最上部の
通風路で、収容室2側の空気入口で99993.4P
a、収容室2と通気室3との境界面の空気出口で999
87.4Paで圧力差6.0Pa、通気孔付箱群最下段
の段ボールの通風路の圧力は、収容室2側の空気入口で
99998.3Pa、収容室2と通気室3との境界面の
空気出口で99993.4m/sであって、圧力差は
4.9Pa、気流が最も流路に水平にあたる通気孔付箱
群下段の最上段の通風孔付箱4の通風路の圧力は、収容
室側の空気入口で99997.9Pa、収容室2と通気
室3との境界面の空気出口99992.4Paで圧力差
は5.5Paとなる。
The pressure at this time is 99993.4 P at the air inlet on the accommodation room 2 side in the ventilation path at the top of the box group with ventilation holes.
a, 999 at the air outlet at the interface between the accommodation room 2 and the ventilation room 3
At 87.4 Pa, the pressure difference is 6.0 Pa, and the pressure of the ventilation path of the cardboard at the bottom of the box group with ventilation holes is 99998.3 Pa at the air inlet on the accommodation room 2 side, and the boundary surface between the accommodation room 2 and the ventilation room 3 is At the air outlet, the pressure was 99993.4 m / s, the pressure difference was 4.9 Pa, and the pressure in the ventilation path of the uppermost ventilation box 4 in the lowermost ventilation box group, in which the air flow was most horizontal to the flow path, was stored. The pressure difference is 5999 Pa at 99997.9 Pa at the air inlet on the chamber side and 99992.4 Pa at the air outlet at the boundary between the storage chamber 2 and the ventilation chamber 3.

【0022】図2、図3に示すように、渦が消失、つま
り、通気室3で不要に気流を巻き込む負圧は発生してお
らず、収容室2に収容された通気孔付箱4が積み上げら
れた箱群によって形成された収容室2から通気室3への
通気路を気流が上下ほぼ均一に通気している。また、従
来、渦の発生により巻き込まれていた気流分のエネルギ
ー損失が低減できる。従って、収容室2内の通気孔付箱
4内に収容した食品等を従来よりも均一かつ迅速に冷却
することができる。
As shown in FIGS. 2 and 3, the vortex disappears, that is, a negative pressure that unnecessarily involves the air flow in the ventilation chamber 3 is not generated. The airflow vertically and uniformly flows through the ventilation path from the storage chamber 2 to the ventilation chamber 3 formed by the stacked boxes. In addition, the energy loss of the airflow that has been conventionally involved due to the generation of the vortex can be reduced. Therefore, the food and the like stored in the box with vents 4 in the storage chamber 2 can be cooled more uniformly and quickly than before.

【0023】なお、上記の説明において、空気調和装置
である予冷機8、送風機7の大きさや数や性能は限定さ
れるものではなく、また、空気調和を冷却又は加熱のみ
に限定するものではない(以下同様)。
In the above description, the size, number, and performance of the pre-cooler 8 and the blower 7, which are air conditioners, are not limited, and the air conditioning is not limited to only cooling or heating. (The same applies hereinafter).

【0024】[実施の形態2]図4は本発明の実施の形
態2の構成図である。なお、実施の形態1の構成と同一
部分には同じ符号を付し、説明を省略する。実施の形態
2では、実施の形態1で示した送風機7と予冷機8の位
置を相互に入れ替えたものである。7は通気遮断板5と
正対する収容室2の側壁近傍の上方部位、すなわち、空
気循環路の渦発生確立の高い部位に設けた送風機であ
る。8は通気遮断面5の上方に設けた空気調和機である
予冷機で、冷却器8aと送風機8bとからなり、冷却し
た空気を強制的に吹き出すと共に、通気孔付箱4の両端
に差圧を設けて通気孔付箱4の内部とその周囲に冷却し
た空気を通過させて循環させる。
[Second Embodiment] FIG. 4 is a configuration diagram of a second embodiment of the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals, and the description is omitted. In the second embodiment, the positions of the blower 7 and the precooler 8 shown in the first embodiment are interchanged. Reference numeral 7 denotes a blower provided in an upper portion near the side wall of the storage chamber 2 facing the ventilation blocking plate 5, that is, in a portion of the air circulation path where vortex generation is highly established. Reference numeral 8 denotes a pre-cooler, which is an air conditioner provided above the ventilation blocking surface 5 and comprises a cooler 8a and a blower 8b. The cooled air is forcibly blown out, and a differential pressure is applied to both ends of the box 4 with the ventilation hole. Is provided to allow the cooled air to pass through and circulate inside and around the box 4 with vents.

【0025】上記のように構成した実施の形態2の作用
を説明する。まず、通気孔付箱4を通気遮断板5と同一
面に設けた通気面6を完全に塞ぐようにして積み上げ
て、予冷庫1の収容室2内に収容する。こうして、通気
孔付箱4が収容室2内に収容されると冷却が開始され、
冷熱が熱伝達媒体によって熱源機から予冷機8の冷却器
8aに供給される。また、予冷機8内の送風機8と送風
機7が作動し、予冷機8内の送風機8bが通気室3内の
空気を強制的に収容室2側に吹き出して、通気室3は収
容室2より圧力が低くなる。このとき、予冷機8の冷却
器8aに供給された冷熱によって吹出し空気の温度が低
下する。こうして冷却され収容室2に吹き出された空気
は、送風機7によって収容室2の床面方向に吹き出され
る。
The operation of the second embodiment configured as described above will be described. First, the boxes 4 with the ventilation holes are stacked so as to completely cover the ventilation surface 6 provided on the same surface as the ventilation blocking plate 5 and accommodated in the accommodation room 2 of the pre-cooling cabinet 1. In this way, when the box 4 with the ventilation hole is accommodated in the accommodation room 2, cooling is started,
Cold heat is supplied from the heat source device to the cooler 8a of the pre-cooler 8 by the heat transfer medium. In addition, the blower 8 and the blower 7 in the precooler 8 are operated, and the blower 8b in the precooler 8 forcibly blows out the air in the ventilation chamber 3 to the accommodation room 2 side. The pressure drops. At this time, the temperature of the blown air decreases due to the cool heat supplied to the cooler 8a of the precooler 8. The air thus cooled and blown out to the storage room 2 is blown out by the blower 7 toward the floor of the storage room 2.

【0026】床面方向に吹き出した冷風は、通気室3が
収容室2よりも低圧であることで、通気孔付箱4を積み
上げてできた風路9を通って通気面6を通過し、通気室
3に到達する。その空気は再び予冷機8の送風機8bに
よって収容室2側に吹き出される。
The cold air blown out toward the floor surface passes through the ventilation surface 6 through the air passage 9 formed by stacking the boxes 4 with the ventilation holes, since the ventilation room 3 has a lower pressure than the accommodation room 2. It reaches the ventilation chamber 3. The air is blown out toward the storage chamber 2 again by the blower 8 b of the precooler 8.

【0027】上記のように構成した本実施の形態に対し
て、従来技術では、送風機7がある場所には気流を変化
させる機器は存在しない。そのため、実施の形態2では
従来技術にない効果が生じるが、それらの効果は実施の
形態1で示した効果と実質的に同一なので、説明を省略
する。
In contrast to the present embodiment configured as described above, in the prior art, there is no device that changes the airflow at the location where the blower 7 is located. Therefore, the second embodiment has effects that are not found in the related art. However, since these effects are substantially the same as the effects shown in the first embodiment, description thereof will be omitted.

【0028】[実施例]実施の形態2の実施例を、図
5、図6の差圧予冷時の室内中央断面における気流分布
図及び圧力分布図を用いて説明する。予冷機8は通気室
3と収容室2の境界の天井面近傍に取り付けられ、通気
室3の空気を吸い込み、冷却器8aでその空気を冷却
し、収容室2側へ吹き出す。予冷機8と通気孔付箱群モ
デルとの間の通気室3と収容室2の境界に位置する通気
遮断板5に全く通気がないものとする。送風機7は収容
室2の側壁近傍に設置し、設置高さは3.2mで、予冷
機8の最下部と同じ高さにある。送風機7は、予冷機8
の送風機8bから送られてくる空気を収容室2の床面方
向に吹き出す。
EXAMPLE An example of the second embodiment will be described with reference to FIGS. 5 and 6 showing an airflow distribution diagram and a pressure distribution diagram in a center cross section of a room at the time of differential pressure precooling. The pre-cooler 8 is attached near the ceiling surface at the boundary between the ventilation room 3 and the accommodation room 2, sucks air in the ventilation room 3, cools the air with the cooler 8 a, and blows out the air to the accommodation room 2 side. It is assumed that the ventilation blocking plate 5 located at the boundary between the ventilation chamber 3 and the accommodation chamber 2 between the precooler 8 and the box group model with ventilation holes has no ventilation. The blower 7 is installed near the side wall of the accommodation room 2, has a height of 3.2 m, and is at the same height as the lowermost part of the precooler 8. The blower 7 includes a pre-cooler 8
The air sent from the blower 8b is blown out toward the floor of the storage room 2.

【0029】このときの、通気孔付箱群最下段の段ボー
ルの通風路の圧力は、収容室2と通気室3との境界面の
空気出口で99993.5Paであり、圧力差は4.8
Paとなる。その他の実施例の構成及び作用は、実施の
形態1の実施例に示した構成及び作用と同様なので、説
明を省略する。また、効果は、実施の形態1の実施例に
示した効果と実質的に同様なので、説明を省略する。
At this time, the pressure of the ventilation path of the lowermost cardboard box group at the bottom of the box group with vent holes is 99993.5 Pa at the air outlet at the interface between the accommodation room 2 and the ventilation room 3, and the pressure difference is 4.8.
Pa. The configuration and operation of the other examples are the same as the configuration and operation of the example of the first embodiment, and a description thereof will not be repeated. Further, the effects are substantially the same as the effects shown in the example of the first embodiment, and the description will be omitted.

【0030】[実施の形態3]図7は本発明の実施の形
態3の構成図である。なお、実施の形態1の構成と同一
部分には同じ符号を付し、説明を省略する。実施の形態
3では、実施の形態1で示した送風機7の位置に予冷機
8を位置させ、送風機7を設けずに導風板を設けもので
ある。
[Third Embodiment] FIG. 7 is a configuration diagram of a third embodiment of the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals, and the description is omitted. In the third embodiment, the precooler 8 is located at the position of the blower 7 shown in the first embodiment, and the air guide plate is provided without the blower 7.

【0031】8は通気遮断面5の上方に設けた空気調和
機である予冷機で、冷却器8aと送風機8bとからな
り、冷却した空気を強制的に吹き出すと共に、通気孔付
箱4の両端に差圧を設けて通気穴付箱4に冷却した空気
を通過させて循環させる。10は予冷機8の真下から収
容室2方向に向けて通気孔付箱群に平行でかつ通気孔付
箱群よりも長くなるように取付けた導風板で、予冷機8
から吹き出した冷却空気に指向性を付与して、この冷却
空気を予冷機8の吹出口からこの吹出口に正対する室内
壁近傍まで導く。
Numeral 8 denotes a pre-cooler, which is an air conditioner provided above the ventilation blocking surface 5 and comprises a cooler 8a and a blower 8b. , And the cooled air is passed through and circulated through the box 4 with vent holes. Reference numeral 10 denotes a baffle plate attached so as to extend from directly below the pre-cooler 8 toward the accommodation room 2 so as to be parallel to and longer than the group of boxes with vents.
The cooling air blown out of the pre-cooler 8 is provided with directivity, and the cooling air is guided from the outlet of the precooler 8 to the vicinity of the interior wall facing the outlet.

【0032】上記のように構成した実施の形態3の作用
を説明する。まず、通気孔付箱4を通気遮断板5と同一
面に設けた通気面6を完全に塞ぐようにして積み上げ、
予冷庫1の収容室2内に収容する。こうして、通気孔付
箱4が収容室2内に収容されると冷却が開始され、冷熱
が熱伝達媒体によって熱源機側から予冷機8の冷却室8
aに供給される。また、予冷機8内の送風機8bが作動
し、通気室3内の空気を強制的に収容室2側に吹き出し
て、通気室3は収容室2より圧力が低くなる。このと
き、予冷機8の冷却機8aに供給された冷熱によって吹
出し空気の温度が低下する。
The operation of the third embodiment configured as described above will be described. First, the boxes with vents 4 are stacked so as to completely cover the ventilation surface 6 provided on the same surface as the ventilation blocking plate 5,
It is stored in the storage room 2 of the pre-cooling cabinet 1. In this way, when the box 4 with the vent hole is accommodated in the accommodation room 2, the cooling is started, and the cold heat is transferred from the heat source device side to the cooling room 8 of the precooler 8 by the heat transfer medium.
a. Further, the blower 8b in the precooler 8 is operated, and the air in the ventilation chamber 3 is forcibly blown out to the accommodation room 2 side, so that the pressure of the ventilation room 3 becomes lower than that of the accommodation room 2. At this time, the temperature of the blown air decreases due to the cool heat supplied to the cooler 8a of the precooler 8.

【0033】こうして冷却され収容室2に吹き出された
冷却空気は、導風板10に沿って進む。導風板10の末
端まで来た冷却空気は、通気室3側が収容室2側よりも
低圧なので、通気孔付箱4が積み上げられてできた風路
9を通って通気面6を通過し、通気室3に到達する。そ
の空気は、再び予冷機8によって、収容室2側に吹き出
される。
The cooling air thus cooled and blown out to the storage chamber 2 proceeds along the air guide plate 10. Since the cooling air that has reached the end of the air guide plate 10 has a lower pressure on the ventilation chamber 3 side than on the accommodation chamber 2 side, the cooling air passes through the ventilation path 6 through the air passage 9 formed by stacking the boxes 4 with ventilation holes, It reaches the ventilation chamber 3. The air is blown out again by the pre-cooler 8 to the accommodation room 2 side.

【0034】上記のように構成した本実施の形態に対し
て、従来技術では、導風板が通気孔付箱群と同じ長さで
あるため、予冷機8から吹き出して導風板で導かれた気
流がその終端までくると、流路幅が拡大して流路両脇に
剥離が生じて渦が生じる。この場合は、流路下側が通風
孔付箱群からなる収容室2より低圧の通気室3への流路
であるため、気流は通気孔付箱群からなる通気室3への
流路方向へ急速に方向転換する。
In contrast to the present embodiment configured as described above, in the prior art, since the air guide plate has the same length as the box group with the ventilation holes, it is blown out from the precooler 8 and guided by the air guide plate. When the flow reaches the end of the flow, the width of the flow path increases, and separation occurs on both sides of the flow path, thereby generating a vortex. In this case, since the lower side of the flow path is a flow path to the ventilation chamber 3 having a lower pressure than the storage chamber 2 formed of the group of boxes with ventilation holes, the airflow flows in the direction of the flow path to the ventilation chamber 3 formed of the group of boxes with ventilation holes. Change direction rapidly.

【0035】この通気孔付箱4は通風路のみでなく気流
の障壁となるため、その衝突によって方向転換する気流
が発生し、気流はさらに渦に巻き込まれ、渦が発達す
る。このため、気流は通気孔付箱4の流路を通って通気
室3に流れるものばかりでなく、渦にひかれる割合も大
きくなり、発生した渦近傍の流路は気流がほぼ流路と平
行に到達した流路より風量が落ち、風速も低下する。ま
た、全体に気流が通気室3と渦の双方にひかれるため、
収容室2側の気流は全体に上方へひかれる形になり、通
気路下部にも気流が届かなくなる場合がある。
Since the box 4 with the vent hole serves as a barrier not only for the ventilation path but also for the airflow, the collision generates an airflow that changes direction, and the airflow is further entrained in the vortex, and the vortex develops. For this reason, the air flow not only flows into the ventilation chamber 3 through the flow path of the box 4 with vents, but also increases the rate of being drawn by the vortex, and the flow near the generated vortex is substantially parallel to the flow path. The air flow drops from the flow path that has reached the, and the wind speed also decreases. Moreover, since the airflow is drawn by both the ventilation chamber 3 and the vortex as a whole,
The airflow on the side of the accommodation room 2 is entirely drawn upward, and the airflow may not reach the lower part of the ventilation path.

【0036】これに対して、実施の形態3によれば、導
風板10によって導かれた気流がその終端まできて流路
幅が拡大し流路両脇に渦が生じても、通風孔付箱群より
長くなるように取付けてあるので、通風孔付箱群正面へ
の気流の衝突による渦の増大は軽減できる。従って、通
気孔付箱4が積み上げられてできた風路9内は上下の区
別なくほぼ均一に通気室3の低圧に引かれて気流が通る
ことになる。
On the other hand, according to the third embodiment, even if the air flow guided by the baffle plate 10 reaches its end, the flow path width is expanded and vortices are generated on both sides of the flow path, Since it is installed so as to be longer than the group of attached boxes, the increase of the vortex due to the collision of the airflow on the front of the group of boxes with ventilation holes can be reduced. Therefore, the inside of the air passage 9 formed by stacking the boxes 4 with the ventilation holes is almost uniformly drawn by the low pressure of the ventilation chamber 3 without discrimination between the upper and lower sides, so that the air flow passes.

【0037】[実施例]実施の形態3の実施例を、図
8、図9の差圧予冷時の室内中央断面における気流分布
図及び圧力分布図を用いて説明する。なお、図8、図9
では、ともに、導風板10の長さを、収容室2に収容し
た通気孔付箱4が積み上げられた箱群の1.25倍の長
さになるようにしてある。予冷庫1は長さ10m、高さ
4mで、予冷機8から吹き出した風は予冷庫幅において
均等に長さ方向に吹き出るものとする。なお、幅方向の
気流計算は省略し、寸法に関しては長さ方向および高さ
のみ述べる。
[Embodiment] An embodiment of the third embodiment will be described with reference to the air flow distribution diagram and the pressure distribution diagram in the center cross section of the room during the differential pressure pre-cooling shown in FIGS. 8 and 9
In both cases, the length of the air guide plate 10 is set to be 1.25 times as long as the box group in which the boxes 4 with the ventilation holes accommodated in the accommodation room 2 are stacked. The precooler 1 has a length of 10 m and a height of 4 m, and the wind blown out of the precooler 8 blows out uniformly in the length direction in the width of the precooler. The calculation of the airflow in the width direction is omitted, and only the length and height are described with respect to dimensions.

【0038】通気室3の長さは1m、収容室2の長さは
9m、収容室2内に積み上げた通気孔付箱4は各々高さ
0.2mで、パレットに5個積み上げたものを2段に積
んだ場合として、通気室3と収容室2の境界から長さ
6.5m、高さ2.7mとした。通風路は、各箱および
パレットごとにあり、計12の通気路があるものとす
る。
The length of the ventilation room 3 is 1 m, the length of the accommodation room 2 is 9 m, the boxes 4 with the ventilation holes stacked in the accommodation room 2 are each 0.2 m in height, and five boxes are stacked on a pallet. As a case of stacking in two stages, the length was 6.5 m and the height was 2.7 m from the boundary between the ventilation chamber 3 and the storage chamber 2. There are ventilation paths for each box and pallet, and there are a total of 12 ventilation paths.

【0039】予冷機8は通気室3と収容室2の境界の天
井面近傍に取り付けられ、通気室3の空気を吸い込み、
予冷機8内の冷却機8aでその空気を冷却し、収容室2
へ吹き出す。予冷機8のすぐ下で、床上3.2mの高さ
に、収容室2と通気室3の境界から収容室2側へ通風孔
付箱群の1.25倍の長さ8.125mの導風板10が
取り付けられている。予冷機8と通気孔付箱群モデルと
の間の通気室3と収容室2の境界に位置する通気遮断板
5には全く通気がないものとする。予冷機8の吹出風速
は3m/sで、吸込口の圧力は成り行きとした。予冷庫
1内定常時を想定した計算であるので、予冷庫1内の温
度はほぼ均一になっているものと仮定し、空気温度によ
る密度計算は省略した。
The pre-cooler 8 is attached near the ceiling surface at the boundary between the ventilation room 3 and the accommodation room 2 and sucks air in the ventilation room 3.
The air is cooled by the cooler 8a in the pre-cooler 8, and
Blow out to Immediately below the precooler 8, a height of 3.2 m above the floor was introduced from the boundary between the accommodation room 2 and the ventilation room 3 to the accommodation room 2 side with a length of 8.125 m, which is 1.25 times the size of the box group with ventilation holes. A wind plate 10 is attached. It is assumed that there is no ventilation at all in the ventilation blocking plate 5 located at the boundary between the ventilation chamber 3 and the accommodation chamber 2 between the precooler 8 and the box group model with ventilation holes. The blowing wind speed of the precooler 8 was 3 m / s, and the pressure at the suction port was determined. Since the calculation assumes a steady state in the pre-cooling box 1, the temperature inside the pre-cooling box 1 is assumed to be substantially uniform, and the density calculation based on the air temperature is omitted.

【0040】このとき、通気孔付箱群最上部の通風路の
風速は、収容室2側の空気入口で1.9m/s、収容室
2と通気室3との境界面の空気出口で1.7m/s、通
気孔付箱群最下段の段ボールの通風路の風速は、収容室
2側の空気入口で1.0m/s、収容室2と通気室3と
の境界面の空気出口で1.0m/s、気流が最も流路に
水平にあたる通気孔付箱群下段の最上段の通気孔付箱4
の通風路の風速は、収容室2側の空気入口で2.5m/
s、収容室2と通気室3との境界面の空気出口でも2.
2m/sとなる。
At this time, the wind velocity in the ventilation path at the top of the box group with vent holes is 1.9 m / s at the air inlet on the accommodation room 2 side, and 1 at the air exit at the interface between the accommodation room 2 and the ventilation room 3. 0.7 m / s, the wind velocity of the lower corrugated cardboard ventilation passage at the bottom of the group of vented boxes is 1.0 m / s at the air inlet on the accommodation room 2 side, and at the air outlet at the interface between the accommodation room 2 and the ventilation room 3. 1.0 m / s, uppermost vented box 4 at the bottom of the vented box group where the air flow is most horizontal to the flow path
The wind speed of the air passage of 2.5 m /
s, even at the air outlet at the interface between the accommodation room 2 and the ventilation room 3.
2 m / s.

【0041】このときの圧力は、通気孔付箱群最上部の
通風路で、収容室2側の空気入口で99994.3P
a、収容室2と通気室3との境界面の空気出口で999
91.8Paで圧力差2.5Pa、通気孔付箱群最下段
の段ボールの通風路の圧力は、収容室2側の空気入口で
100000.1Pa、収容室2と通気室3との境界面
の空気出口で99998.7m/sで圧力差は1.4P
a、気流が最も流路に水平にあたる通気孔付箱群下段の
最上段の通風孔付箱4の通風路の圧力は、収容室2側の
空気入口で99994.7Pa、収容室2と通気室3と
の境界面の空気出口99992.1Paで圧力差は2.
6Paとなる。
The pressure at this time is 99994.3 P at the air inlet on the side of the accommodation room 2 in the ventilation path at the top of the box group with ventilation holes.
a, 999 at the air outlet at the interface between the accommodation room 2 and the ventilation room 3
91.8 Pa, a pressure difference of 2.5 Pa, the pressure of the ventilation path of the cardboard at the bottom of the box group with ventilation holes is 100000.1 Pa at the air inlet on the accommodation room 2 side, and the pressure of the boundary between the accommodation room 2 and the ventilation room 3 At the air outlet, the pressure difference is 99998.7m / s and the pressure difference is 1.4P
a, The pressure of the ventilation path of the uppermost box 4 with ventilation holes, which is the lowermost box group with ventilation holes in which the air flow is most horizontal to the flow path, is 99994.7 Pa at the air inlet on the accommodation room 2 side. The pressure difference at the air outlet 99992.1 Pa at the interface with 3.
6 Pa.

【0042】図8、図9に示すように、気流の巻き込み
が解消されたため、通気室3で不要に気流を巻き込む負
圧は発生しておらず、収容室2に収容された通気孔付箱
4が積み上げられた箱群によって形成された収容室2か
ら通気室3への通気路を気流が上下ほぼ均一に通気して
いることが確認できる。
As shown in FIGS. 8 and 9, since the entrainment of the airflow has been eliminated, no negative pressure for unnecessarily entraining the airflow has been generated in the ventilation chamber 3, and the ventilated box accommodated in the accommodation chamber 2 has been removed. It can be confirmed that the airflow vertically and uniformly flows through the ventilation path from the accommodation room 2 to the ventilation room 3 formed by the group of boxes in which the 4 is stacked.

【0043】なお、上記の説明において、空気調和装置
の導風手段として平板状の機器について説明したが、導
通手段の大きさや数や性能は上記のものに限定するもの
ではない(以下同様)。
In the above description, a plate-shaped device has been described as the air guiding means of the air conditioner. However, the size, number and performance of the conducting means are not limited to those described above (the same applies hereinafter).

【0044】[実施の形態4]実施の形態3では導風手
段として平板を用いたが、実施の形態4では平板でなく
ダクトを用いたものである(図示せず)。この導風ダク
トは、予冷機8の真下から収容室2方向に向けて通気孔
付箱群に平行でかつ通気孔付箱群よりも長くなるように
取付けたもので、予冷機8から吹き出した冷却空気に指
向性を付与して、この冷却空気を予冷機8の吹出口から
この吹出口に正対する室内壁近傍まで導く。この導風ダ
クトは、形状、材質を問わないが、なるべく軽量の材質
で、金属ワイヤー等で簡便に設置できるものが好まし
い。その他の構成、作用については、実施の形態3で示
した場合と同様なので、説明を省略する。
[Fourth Embodiment] In the third embodiment, a flat plate is used as the air guiding means. However, in the fourth embodiment, a duct is used instead of a flat plate (not shown). The air guide duct is installed so as to be parallel to and longer than the box group with vents from directly below the precooler 8 toward the accommodation room 2 and blows out from the precooler 8. Directivity is given to the cooling air, and the cooling air is guided from the outlet of the precooler 8 to the vicinity of the indoor wall facing the outlet. The shape and material of the air guide duct are not limited. However, it is preferable that the air guide duct is made of a material as light as possible and can be easily installed with a metal wire or the like. Other configurations and operations are the same as those described in the third embodiment, and a description thereof will not be repeated.

【0045】実施の形態4によれば、導風ダクトによっ
て導かれた気流がその終端まできて流路幅が拡大し流路
両脇に渦は生じても、通風孔付箱群まで距離を取ってあ
るので、通風孔付箱群正面への気流の衝突による渦の増
大は軽減できる。従って、通気孔付箱4が積み上げられ
てできた風路9内は上下の区別なくほぼ均一に通気室3
の低圧に引かれて気流が通ることになる。
According to the fourth embodiment, even if the airflow guided by the air guide duct is formed at the end of the airflow duct and the width of the flow path is increased and vortices are generated on both sides of the flow path, the distance to the group of boxes with ventilation holes is increased. Since it is provided, it is possible to reduce the increase in vortices due to the collision of the airflow on the front of the box group with ventilation holes. Therefore, the inside of the air passage 9 formed by stacking the boxes 4 with the ventilation holes is almost uniformly without distinction between the upper and lower sides.
The air flow is drawn by the low pressure.

【0046】[比較例1]実施の形態1,2,3のそれ
ぞれに実施例を示したが、これらの実施例と比較するた
めに比較例を記述する。なお、以下の比較例は図13に
示した従来技術2に対応した構成のものである。図1
0、図11は、それぞれ、従来技術2にかかる差圧予冷
時の室内中央断面における気流分布図及び圧力分布図で
ある。
Comparative Example 1 Examples have been shown in each of the first, second, and third embodiments. A comparative example will be described for comparison with these examples. The following comparative example has a configuration corresponding to the prior art 2 shown in FIG. FIG.
0 and FIG. 11 are an airflow distribution diagram and a pressure distribution diagram, respectively, at the center cross section of the room during the differential pressure precooling according to Conventional Technique 2.

【0047】予冷庫1は長さ10m、高さ4mで、予冷
機8から吹き出した風は予冷庫幅において均等に長さ方
向に吹き出るものとする。なお、幅方向の気流計算は省
略し、寸法に関しては長さ方向および高さのみ述べる。
通気室3の長さは1m、収容室2の長さは9m、収容室
2内に積み上げた通気孔付箱4は各々高さ0.2mで、
パレットに5個積み上げたものを2段に積んだ場合とし
て、通気室3と収容室2の境界から長さ6.5m、高さ
2.7mとした。通風路は、各箱およびパレットごとに
あり、計12の通気路があるものとする。
The precooler 1 has a length of 10 m and a height of 4 m, and the wind blown out of the precooler 8 blows out uniformly in the length direction in the width of the precooler. The calculation of the airflow in the width direction is omitted, and only the length and height are described with respect to dimensions.
The length of the ventilation room 3 is 1 m, the length of the accommodation room 2 is 9 m, and the boxes 4 with the ventilation holes stacked in the accommodation room 2 are each 0.2 m high,
Assuming that the five pallets were stacked in two stages, the length was 6.5 m and the height was 2.7 m from the boundary between the ventilation chamber 3 and the storage chamber 2. There are ventilation paths for each box and pallet, and there are a total of 12 ventilation paths.

【0048】予冷機8は通気室3と収容室2の境界の天
井面近傍に取り付けられ、通気室3の空気を吸い込み、
予冷機8内の冷却機8aでその空気を冷却し、収容室2
側へ吹き出す。予冷機8のすぐ下で、床上3.2mの高
さに収容室2と通気室3の境界から収容室2側に通気孔
付箱群と等しい長さ6.5mの導風板が設置されてい
る。予冷機8と通気孔付箱群モデルとの間の通気室3と
収容室2の境界に位置する通気遮断板5には全く通気が
ないものとする。予冷機8の吹出風速は3m/s、吸込
口の圧力は成り行きとした。気流は層流として取り扱
い、予冷庫1内定常時を想定した計算であるので、予冷
庫1内温度はほぼ均一になっているものと仮定し、空気
温度による密度計算は省略した。
The pre-cooler 8 is mounted near the ceiling at the boundary between the ventilation room 3 and the accommodation room 2 and sucks air in the ventilation room 3.
The air is cooled by the cooler 8a in the pre-cooler 8, and
Blow out to the side. Immediately below the pre-cooler 8, a 6.5 m-long wind guide plate is installed at a height of 3.2 m above the floor from the boundary between the accommodation room 2 and the ventilation room 3 on the accommodation room 2 side, which is the same as the box group with ventilation holes. ing. It is assumed that there is no ventilation at all in the ventilation blocking plate 5 located at the boundary between the ventilation chamber 3 and the accommodation chamber 2 between the precooler 8 and the box group model with ventilation holes. The blowing air speed of the precooler 8 was 3 m / s, and the pressure at the suction port was determined. The airflow is treated as a laminar flow, and the calculation assumes a steady state in the pre-cooling box 1. Therefore, it is assumed that the temperature in the pre-cooling box 1 is substantially uniform, and the density calculation based on the air temperature is omitted.

【0049】この解析によれば、導風板で導かれた気流
がその終端までくると、収容室2に向けて気流が流れ
る。すなわち、流路幅が拡大する。このため、流路幅が
拡大した直後の流路両脇に剥離が生じ、渦が生じる。こ
の場合は、流路下流が通気孔付箱群からなる収容室2よ
り低圧の通気室3への流路であるため、気流はそちらに
引かれやすい。従って、このときより低圧側、すなわち
通気孔付箱群からなる通気室3への流路方向に気流が急
速に方向転換する。
According to this analysis, when the airflow guided by the baffle plate reaches its end, the airflow flows toward the accommodation chamber 2. That is, the flow path width is increased. For this reason, separation occurs on both sides of the flow path immediately after the flow path width is increased, and a vortex is generated. In this case, since the downstream of the flow path is the flow path to the ventilation chamber 3 at a lower pressure than the storage chamber 2 formed of the group of boxes with ventilation holes, the air flow is easily drawn there. Therefore, the airflow is more rapidly changed to the lower pressure side, that is, the direction of the flow path to the ventilation chamber 3 composed of the box group with the ventilation holes.

【0050】ところで、通気孔付箱4は通風路のみでな
く気流の障壁となるため、その衝突によって方向転換す
る気流が発生し、気流はさらに渦に巻き込まれ、渦が発
達する。このため、気流は通気孔付箱4の流路を通って
通気室3に流れるものばかりでなく、渦に引かれる割合
も大きくなり、発生した渦近傍の流路は気流がほぼ流路
と平行に到達した流路より風量が落ち、風速も低下す
る。また、全体に気流が通気室3と渦の双方に引かれる
ため収容室2側の気流は全体に上方へ引かれる形にな
り、通気路下部にも気流が届かなくなる。
By the way, since the box 4 with the ventilation hole becomes not only a ventilation path but also an airflow barrier, the collision generates an airflow which changes its direction, and the airflow is further entrained in the vortex and the vortex develops. For this reason, the air flow not only flows into the ventilation chamber 3 through the flow path of the box 4 with a vent but also increases the rate of being drawn by the vortex, and the flow near the generated vortex is substantially parallel to the flow path. The air flow drops from the flow path that has reached the, and the wind speed also decreases. In addition, since the airflow is drawn to both the ventilation chamber 3 and the vortex as a whole, the airflow on the accommodation chamber 2 side is drawn upward as a whole, and the airflow does not reach the lower part of the ventilation path.

【0051】このとき、通気孔付箱群最上部の通風路の
風速は、収容室2側の空気入口で1.1m/s、収容室
2と通気室3との境界面の空気出口で0.93m/s、
通気孔付箱群最下段の段ボールの通風路の風速は、収容
室2側の空気入口で1.4m/s、収容室2と通気室3
との境界面の空気出口で1.4m/s、気流が最も流路
に水平にあたる通気孔付箱群下段の最上段の通気孔付箱
4の通風路の風速は、収容室2側の空気入口で2.5m
/s、収容室2と通気室3との境界面の空気出口でも
2.5m/sとなる。
At this time, the wind velocity of the air passage at the uppermost part of the box group with the vent hole is 1.1 m / s at the air inlet on the side of the accommodation room 2 and 0 at the air outlet at the boundary surface between the accommodation room 2 and the ventilation room 3. .93m / s,
The wind speed of the lower corrugated cardboard ventilation passage at the bottom of the group of vented boxes is 1.4 m / s at the air inlet on the side of the accommodation room 2, and the accommodation room 2 and the ventilation room 3
The air velocity at the air outlet of the uppermost box 4 at the bottom of the box group with vents, which is 1.4 m / s at the air outlet at the boundary surface with the airflow and which is the horizontal to the flow path, is the air at the accommodation chamber 2 side. 2.5m at the entrance
/ S, and 2.5 m / s even at the air outlet at the interface between the accommodation room 2 and the ventilation room 3.

【0052】このときの圧力は、通気孔付箱群最上部の
通風路で、収容室2側の空気入口で99996.8P
a、収容室2と通気室3との境界面の空気出口で999
96.0Paで圧力差0.8Pa、通気孔付箱群最下段
の段ボールの通風路の圧力は、収容室2側の空気入口で
99999.8Pa、収容室2と通気室3との境界面の
空気出口で99997.4Paで圧力差は2.4Pa、
気流が最も流路に水平にあたる通気孔付箱群下段の最上
段の通気孔付箱4の通風路の圧力は、収容室2側の空気
入口で99995.4Pa、収容室2と通気室3との境
界面の空気出口99990.7Paで圧力差は4.7P
aとなる。
The pressure at this time is 99996.8 P at the air inlet on the side of the accommodation room 2 in the ventilation path at the top of the box group with ventilation holes.
a, 999 at the air outlet at the interface between the accommodation room 2 and the ventilation room 3
At 96.0 Pa, the pressure difference is 0.8 Pa, and the pressure of the ventilation path of the corrugated cardboard at the bottom of the box group with ventilation holes is 999999.8 Pa at the air inlet on the accommodation room 2 side. At the air outlet, 99997.4 Pa, the pressure difference is 2.4 Pa,
The pressure of the ventilation path of the uppermost box with vents 4 at the bottom of the group of boxes with vents in which the air flow is most horizontal to the flow path is 99995.4 Pa at the air inlet on the accommodation room 2 side. The pressure difference is 4.7P at the air outlet 99990.7Pa at the boundary surface of
a.

【0053】このように、従来の差圧式の空気調和装置
では、気流が室内で方向転換し、被冷却物表面に到達す
る際に渦が発生して低圧部が生ずるためそこに気流が引
かれ、一部の収穫箱内には気流がほとんど流通せず、被
冷却物が冷却されない、または気流の流通しづらい部分
に合せて冷却性能を設定したため余分な冷却負荷が発生
する、等の問題がある。
As described above, in the conventional differential pressure type air conditioner, the air flow changes direction in the room, and when it reaches the surface of the object to be cooled, a vortex is generated to generate a low pressure portion. However, there is a problem that the air flow hardly circulates in some harvest boxes and the object to be cooled is not cooled, or an extra cooling load is generated because the cooling performance is set according to the part where the air flow is difficult to flow. is there.

【0054】[0054]

【発明の効果】以上の説明から明らかなように、本発明
は、加熱又は冷却した空気を送風してこの空気を室内に
循環させる空気調和装置であって、被加熱物又は被冷却
物の両端に差圧を設け被加熱物又は被冷却物の内部とそ
の周囲に空気を通過させて循環させる送風機と、空気循
環路の渦発生確率の高い部位に設けて、気流方向を変化
させるとともに、加熱又は冷却した空気を強制的に吹き
出す空気調和機とを備えた。このため、被加熱物又は被
冷却物がある方向に吹き出された気流が方向転換して被
加熱物又は被冷却物に到達する際に、空気調和機により
気流方向が変化させられ渦発生が解消でき、発生する気
流の巻き込みを解消し、被加熱物又は被冷却物に到達す
る気流速度を均一化できる。また、仕切り板によって仕
切られた複数の空間で、1つの被空調空間にしか空気調
和装置が存在しない場合であっても、他の被空調空間に
加熱又は冷却した空気を供給できる。
As is apparent from the above description, the present invention relates to an air conditioner which blows heated or cooled air and circulates the air indoors. A blower that allows air to pass through and circulates inside and around the object to be heated or cooled, and a blower that provides high vortex generation in the air circulation path to change the airflow direction
And an air conditioner for forcibly blowing heated or cooled air. Therefore, when the airflow blown in a certain direction to the object to be heated or the object to be cooled changes its direction and reaches the object to be heated or the object to be cooled , the air conditioner
The direction of the airflow is changed, so that vortex generation can be eliminated, the entrainment of the generated airflow can be eliminated, and the velocity of the airflow reaching the object to be heated or the object to be cooled can be made uniform. Further, even when the air conditioner is present only in one space to be air-conditioned in a plurality of spaces partitioned by the partition plate, heated or cooled air can be supplied to another space to be air-conditioned.

【0055】また、加熱又は冷却した空気を送風してこ
の空気を室内に循環させる空気調和装置であって、加熱
又は冷却した空気を強制的に吹き出し被加熱物又は被冷
却物の内部とその周囲にこの空気を通過させて循環させ
る空気調和機と、空気循環路の渦発生確率の高い部位に
設け、気流を変化させる送風機とを備えた。このため、
被加熱物又は被冷却物がある方向に吹き出された気流が
方向転換し、被加熱物又は被冷却物に到達する際に、送
風機により気流方向が変化させられ渦発生が解消でき、
発生する気流の巻き込みを解消し、被加熱物又は被冷却
物に到達する気流速度を均一化できる。
An air conditioner for blowing heated or cooled air to circulate the air inside the room, wherein the heated or cooled air is forcibly blown out of the object to be heated or the object to be cooled and its surroundings. And an air conditioner that circulates the air by passing the air through the air conditioner, and a blower that is provided at a portion of the air circulation path where the probability of vortex generation is high and changes the airflow . For this reason,
When the air flow blown in the direction in which the object to be heated or the object to be cooled changes direction and reaches the object to be heated or the object to be cooled ,
The direction of the air flow is changed by the blower, and vortex generation can be eliminated,
The entrainment of the generated airflow can be eliminated, and the airflow velocity reaching the object to be heated or the object to be cooled can be made uniform.

【0056】[0056]

【0057】[0057]

【0058】[0058]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】 実施の形態1の実施例の気流分布図である。FIG. 2 is an airflow distribution diagram of an example of the first embodiment.

【図3】 実施の形態1の実施例の圧力分布図である。FIG. 3 is a pressure distribution diagram of an example of the first embodiment.

【図4】 本発明の実施の形態2の構成図である。FIG. 4 is a configuration diagram of a second embodiment of the present invention.

【図5】 実施の形態2の実施例の気流分布図である。FIG. 5 is an airflow distribution diagram of an example of the second embodiment.

【図6】 実施の形態2の実施例の圧力分布図である。FIG. 6 is a pressure distribution diagram of an example of the second embodiment.

【図7】 本発明の実施の形態3の構成図である。FIG. 7 is a configuration diagram of a third embodiment of the present invention.

【図8】 実施の形態3の実施例の気流分布図である。FIG. 8 is an airflow distribution diagram of an example of the third embodiment.

【図9】 実施の形態3の実施例の圧力分布図である。FIG. 9 is a pressure distribution diagram of an example of the third embodiment.

【図10】 空気調和機の比較例を示す気流分布図であ
る。
FIG. 10 is an airflow distribution diagram showing a comparative example of the air conditioner.

【図11】 空気調和機の比較例を示す圧力分布図であ
る。
FIG. 11 is a pressure distribution diagram showing a comparative example of the air conditioner.

【図12】 従来の差圧予冷装置の一例を示す側面図で
ある。
FIG. 12 is a side view showing an example of a conventional differential pressure pre-cooling device.

【図13】 従来の差圧予冷装置の他の一例を示す側面
図である。
FIG. 13 is a side view showing another example of the conventional differential pressure pre-cooling device.

【符号の説明】[Explanation of symbols]

1 予冷庫、2 収容室、3 通気室、4 通気孔付
箱、5 通気遮断板、7送風機、8 予冷機、9 風
路、10 導風板。
1 Pre-cooler, 2 storage room, 3 vent room, 4 box with vent hole, 5 ventilation blocker, 7 blower, 8 pre-cooler, 9 air passage, 10 air guide plate.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱又は冷却した空気を送風して該空気
を室内に循環させる空気調和装置において、 被加熱物又は被冷却物の両端に差圧を設け該被加熱物又
は被冷却物の内部とその周囲に空気を通過させて循環さ
せる送風機と、前記空気循環路の渦発生確率の高い部位
に設けて、気流方向を変化させるとともに、加熱又は冷
却した空気を強制的に吹き出す空気調和機とを備えたこ
とを特徴とする空気調和装置。
1. An air conditioner for blowing heated or cooled air and circulating the air indoors, wherein a differential pressure is provided at both ends of the object to be heated or the object to be cooled, and the inside of the object to be heated or the object to be cooled. And an air conditioner that is provided in a portion of the air circulation path where the probability of vortex generation is high, changes the airflow direction, and forcibly blows heated or cooled air. An air conditioner comprising:
【請求項2】 加熱又は冷却した空気を送風して該空気
を室内に循環させる空気調和装置において、 加熱又は冷却した空気を強制的に吹き出し被加熱物又は
被冷却物の内部とその周囲に前記空気を通過させて循環
させる空気調和機と、前記空気循環路の渦発生確率の高
い部位に設け、気流方向を変化させる送風機とを備えた
ことを特徴とする空気調和装置。
2. An air conditioner in which heated or cooled air is blown to circulate the air in a room, wherein the heated or cooled air is forcibly blown out inside and around the object to be heated or the object to be cooled. An air conditioner, comprising: an air conditioner that circulates air by passing the air; and a blower that is provided in a portion of the air circulation path having a high vortex generation probability and changes an air flow direction.
JP31927897A 1997-11-20 1997-11-20 Air conditioner Expired - Fee Related JP3318829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31927897A JP3318829B2 (en) 1997-11-20 1997-11-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31927897A JP3318829B2 (en) 1997-11-20 1997-11-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11148762A JPH11148762A (en) 1999-06-02
JP3318829B2 true JP3318829B2 (en) 2002-08-26

Family

ID=18108430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31927897A Expired - Fee Related JP3318829B2 (en) 1997-11-20 1997-11-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP3318829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034305A (en) * 2018-09-21 2020-03-31 (주)원플러스원 Rapid cooling system using differential pressure cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034305A (en) * 2018-09-21 2020-03-31 (주)원플러스원 Rapid cooling system using differential pressure cooling

Also Published As

Publication number Publication date
JPH11148762A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US4926655A (en) Air conditioner unit suitable for mounting on the roof of a vehicle
KR200263534Y1 (en) An air curtain apparatus of a refrigerator
JP3318829B2 (en) Air conditioner
JPWO2014174625A1 (en) Air conditioner
US11333367B2 (en) HVACR system including multi-positional and multi-use plenum fans
JP3072039B2 (en) External storage device cooling structure
JP4689800B2 (en) Panel cooler
WO2009139294A1 (en) Indoor unit and air conditioner
JPH05141718A (en) Radiant air conditioner
WO2019198387A1 (en) Cooling device
JP6303035B2 (en) Air curtain device
JP6724802B2 (en) Temperature control storage device
JP6511991B2 (en) Cold storage
JPH08320176A (en) Open show case
JP2788575B2 (en) Air supply and exhaust system
JP2988532B2 (en) High humidity refrigerator
JP2009063242A (en) Air conditioner
JP2005018733A (en) Vending machine
JPH0779034B2 (en) Heating device
JPH04281151A (en) Air conditioning device for room where many heat generating bodies exist
JPS58203377A (en) Precooler
JP3708643B2 (en) Cooling structure of condenser in refrigerated storage
JP2023024028A (en) Exhaust heat trigger device and rack air-conditioning system
JP2007017130A (en) Air conditioning system
JP2022067835A (en) Thawing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees