JP3317295B2 - Manufacturing method of capacitive element - Google Patents

Manufacturing method of capacitive element

Info

Publication number
JP3317295B2
JP3317295B2 JP35689499A JP35689499A JP3317295B2 JP 3317295 B2 JP3317295 B2 JP 3317295B2 JP 35689499 A JP35689499 A JP 35689499A JP 35689499 A JP35689499 A JP 35689499A JP 3317295 B2 JP3317295 B2 JP 3317295B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature heat
low
temperature
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35689499A
Other languages
Japanese (ja)
Other versions
JP2001177075A (en
Inventor
一郎 山本
敏洋 飯塚
芳健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP35689499A priority Critical patent/JP3317295B2/en
Priority to US09/736,562 priority patent/US20010004533A1/en
Priority to KR1020000077149A priority patent/KR20010062498A/en
Publication of JP2001177075A publication Critical patent/JP2001177075A/en
Priority to US10/135,620 priority patent/US6602722B2/en
Application granted granted Critical
Publication of JP3317295B2 publication Critical patent/JP3317295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、容量素子の製造
方法に関し、特に、ペロブスカイト(perovski
te)構造の誘電体を用いた容量素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a capacitive element.
With regard to the method , in particular perovskite (perovskite)
te) The present invention relates to a method for manufacturing a capacitive element using a dielectric having a structure.

【0002】[0002]

【従来の技術】従来、DRAM(dynamic ra
ndom access memory)のセルキャパ
シタに用いられる誘電膜として、例えば、ペロブスカイ
ト構造の強誘電体膜が知られている。
2. Description of the Related Art Conventionally, a dynamic random access memory (DRAM) has been used.
For example, a ferroelectric film having a perovskite structure is known as a dielectric film used for a cell capacitor of an ND (access memory).

【0003】ペロブスカイト構造を有するものには、バ
リウム(Ba)及びストロンチウム(Sr)を組み合わ
せたチタン酸バリウムストロンチウム((Ba,Sr)
TiO3 :BST)や、BSTの内で、Baが含まれず
Srのみのチタン酸ストロンチウム(SrTiO3 )が
ある。
[0003] Barium strontium titanate ((Ba, Sr)) comprising a combination of barium (Ba) and strontium (Sr) has a perovskite structure.
TiO 3: BST) and, among the BST, it is not included Ba Sr only strontium titanate (SrTiO 3).

【0004】このような高誘電率のBSTを容量絶縁膜
として用いたキャパシタの製造方法を説明する。先ず、
ルテニウム(Ru)を用いて下部電極を形成する。次
に、この下部電極の上に、熱CVD(chemical
vapor deposition)により成膜温度
400℃でBSTを成膜し、その後、BST膜の結晶化
のために650℃,10分間の熱処理を行い、このBS
T成膜と成膜後の熱処理を複数回(例えば4回)繰り返
す。次に、Ruを用いてキャパシタ上部電極を形成す
る。
A method of manufacturing a capacitor using such a high dielectric constant BST as a capacitance insulating film will be described. First,
A lower electrode is formed using ruthenium (Ru). Next, on this lower electrode, thermal CVD (chemical
A BST film is formed at a film formation temperature of 400 ° C. by vapor deposition, and then a heat treatment is performed at 650 ° C. for 10 minutes to crystallize the BST film.
The T film formation and the heat treatment after the film formation are repeated a plurality of times (for example, four times). Next, a capacitor upper electrode is formed using Ru.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た製造方法により得られたキャパシタにおいては、十分
低いリーク特性が得られなかった。リーク特性の劣化は
DRAMの保持特性を低下させてしまう。リーク特性及
び誘電率が劣化するのは、300〜400℃の低温で特
異的に離脱する不純物(炭素や水素等)が多く含まれて
いるためと考えられる。このため、不純物の離脱に対応
した低温による熱処理が必要であると思われる。
However, in the capacitor obtained by the above-described manufacturing method, a sufficiently low leak characteristic cannot be obtained. Deterioration of the leak characteristics lowers the holding characteristics of the DRAM. It is considered that the reason why the leak characteristics and the dielectric constant are deteriorated is that a large amount of impurities (carbon, hydrogen, etc.) which are specifically released at a low temperature of 300 to 400 ° C. are contained. For this reason, it is considered that a heat treatment at a low temperature corresponding to the elimination of impurities is necessary.

【0006】上述したようなBST成膜における結晶化
熱処理については、例えば、M.Kiyotoshi
et al.1999 Symposium on V
LSI Technology Digest of
Technical Papers.pp.101〜1
02に開示されているが、低温による熱処理については
何も述べられていない。
The crystallization heat treatment in the BST film formation described above is described in, for example, M. Kiyotoshi
et al. 1999 Symposium on V
LSI Technology Digest of
Technical Papers. pp. 101-1
No. 02, but nothing about heat treatment at low temperatures.

【0007】また、特開平11−243177号公報に
は、リーク特性を改善することを目的とした半導体装置
及びその製造方法が開示されているが、この半導体装置
及びその製造方法においては、高温度の熱処理によりB
ST膜を2段階で成膜しており、低温による熱処理につ
いては述べられていない。
Japanese Unexamined Patent Application Publication No. 11-243177 discloses a semiconductor device and a method of manufacturing the same for the purpose of improving the leakage characteristics. B by heat treatment of
The ST film is formed in two stages, and the heat treatment at a low temperature is not described.

【0008】この発明の目的は、不純物の離脱に対応し
た低温による熱処理を行って、リーク特性及び誘電率の
劣化を防ぐことができる容量素子の製造方法を提供する
ことである。
An object of the present invention is to provide a method of manufacturing a capacitor element capable of performing heat treatment at a low temperature corresponding to elimination of impurities to prevent deterioration of leak characteristics and dielectric constant.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、この発明に係る容量素子の製造方法は、誘電体膜を
上部電極及び下部電極で挟み込んだ容量素子の製造方法
において、ABO3 複合酸化物からなる高誘電体膜の成
膜後、前記高誘電体膜を高温熱処理する高温熱処理工程
と、前記高温熱処理の処理温度より低い温度で低温熱処
理する低温熱処理工程とを有し、前記高誘電体膜の成膜
と前記高温熱処理、或いは前記高誘電体膜の成膜と前記
高温熱処理と前記低温熱処理は、それぞれ組み合わされ
て複数回繰り返されることを特徴としている。
To achieve the above object, according to an aspect of manufacturing method of the capacitor according to the present invention is a method of manufacturing a capacitor element sandwiched a dielectric film at the upper and lower electrodes, ABO 3 complex oxide after the deposition of the high dielectric film made of things, possess the high temperature heat treatment step of high temperature heat treatment of the high dielectric film, and a low-temperature heat treatment step of low-temperature heat treatment in the high-temperature heat treatment process temperature lower than the temperature, the high dielectric Body film formation
And the high-temperature heat treatment, or the formation of the high dielectric film and the
The high-temperature heat treatment and the low-temperature heat treatment are each combined.
Is characterized in Rukoto repeated multiple times Te.

【0010】上記構成を有することにより、ABO3
合酸化物からなる高誘電体膜の成膜後、前記高誘電体膜
を高温熱処理する高温熱処理工程と、前記高温熱処理の
処理温度より低い温度で低温熱処理する低温熱処理工程
とを経て、誘電体膜を上部電極及び下部電極で挟み込ん
だ容量素子が製造される。この際、前記高誘電体膜の成
膜と前記高温熱処理、或いは前記高誘電体膜の成膜と前
記高温熱処理と前記低温熱処理は、それぞれ組み合わさ
れて複数回繰り返される。これにより、不純物の離脱に
対応した低温による熱処理を行って、リーク特性及び誘
電率の劣化を防ぐことができる。
With the above structure, after forming the high dielectric film made of the ABO 3 composite oxide, a high temperature heat treatment step of performing high temperature heat treatment on the high dielectric film, and a high temperature heat treatment step at a temperature lower than the processing temperature of the high temperature heat treatment. Through a low-temperature heat treatment step of performing a low-temperature heat treatment, a capacitor in which the dielectric film is sandwiched between the upper electrode and the lower electrode is manufactured. At this time, the formation of the high dielectric film is performed.
Before forming the film and the high-temperature heat treatment or forming the high-dielectric film
The high temperature heat treatment and the low temperature heat treatment are combined
And repeated several times. This makes it possible to perform a heat treatment at a low temperature corresponding to the desorption of the impurities, thereby preventing the leak characteristics and the dielectric constant from deteriorating.

【0011】[0011]

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態につ
いて図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、この発明の実施の形態に係る高誘
電率薄膜キャパシタを有する半導体装置の断面図であ
る。図1に示すように、高誘電率の薄膜キャパシタ(容
量素子)10は、MOSFET(metal oxid
e semiconductor field eff
ect transistor)11と共に、半導体装
置であるDRAMのメモリセル12を形成している。
FIG. 1 is a sectional view of a semiconductor device having a high dielectric constant thin film capacitor according to an embodiment of the present invention. As shown in FIG. 1, a thin film capacitor (capacitance element) 10 having a high dielectric constant includes a MOSFET (metal oxide).
e semiconductor field eeff
In addition, the memory cell 12 of the DRAM, which is a semiconductor device, is formed together with the E.C.

【0014】MOSFET11は、p型シリコン基板1
3の素子分離絶縁膜14により分離された領域上に、ゲ
ート酸化膜15を介して形成されたゲート電極16を有
している。ゲート電極16両側のp型シリコン基板13
には、ソース側及びドレイン側のn型拡散層17が設け
られている。このMOSFET11の上には、ポリシリ
コンプラグ18を有する層間絶縁膜19を介して、薄膜
キャパシタ10が形成されている。
The MOSFET 11 is a p-type silicon substrate 1
A gate electrode 16 formed via a gate oxide film 15 is provided on a region separated by the third element isolation insulating film 14. P-type silicon substrate 13 on both sides of gate electrode 16
Are provided with n-type diffusion layers 17 on the source side and the drain side. On the MOSFET 11, a thin film capacitor 10 is formed via an interlayer insulating film 19 having a polysilicon plug 18.

【0015】薄膜キャパシタ10は、層間絶縁膜19上
に層状に形成されたシリコンコンタクト層20及び耐シ
リコン拡散導電層21を介して、記載順に積み重ねられ
たキャパシタ下部電極22、キャパシタ絶縁膜23及び
キャパシタ上部電極24を有している。キャパシタ下部
電極22は、耐シリコン拡散導電層21上に、キャパシ
タ絶縁膜23は、シリコンコンタクト層20、耐シリコ
ン拡散導電層21及びキャパシタ下部電極22を覆うよ
うに、キャパシタ上部電極24は、キャパシタ絶縁膜2
3上に、それぞれ積み重ねられて層構造を有している。
The thin film capacitor 10 includes a capacitor lower electrode 22, a capacitor insulating film 23 and a capacitor stacked in the stated order via a silicon contact layer 20 and a silicon diffusion resistant conductive layer 21 formed in layers on an interlayer insulating film 19. It has an upper electrode 24. The capacitor lower electrode 22 is formed on the silicon diffusion-resistant conductive layer 21, and the capacitor insulating film 23 is formed on the silicon contact layer 20, the silicon diffusion-resistant conductive layer 21 and the capacitor lower electrode 22. Membrane 2
3 on top of each other to have a layered structure.

【0016】このキャパシタ絶縁膜23には、ペロブス
カイト構造の強誘電体膜が用いられている。ペロブスカ
イト構造を有するものには、バリウム(Ba)及びスト
ロンチウム(Sr)を組み合わせたチタン酸バリウムス
トロンチウム((Ba,Sr)TiO3 、以下BSTと
略称する)や、BSTの内でBaが含まれずSrのみの
チタン酸ストロンチウム(SrTiO3 、以下STOと
略称する)がある。
As the capacitor insulating film 23, a ferroelectric film having a perovskite structure is used. Barium strontium titanate ((Ba, Sr) TiO 3 , hereinafter abbreviated as BST), which is a combination of barium (Ba) and strontium (Sr), which has a perovskite structure, and Sr which does not contain Ba in BST There is only strontium titanate (SrTiO 3 , hereinafter abbreviated as STO).

【0017】これらは、キャパシタの薄膜化に適してお
りDRAMのキャパシタの材料として有望である。この
ような高誘電率のBSTを容量絶縁膜として金属製の両
電極22,24で挟んだ薄膜キャパシタ10を有する半
導体装置の製造方法を、以下に説明する。
These are suitable for thinning capacitors and are promising as materials for DRAM capacitors. A method of manufacturing a semiconductor device having the thin film capacitor 10 in which such a high-permittivity BST is used as a capacitor insulating film and sandwiched between both electrodes 22 and 24 made of metal will be described below.

【0018】図2(a)〜図5(h)は、図1の薄膜キ
ャパシタを有する半導体装置の製造工程を示す断面図で
ある。図2(a)〜図5(h)に示すように、先ず、既
知の方法に従って、p型シリコン基板13上の素子分離
絶縁膜14で分離された領域に、ゲート酸化膜15、ゲ
ート電極16、及びゲート電極16の両側下方に位置さ
せたn型拡散層17等を作り込み、MOSFET11を
形成する(図2(a)参照)。
FIGS. 2A to 5H are cross-sectional views showing the steps of manufacturing a semiconductor device having the thin film capacitor of FIG. As shown in FIGS. 2A to 5H, first, according to a known method, a gate oxide film 15 and a gate electrode 16 are formed in a region separated by an element isolation insulating film 14 on a p-type silicon substrate 13. Then, an n-type diffusion layer 17 and the like located below both sides of the gate electrode 16 are formed to form the MOSFET 11 (see FIG. 2A).

【0019】次に、MOSFET11の上に、SiO2
からなる膜厚300nmの層間絶縁膜19をCVD法等
により成膜し、その後、層間絶縁膜19を表面から基板
13側に向けて貫通する接続孔25を開口する(図2
(b)参照)。
Next, on the MOSFET 11, SiO 2
A 300-nm-thick interlayer insulating film 19 made of CVD is formed by a CVD method or the like, and thereafter, a connection hole 25 penetrating the interlayer insulating film 19 from the surface toward the substrate 13 is opened (FIG. 2).
(B)).

【0020】次に、層間絶縁膜19上に、CVD法によ
りリンドープアモルファスシリコンを堆積させてリンド
ープアモルファスシリコン層26を形成し、その後、リ
ンドープアモルファスシリコン層26を700〜850
℃で熱処理する(図3(c)参照)。この熱処理の結
果、リンドープアモルファスシリコン層26は結晶化し
てリンドープポリシリコン層となる。
Next, a phosphorus-doped amorphous silicon layer is formed on the interlayer insulating film 19 by depositing phosphorus-doped amorphous silicon by a CVD method.
Heat treatment at ℃ (see FIG. 3 (c)). As a result of this heat treatment, the phosphorus-doped amorphous silicon layer 26 is crystallized to become a phosphorus-doped polysilicon layer.

【0021】次に、ポリシリコン層26をエッチバック
して層間絶縁膜19を露出させ、接続孔25内にポリシ
リコンプラグ18を形成する(図3(d)参照)。
Next, the polysilicon layer 26 is etched back to expose the interlayer insulating film 19, and the polysilicon plug 18 is formed in the connection hole 25 (see FIG. 3D).

【0022】次に、スパッタ法等により、ポリシリコン
プラグ18を含む層間絶縁膜19上に、膜厚30nmの
Ti層及び膜厚50nmのTiN層からなる耐シリコン
拡散導電層21を形成し、その後、窒素(N2 )雰囲気
中でのRTA(rapidthermal annea
ling)処理を行う。このN2 −RTA処理により、
耐シリコン拡散導電層21を形成するTi層は、TiS
2 層からなるシリコンコンタクト層20に変化する
(図4(e)参照)。
Next, a silicon-diffused conductive layer 21 made of a 30-nm-thick Ti layer and a 50-nm-thick TiN layer is formed on the interlayer insulating film 19 including the polysilicon plug 18 by sputtering or the like. RTA (rapid thermal anna) in a nitrogen (N 2 ) atmosphere
ling) processing. By this N 2 -RTA processing,
The Ti layer forming the silicon diffusion-resistant conductive layer 21 is made of TiS
It changes to a silicon contact layer 20 composed of an i 2 layer (see FIG. 4E).

【0023】次に、DC(direct curren
t)スパッタ法等により、例えば、Ruからなる膜厚1
00nmのキャパシタ下部電極層22を耐シリコン拡散
導電層21上に成膜する(図4(f)参照)。キャパシ
タ下部電極層22は、Ruの他、プラチナ(Pt)、ペ
ロブスカイト構造の導電性材料であるルテニウム酸スト
ロンチウム(SrRuO3 )等がある。
Next, DC (direct curren)
t) By sputtering or the like, for example, a film thickness 1 of Ru
A 00 nm capacitor lower electrode layer 22 is formed on the silicon diffusion-resistant conductive layer 21 (see FIG. 4F). The capacitor lower electrode layer 22 is made of platinum (Pt), strontium ruthenate (SrRuO 3 ), which is a conductive material having a perovskite structure, in addition to Ru.

【0024】次に、酸素及び塩素の混合ガスを用いたプ
ラズマエッチング法により、キャパシタ下部電極層2
2、耐シリコン拡散導電層21及びシリコンコンタクト
層20を所望の形状に加工する(図5(g)参照)。
Next, the capacitor lower electrode layer 2 is formed by a plasma etching method using a mixed gas of oxygen and chlorine.
2. Process the silicon diffusion-resistant conductive layer 21 and the silicon contact layer 20 into desired shapes (see FIG. 5G).

【0025】次に、ビス−ジピバロイルメタンバリウム
(Ba(DPM)2 )、ビス−ジピバロイルメタンスト
ロンチウム(Sr(DPM)2 )、ビス−ジピバロイル
メタンチタンイソプロポキシド(Ti(i−OC
3 7 2 (DPM)2 )及び酸素ガスを原料とした熱
CVD法により、キャパシタ下部電極層22上に、40
0〜480℃で膜厚20nmのBST薄膜をキャパシタ
絶縁膜23として成膜する(図5(h)参照)。DPM
とは、bis−dipivaloylmethanat
eの略である。
Next, bis-dipivaloylmethanebarium (Ba (DPM) 2 ), bis-dipivaloylmethanestrontium (Sr (DPM) 2 ), bis-dipivaloylmethanetitanium isopropoxide ( Ti (i-OC
By thermal CVD using 3 H 7 ) 2 (DPM) 2 ) and oxygen gas as raw materials, 40
A BST thin film having a thickness of 20 nm is formed as the capacitor insulating film 23 at 0 to 480 ° C. (see FIG. 5H). DPM
Is bis-dipivaloylmethanat
e.

【0026】なお、原料としては、上記例の他、Ba
(DPM)2 、Sr(DPM)2 を単独で或いは組み合
わせて、Ti(i−OC3 7 2 (DPM)2 、Ti
O(DPM)2 、Ti(i−OC3 7 2 (DPM)
2 を単独で或いは組み合わせて、これらに酸素ガスを加
えたものでもよい。これらの原料により、ペロブスカイ
ト構造の強誘電体膜を形成し、キャパシタ絶縁膜23と
する。
As the raw material, in addition to the above examples, Ba
(DPM) 2, Sr and (DPM) 2 alone or in combination, Ti (i-OC 3 H 7) 2 (DPM) 2, Ti
O (DPM) 2 , Ti (i-OC 3 H 7 ) 2 (DPM)
2 alone or in combination, may be obtained by adding these to oxygen gas. From these materials, a ferroelectric film having a perovskite structure is formed, and is used as the capacitor insulating film 23.

【0027】そして、キャパシタ絶縁膜23を形成した
後、結晶化を目的として酸素を0〜5%含む不活性ガス
雰囲気下において、結晶化開始温度である650〜90
0℃の高温で熱処理を行う。この熱処理として、例え
ば、400℃で1時間の窒素処理を行った後に750℃
で30sec(秒)のN2 −RTA処理を行った。
After the capacitor insulating film 23 is formed, the crystallization start temperature is set at 650 to 90 in an inert gas atmosphere containing 0 to 5% oxygen for the purpose of crystallization.
Heat treatment is performed at a high temperature of 0 ° C. As this heat treatment, for example, after performing a nitrogen treatment at 400 ° C. for 1 hour, the heat treatment is performed at 750 ° C.
In was N 2 -RTA processing of 30sec (in seconds).

【0028】BST薄膜に対する高温熱処理は、ランプ
アニール(RTA)による場合、600〜900℃、好
ましくは650〜800℃で、1〜240sec、好ま
しくは1〜60secとする。炉による場合は、520
〜800℃、好ましくは550〜650℃で、1〜48
0min(分)、好ましくは10〜120minとす
る。
The high temperature heat treatment for the BST thin film is performed at a temperature of 600 to 900 ° C., preferably 650 to 800 ° C., for 1 to 240 seconds, preferably 1 to 60 seconds in the case of lamp annealing (RTA). 520 if using furnace
~ 800 ° C, preferably 550-650 ° C, 1-48
0 min (minute), preferably 10 to 120 min.

【0029】この熱処理の後、DCスパッタ法等によ
り、BST膜上に、Ru等からなる膜厚50nmのキャ
パシタ上部電極層24(図1参照)を成膜し、その後、
酸素を0〜5%含む不活性ガス雰囲気下において、25
0〜500℃の低温で熱処理を行う。この低温熱処理と
して、例えば、300℃で30分の窒素処理を行った。
After this heat treatment, a 50 nm thick capacitor upper electrode layer 24 (see FIG. 1) made of Ru or the like is formed on the BST film by DC sputtering or the like.
Under an inert gas atmosphere containing 0 to 5% of oxygen, 25
The heat treatment is performed at a low temperature of 0 to 500C. As this low-temperature heat treatment, for example, nitrogen treatment was performed at 300 ° C. for 30 minutes.

【0030】以上により、高誘電率のBSTを容量絶縁
膜として用いた薄膜キャパシタ10を有する半導体装置
を製造することができる(図1参照)。
As described above, a semiconductor device having a thin film capacitor 10 using BST having a high dielectric constant as a capacitance insulating film can be manufactured (see FIG. 1).

【0031】図6は、図2〜図5に示す製造方法により
製造した薄膜キャパシタを有する半導体装置の効果を説
明する図である。図6には、印加電圧(applied
voltage:V)に対するリーク電流密度(le
akage currentdensity:A/cm
2 )が、従来の結晶化熱処理のみを行った場合(○印参
照)と、この発明に係る結晶化熱処理に加えて低温熱処
理を行った場合(●印参照)とについてグラフ表示され
ている。
FIG. 6 is a diagram for explaining the effect of the semiconductor device having the thin film capacitor manufactured by the manufacturing method shown in FIGS. FIG. 6 shows the applied voltage (applied
voltage: V) and the leakage current density (le
age current density: A / cm
2 ) graphically shows the case where only the conventional crystallization heat treatment was performed (see the mark ○) and the case where the low-temperature heat treatment was performed in addition to the crystallization heat treatment according to the present invention (see the mark ●).

【0032】図6に示すように、この発明に係る製造方
法である結晶化熱処理に加えて低温熱処理を行った場合
(●印参照)、従来の結晶化熱処理のみを行った場合
(○印参照)に比べ、印加電圧の全範囲(−3〜3V)
においてリーク電流密度が低下しているのが分かり、印
加電圧が−2〜2Vの範囲では、約1×10-8レベルと
なっている。この結果、SiO2 に換算した際の膜厚が
非常に小さく、且つ、リーク特性に優れた高誘電率薄膜
キャパシタを提供することができる。
As shown in FIG. 6, when the low-temperature heat treatment is performed in addition to the crystallization heat treatment (see the mark ●) in the manufacturing method according to the present invention, the conventional crystallization heat treatment alone is performed (see the mark ○). ), The entire range of applied voltage (-3 to 3 V)
It can be seen that the leakage current density is lowered in the case of, and when the applied voltage is in the range of -2 to 2 V, it is about 1 × 10 -8 level. As a result, it is possible to provide a high-dielectric-constant thin-film capacitor having a very small thickness when converted to SiO 2 and having excellent leakage characteristics.

【0033】つまり、BST薄膜の結晶化を目的とした
520〜900℃の高温熱処理の後に、250〜500
℃の低温熱処理を行うことにより、高誘電率のBSTを
容量絶縁膜として用いた薄膜キャパシタ10のリーク電
流を低減することができる。これは、熱CVDにより成
膜したBST膜に多く含まれていると推定されるカーボ
ン(C)や水素(H)等の脱離に、250〜500℃の
低温アニールが効果的に作用するものと思われる。
That is, after a high-temperature heat treatment at 520 to 900 ° C. for the purpose of crystallization of the BST thin film, 250 to 500
By performing the low-temperature heat treatment at a temperature of ° C., it is possible to reduce the leak current of the thin-film capacitor 10 using BST having a high dielectric constant as a capacitive insulating film. This is because low-temperature annealing at 250 to 500 ° C. effectively acts on desorption of carbon (C), hydrogen (H), and the like presumed to be largely contained in a BST film formed by thermal CVD. I think that the.

【0034】このように、上記実施の形態による薄膜キ
ャパシタ10を有する半導体装置の製造方法において
は、熱CVDで成膜されたBST膜を、不活性ガス雰囲
気のもと温度250〜500℃の範囲でBSTを結晶化
させることなく熱処理する低温熱処理工程と、同様の不
活性ガス雰囲気のもと温度520〜900℃の範囲でB
STを結晶化させるために熱処理する高温熱処理工程と
を有している。
As described above, in the method of manufacturing a semiconductor device having the thin film capacitor 10 according to the above-described embodiment, the BST film formed by thermal CVD is formed in a temperature range of 250 to 500 ° C. in an inert gas atmosphere. And a low-temperature heat treatment step of heat-treating the BST without crystallization at a temperature of 520 to 900 ° C. in the same inert gas atmosphere.
A high-temperature heat treatment step of performing a heat treatment to crystallize the ST.

【0035】なお、高温熱処理は、薄膜キャパシタ10
の容量絶縁膜の誘電率εが50を超えるような状態にす
るのに必要な熱処理であり、低温熱処理は、高温熱処理
の温度から少なくとも20℃以上低い温度、或いは容量
絶縁膜の結晶化温度より150℃低い温度から結晶化温
度より400℃低い温度までの範囲の熱処理である。
The high-temperature heat treatment is performed by
Is a heat treatment necessary to make the dielectric constant ε of the capacitive insulating film exceed 50, and the low-temperature heat treatment is a temperature at least 20 ° C. lower than the temperature of the high-temperature heat treatment or the crystallization temperature of the capacitive insulating film. The heat treatment ranges from 150 ° C. lower to 400 ° C. lower than the crystallization temperature.

【0036】ここで、低温熱処理(温度範囲250〜5
00℃)と高温熱処理(温度範囲520〜900℃)の
2つの熱処理は、BST成膜後に行われれば良く、例え
ば、低温熱処理を、高温熱処理の前或いは後に行う、キ
ャパシタ上部電極形成の前或いは後に行う等、製造工程
において少なくとも1回は高温熱処理と低温熱処理が含
まれていれば良く、熱処理を行う時点及び回数は任意で
ある。
Here, low-temperature heat treatment (temperature range 250 to 5)
The two heat treatments of (00 ° C.) and the high-temperature heat treatment (temperature range of 520 to 900 ° C.) may be performed after the BST film formation. For example, the low-temperature heat treatment is performed before or after the high-temperature heat treatment, before or after the formation of the capacitor upper electrode. At least one high-temperature heat treatment and one low-temperature heat treatment may be included in the manufacturing process, such as performed later, and the time and number of heat treatments are arbitrary.

【0037】即ち、製造工程は、上述したBST成膜→
高温熱処理→上部電極層形成→低温熱処理の順番の他、
例えば、BST成膜後、低温熱処理→高温熱処理→上部
電極層形成、高温熱処理→低温熱処理→上部電極層形
成、上部電極層形成→高温熱処理→低温熱処理等、の各
順番でも良い。
That is, the manufacturing process is the same as the above-described BST film formation.
In addition to the order of high temperature heat treatment → upper electrode layer formation → low temperature heat treatment,
For example, after the BST film formation, the order of low-temperature heat treatment → high-temperature heat treatment → upper electrode layer formation, high-temperature heat treatment → low-temperature heat treatment → upper electrode layer formation, upper electrode layer formation → high-temperature heat treatment → low-temperature heat treatment may be used.

【0038】また、BST成膜と成膜後の高温熱処理の
2つを組み合わせて複数回繰り返し、その後に低温熱処
理を行っても良く、更に、BST成膜と成膜後の高温熱
処理及び低温熱処理の3つを一つにまとめて複数回繰り
返しても良い。
The BST film formation and the high temperature heat treatment after the film formation may be repeated a plurality of times in combination, followed by the low temperature heat treatment after the BST film formation and the high temperature heat treatment after the film formation. May be combined into one and repeated a plurality of times.

【0039】また、低温熱処理を、余り酸素を含まない
酸素含有率0〜5%の不活性ガス雰囲気で行うことによ
り、酸素濃度が高い場合にRu等からなるキャパシタ上
部電極層24が酸化してしまうのを防止することができ
る。
Further, by performing the low-temperature heat treatment in an inert gas atmosphere having an oxygen content of 0 to 5% containing little oxygen, the capacitor upper electrode layer 24 made of Ru or the like is oxidized when the oxygen concentration is high. Can be prevented.

【0040】図7は、図2〜図5に示す製造方法に用い
られる半導体製造装置の概略構成図である。図7に示す
ように、半導体製造装置27は、枚葉式の製造装置であ
り、装置中心部に設置された搬送系28、及び搬送系2
8の周囲に配置された複数のチャンバを有している。
FIG. 7 is a schematic configuration diagram of a semiconductor manufacturing apparatus used in the manufacturing method shown in FIGS. As shown in FIG. 7, the semiconductor manufacturing apparatus 27 is a single-wafer type manufacturing apparatus, and has a transport system 28 and a transport system 2 installed at the center of the apparatus.
8 has a plurality of chambers arranged around it.

【0041】複数のチャンバは、BST成膜チャンバ2
9、高温熱処理用チャンバ30、低温熱処理用チャンバ
31、上部電極成膜用チャンバ32、及びロードロック
チャンバ33からなり、ロードロックチャンバ33には
制御部34が設置されている。
The plurality of chambers are the BST film forming chamber 2
9, a high-temperature heat treatment chamber 30, a low-temperature heat treatment chamber 31, an upper electrode film formation chamber 32, and a load lock chamber 33, in which a control unit 34 is provided.

【0042】キャリア(図示しない)に収納された処理
対象のウェハは、ロードロックチャンバ33を介して各
チャンバ29〜32に搬入され、各チャンバ29〜32
毎の処理を経た後、ロードロックチャンバ33を介して
装置外に搬出される。BST成膜チャンバ29は、BS
T成膜を行い、高温熱処理用チャンバ30は、BSTを
結晶化させるための高温熱処理を行う。低温熱処理用チ
ャンバ31は、BSTをその処理単独では結晶化しない
条件で低温熱処理を行い、上部電極成膜用チャンバ32
は、キャパシタ上部電極層24の成膜を行う。制御部3
4は、各チャンバ29〜32毎の処理を含む装置全体の
動作制御を行う。
The wafer to be processed, which is stored in a carrier (not shown), is carried into each of the chambers 29 to 32 via the load lock chamber 33, and is loaded into each of the chambers 29 to 32.
After each process, it is carried out of the apparatus via the load lock chamber 33. The BST film forming chamber 29 is
T film formation is performed, and the high-temperature heat treatment chamber 30 performs high-temperature heat treatment for crystallizing BST. The low-temperature heat treatment chamber 31 performs the low-temperature heat treatment under the condition that the BST is not crystallized by the treatment alone, and the upper electrode film formation chamber 32 is formed.
Performs the film formation of the capacitor upper electrode layer 24. Control unit 3
4 controls the operation of the entire apparatus including the processing for each of the chambers 29 to 32.

【0043】処理対象のウェハに対する各チャンバ29
〜33毎の処理は、これら各チャンバ29〜33の間を
移動することにより行われるが、この際、大気に晒され
ずに移動及び処理が行われる。
Each chamber 29 for a wafer to be processed
The processing for each of ~ 33 is performed by moving between these chambers 29-33, but at this time, the movement and processing are performed without being exposed to the atmosphere.

【0044】この半導体製造装置27による処理作業の
流れの例を説明する。半導体製造装置27内に搬入され
た処理対象のウェハは、始めにロードロックチャンバ3
3に入った後、BST成膜チャンバ29→高温熱処理用
チャンバ30→低温熱処理用チャンバ31→上部電極成
膜用チャンバ32へと順次移動し、BST成膜後の高温
熱処理及び低温熱処理を経て、再びロードロックチャン
バ33へ戻る。その後、キャパシタ上部電極24の加工
が行われる。
An example of a flow of a processing operation by the semiconductor manufacturing apparatus 27 will be described. The wafer to be processed carried into the semiconductor manufacturing apparatus 27 is first loaded into the load lock chamber 3.
3 and then sequentially move to the BST film forming chamber 29 → the high temperature heat treatment chamber 30 → the low temperature heat treatment chamber 31 → the upper electrode film formation chamber 32, and after the high temperature heat treatment and the low temperature heat treatment after the BST film formation, Return to the load lock chamber 33 again. Thereafter, processing of the capacitor upper electrode 24 is performed.

【0045】また、処理対象のウェハを、BST成膜チ
ャンバ29→低温熱処理用チャンバ31→高温熱処理用
チャンバ30→上部電極成膜用チャンバ32へと順次移
動させ、或いは、BST成膜チャンバ29→高温熱処理
用チャンバ30→上部電極成膜用チャンバ32→低温熱
処理用チャンバ31へと順次移動させて、BST成膜後
の高温熱処理及び低温熱処理を行ってもよい。
The wafer to be processed is sequentially moved from the BST film forming chamber 29 to the low temperature heat treatment chamber 31 → the high temperature heat treatment chamber 30 → the upper electrode film formation chamber 32, or alternatively, the BST film formation chamber 29 → The high-temperature heat treatment and the low-temperature heat treatment after the BST film formation may be performed by sequentially moving from the high-temperature heat treatment chamber 30 to the upper electrode film formation chamber 32 to the low-temperature heat treatment chamber 31.

【0046】ところで、この熱処理は、キャパシタ上部
電極24の加工後に行った方がより効果的であることか
ら、例えば、キャパシタ上部電極24をウェハ全面に成
膜してエッチングする前に、結晶化させるための高温熱
処理、及びその処理単独では結晶化しない条件での低温
熱処理を連続して行うというプロセスが望ましい。
Since this heat treatment is more effective after the processing of the capacitor upper electrode 24, for example, the capacitor upper electrode 24 is crystallized before being formed on the entire surface of the wafer and etched. For this purpose, a process of continuously performing a high-temperature heat treatment and a low-temperature heat treatment under conditions that do not cause crystallization by itself are desirable.

【0047】キャパシタ上部電極24の形成には、スパ
ッタだけでなくエッチングも含まれるので、キャパシタ
上部電極24の形成後に熱処理を行う場合は、高温熱処
理と低温熱処理を別々の工程で行う必要がある。この場
合、キャパシタ上部電極24の形成を、例えば、キャパ
シタ上部電極24の成膜工程と加工工程とに分けるなら
ば、低温熱処理後にキャパシタ上部電極24の加工を行
うことも可能であり、結晶化させるために行う熱処理
と、その処理単独では結晶化しない条件で行う熱処理と
を組み合わせればよい。
Since the formation of the capacitor upper electrode 24 includes not only sputtering but also etching, when heat treatment is performed after the formation of the capacitor upper electrode 24, it is necessary to perform high-temperature heat treatment and low-temperature heat treatment in separate steps. In this case, if the formation of the capacitor upper electrode 24 is divided into, for example, a film forming step and a processing step of the capacitor upper electrode 24, it is possible to process the capacitor upper electrode 24 after the low-temperature heat treatment, and to crystallize. May be combined with a heat treatment performed under conditions that do not cause crystallization by itself.

【0048】このように、この発明によれば、BST成
膜の後、不活性ガス雰囲気のもとで、BSTを結晶化さ
せるための高温熱処理及びBSTをその処理単独では結
晶化しない条件で低温熱処理を行う。この低温熱処理を
加えることで、従来に比べリーク特性及び誘電率の劣化
を防ぐことができ、リーク電流を減らしてDRAMの保
持特性の向上を図ることができる。
As described above, according to the present invention, after the BST film is formed, a high-temperature heat treatment for crystallizing the BST and a low-temperature Heat treatment is performed. By applying this low-temperature heat treatment, it is possible to prevent the leak characteristics and the dielectric constant from deteriorating as compared with the conventional case, reduce the leak current, and improve the retention characteristics of the DRAM.

【0049】なお、上記実施の形態において、薄膜キャ
パシタ10の強誘電体膜(容量膜)には、ペロブスカイ
ト構造の材料としてBST系の材料が用いられている
が、これに限らず、Pb系のABO3 型の材料を用いて
も良く、更に、ペロブスカイト構造を含むABO3 複合
酸化物であればよい。
In the above embodiment, the ferroelectric film (capacitance film) of the thin-film capacitor 10 is made of a BST-based material as a material having a perovskite structure. An ABO 3 type material may be used, and any ABO 3 composite oxide having a perovskite structure may be used.

【0050】[0050]

【発明の効果】以上説明したように、この発明によれ
ば、ABO3 複合酸化物からなる高誘電体膜の成膜後、
前記高誘電体膜を高温熱処理する高温熱処理工程と、前
記高温熱処理の処理温度より低い温度で低温熱処理する
低温熱処理工程とを経て、誘電体膜を上部電極及び下部
電極で挟み込んだ容量素子が製造され、この際、前記高
誘電体膜の成膜と前記高温熱処理、或いは前記高誘電体
膜の成膜と前記高温熱処理と前記低温熱処理は、それぞ
れ組み合わされて複数回繰り返されるので、不純物の離
脱に対応した低温による熱処理を行って、リーク特性及
び誘電率の劣化を防ぐことができる。
As described above, according to the present invention, after forming a high dielectric film made of ABO 3 composite oxide,
Through a high-temperature heat treatment step of performing high-temperature heat treatment on the high-dielectric film and a low-temperature heat treatment step of performing low-temperature heat treatment at a lower temperature than the processing temperature of the high-temperature heat treatment, a capacitive element in which the dielectric film is sandwiched between the upper electrode and the lower electrode is manufactured. At this time, the high
The formation of a dielectric film and the high-temperature heat treatment or the high-dielectric
The film formation, the high-temperature heat treatment, and the low-temperature heat treatment
Are combined repeated several times Runode, heat treatment is performed at a low temperature corresponding to the separation of impurities, it is possible to prevent the deterioration of the leak characteristic and dielectric constant.

【0051】[0051]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態に係る高誘電率薄膜キャ
パシタを有する半導体装置の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor device having a high dielectric constant thin film capacitor according to an embodiment of the present invention.

【図2】図1の薄膜キャパシタを有する半導体装置の製
造工程を示す断面図(その1)である。
FIG. 2 is a cross-sectional view (No. 1) showing a step of manufacturing the semiconductor device having the thin film capacitor of FIG.

【図3】図1の薄膜キャパシタを有する半導体装置の製
造工程を示す断面図(その2)である。
FIG. 3 is a sectional view (No. 2) showing a step of manufacturing the semiconductor device having the thin film capacitor of FIG.

【図4】図1の薄膜キャパシタを有する半導体装置の製
造工程を示す断面図(その3)である。
FIG. 4 is a sectional view (No. 3) showing a step of manufacturing the semiconductor device having the thin film capacitor of FIG. 1;

【図5】図1の薄膜キャパシタを有する半導体装置の製
造工程を示す断面図(その4)である。
FIG. 5 is a sectional view (No. 4) showing a step of manufacturing the semiconductor device having the thin film capacitor of FIG. 1;

【図6】図2〜図5に示す製造方法により製造した薄膜
キャパシタを有する半導体装置の効果を説明する図であ
る。
FIG. 6 is a diagram illustrating the effect of a semiconductor device having a thin film capacitor manufactured by the manufacturing method shown in FIGS. 2 to 5;

【図7】図2〜図5に示す製造方法に用いられる半導体
製造装置の概略構成図である。
FIG. 7 is a schematic configuration diagram of a semiconductor manufacturing apparatus used in the manufacturing method shown in FIGS. 2 to 5;

【符号の説明】[Explanation of symbols]

10 薄膜キャパシタ 11 MOSFET 12 メモリセル 13 p型シリコン基板 14 素子分離絶縁膜 15 ゲート酸化膜 16 ゲート電極 17 n型拡散層 18 ポリシリコンプラグ 19 層間絶縁膜 20 シリコンコンタクト層 21 耐シリコン拡散導電層 22 キャパシタ下部電極 23 キャパシタ絶縁膜 24 キャパシタ上部電極 25 接続孔 26 リンドープアモルファスシリコン層 27 半導体製造装置 28 搬送系 29 BST成膜チャンバ 30 高温熱処理用チャンバ 31 低温熱処理用チャンバ 32 上部電極成膜用チャンバ 33 ロードロックチャンバ 34 制御部 REFERENCE SIGNS LIST 10 thin film capacitor 11 MOSFET 12 memory cell 13 p-type silicon substrate 14 element isolation insulating film 15 gate oxide film 16 gate electrode 17 n-type diffusion layer 18 polysilicon plug 19 interlayer insulating film 20 silicon contact layer 21 silicon-resistant diffusion conductive layer 22 capacitor Lower electrode 23 Capacitor insulating film 24 Capacitor upper electrode 25 Connection hole 26 Phosphorus-doped amorphous silicon layer 27 Semiconductor manufacturing equipment 28 Transport system 29 BST film forming chamber 30 High temperature heat treatment chamber 31 Low temperature heat treatment chamber 32 Upper electrode film formation chamber 33 Load Lock chamber 34 control unit

フロントページの続き (56)参考文献 特開 平11−297964(JP,A) 特開 平11−177048(JP,A) 特開 平11−54721(JP,A) 特開2000−332209(JP,A) 特開2000−349254(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/8242 H01L 27/108 Continuation of front page (56) References JP-A-11-297964 (JP, A) JP-A-11-177048 (JP, A) JP-A-11-54721 (JP, A) JP-A-2000-332209 (JP, A) A) JP-A-2000-349254 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/8242 H01L 27/108

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体膜を上部電極及び下部電極で挟み込
んだ容量素子の製造方法において、 ABO3 複合酸化物からなる高誘電体膜の成膜後、前記
高誘電体膜を高温熱処理する高温熱処理工程と、前記高
温熱処理の処理温度より低い温度で低温熱処理する低温
熱処理工程とを有し、 前記高誘電体膜の成膜と前記高温熱処理、或いは前記高
誘電体膜の成膜と前記高温熱処理と前記低温熱処理は、
それぞれ組み合わされて複数回繰り返され ることを特徴
とする容量素子の製造方法。
1. A method of manufacturing a capacitor in which a dielectric film is sandwiched between an upper electrode and a lower electrode, comprising: forming a high dielectric film made of an ABO 3 composite oxide; a heat treatment step, the have a low-temperature heat treatment step of low-temperature heat treatment at a treatment temperature lower than the temperature of the high temperature heat treatment, the high deposition and the high temperature heat treatment of the dielectric film, or the high
The formation of the dielectric film and the high-temperature heat treatment and the low-temperature heat treatment,
Each combined to the manufacturing method of the capacitor, characterized in Rukoto repeated multiple times.
【請求項2】前記高温熱処理は、前記高誘電体膜を結晶
化する温度で行われ、前記低温熱処理は、その処理単独
では結晶化しない温度で行われることを特徴とする請求
項1に記載の容量素子の製造方法。
2. The method according to claim 1, wherein the high-temperature heat treatment is performed at a temperature at which the high-dielectric film is crystallized, and the low-temperature heat treatment is performed at a temperature at which the processing alone does not crystallize. Method for manufacturing a capacitive element.
【請求項3】前記高温熱処理或いは前記低温熱処理が行
われた後に、前記上部電極が形成されることを特徴とす
る請求項1または2に記載の容量素子の製造方法。
After wherein said high-temperature heat treatment or said low-temperature heat treatment is performed, the manufacturing method of the capacitor according to claim 1 or 2, wherein the upper electrode is formed.
【請求項4】前記上部電極が形成された後に、前記低温
熱処理が行われることを特徴とする請求項1または2
記載の容量素子の製造方法。
After wherein said upper electrode is formed, the manufacturing method of the capacitor according to claim 1 or 2, wherein said low-temperature heat treatment is performed.
【請求項5】前記低温熱処理を、酸素含有率0〜5%の
不活性ガス雰囲気で行うことを特徴とする請求項1から
のいずれかに記載の容量素子の製造方法。
5. The method according to claim 1, wherein the low-temperature heat treatment is performed in an inert gas atmosphere having an oxygen content of 0 to 5%.
5. The method for manufacturing a capacitive element according to any one of 4 .
【請求項6】前記高温熱処理は、520〜900℃の温
度範囲で行われ、前記低温熱処理は、250〜500℃
の温度範囲で行われることを特徴とする請求項1から
のいずれかに記載の容量素子の製造方法。
6. The high-temperature heat treatment is performed in a temperature range of 520 to 900 ° C., and the low-temperature heat treatment is performed in a temperature range of 250 to 500 ° C.
5 to be carried out in the temperature range of the preceding claims, characterized
A method for manufacturing a capacitive element according to any one of the above.
【請求項7】前記ABO3 複合酸化物は、ペロブスカイ
ト構造を有することを特徴とする請求項1からのいず
れかに記載の容量素子の製造方法。
Wherein said ABO 3 complex oxide, method for producing a capacitor according to any of claims 1 to 6, characterized in that it has a perovskite structure.
【請求項8】前記ペロブスカイト構造を有する前記AB
3 複合酸化物は、チタン酸バリウムストロンチウム
((Ba,Sr)TiO3 )であることを特徴とする請
求項に記載の容量素子の製造方法。
8. The AB having the perovskite structure
O 3 composite oxide, method for producing a capacitor element according to claim 7, characterized in that the barium strontium titanate ((Ba, Sr) TiO 3 ).
JP35689499A 1999-12-16 1999-12-16 Manufacturing method of capacitive element Expired - Fee Related JP3317295B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35689499A JP3317295B2 (en) 1999-12-16 1999-12-16 Manufacturing method of capacitive element
US09/736,562 US20010004533A1 (en) 1999-12-16 2000-12-13 Process for fabricating capacitor having dielectric layer with perovskite structure and apparatus for fabricating the same
KR1020000077149A KR20010062498A (en) 1999-12-16 2000-12-15 Process for fabricating capacitor having dielectric layer with perovskite structure and apparatus for fabricating the same
US10/135,620 US6602722B2 (en) 1999-12-16 2002-04-30 Process for fabricating capacitor having dielectric layer with pervskite structure and apparatus for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35689499A JP3317295B2 (en) 1999-12-16 1999-12-16 Manufacturing method of capacitive element

Publications (2)

Publication Number Publication Date
JP2001177075A JP2001177075A (en) 2001-06-29
JP3317295B2 true JP3317295B2 (en) 2002-08-26

Family

ID=18451297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35689499A Expired - Fee Related JP3317295B2 (en) 1999-12-16 1999-12-16 Manufacturing method of capacitive element

Country Status (3)

Country Link
US (2) US20010004533A1 (en)
JP (1) JP3317295B2 (en)
KR (1) KR20010062498A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811551B2 (en) * 2003-03-26 2011-11-09 セイコーエプソン株式会社 Ferroelectric film manufacturing method and ferroelectric capacitor manufacturing method
CA2427722C (en) 2003-04-29 2007-11-13 Ebrahim Bagherzadeh Preparation of catalyst and use for high yield conversion of methane to ethylene
US7428137B2 (en) * 2004-12-03 2008-09-23 Dowgiallo Jr Edward J High performance capacitor with high dielectric constant material
CN103119696A (en) * 2010-09-21 2013-05-22 株式会社爱发科 Thin film production process and thin film production device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434102A (en) 1991-02-25 1995-07-18 Symetrix Corporation Process for fabricating layered superlattice materials and making electronic devices including same
US5716875A (en) 1996-03-01 1998-02-10 Motorola, Inc. Method for making a ferroelectric device
JPH09260600A (en) 1996-03-19 1997-10-03 Sharp Corp Manufacture of semiconductor memory device
JPH1154721A (en) 1997-07-29 1999-02-26 Nec Corp Manufacture of semiconductor device and manufacturing equipment
JPH11177048A (en) 1997-12-09 1999-07-02 Oki Electric Ind Co Ltd Semiconductor element and manufacture thereof
JP3173451B2 (en) 1998-02-25 2001-06-04 日本電気株式会社 Semiconductor device and manufacturing method thereof
KR100284737B1 (en) 1998-03-26 2001-03-15 윤종용 Manufacturing method of capacitor having dielectric film of high dielectric constant in semiconductor device
JP2000332209A (en) 1999-05-21 2000-11-30 Oki Electric Ind Co Ltd MANUFACTURE OF Bi-BASED FERROELECTRIC ELEMENT
JP2000349254A (en) 1999-06-02 2000-12-15 Sony Corp Dielectric capacitor and memory, and their manufacture

Also Published As

Publication number Publication date
JP2001177075A (en) 2001-06-29
US20010004533A1 (en) 2001-06-21
US6602722B2 (en) 2003-08-05
US20020119617A1 (en) 2002-08-29
KR20010062498A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
US6144060A (en) Integrated circuit devices having buffer layers therein which contain metal oxide stabilized by heat treatment under low temperature
JP3940176B2 (en) Semiconductor memory device
JP4160638B2 (en) Semiconductor device
KR100775721B1 (en) Capacitor and method of manufacturing the same
US6180974B1 (en) Semiconductor storage device having a capacitor electrode formed of at least a platinum-rhodium oxide
US6078072A (en) Semiconductor device having a capacitor
KR100236691B1 (en) Semiconductor device and the manufacturing method thereof
JPH11126881A (en) Semiconductor device having high ferroelectric thin-film capacitor and manufacture thereof
JPH11233723A (en) Electronic element and its manufacture, and dielectric capacitor and its manufacture, and optical element and its manufacture
US6828190B2 (en) Method for manufacturing capacitor of semiconductor device having dielectric layer of high dielectric constant
US7064052B2 (en) Method of processing a transistor gate dielectric film with stem
KR100215861B1 (en) Dielectric thin film fabrication and semiconductor memory device fabrication method
JP3250527B2 (en) Method for manufacturing semiconductor memory device
JP2000022105A (en) Manufacture of semiconductor device
JP3317295B2 (en) Manufacturing method of capacitive element
JP4421814B2 (en) Capacitor element manufacturing method
US6180482B1 (en) Method for manufacturing high dielectric capacitor
JP4109304B2 (en) Semiconductor device and manufacturing method thereof
JP3225913B2 (en) Method for manufacturing semiconductor device
JP4500248B2 (en) Semiconductor memory device
KR100231604B1 (en) Manufacturing method of capacitor of semiconductor device
KR19990080412A (en) High dielectric constant capacitor with double dielectric film and manufacturing method
KR20000026968A (en) Method for forming capacitor of semiconductor device
KR20010026123A (en) Method of manufacturing capacitor including hydrogen annealing process for semiconductor device
KR20020051108A (en) A method for forming capacitor using polysilicon plug structure in semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees