JP3317291B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP3317291B2
JP3317291B2 JP31492399A JP31492399A JP3317291B2 JP 3317291 B2 JP3317291 B2 JP 3317291B2 JP 31492399 A JP31492399 A JP 31492399A JP 31492399 A JP31492399 A JP 31492399A JP 3317291 B2 JP3317291 B2 JP 3317291B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
antiferroelectric
state
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31492399A
Other languages
Japanese (ja)
Inventor
卓之 藤川
明 竹内
典生 山本
祐一郎 山田
正明 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP31492399A priority Critical patent/JP3317291B2/en
Application granted granted Critical
Publication of JP3317291B2 publication Critical patent/JP3317291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反強誘電性液晶を
用いた液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display using an antiferroelectric liquid crystal.

【0002】[0002]

【従来の技術】近年、液晶セルは、薄型、軽量、低消費
電力等の特徴を生かした表示素子として幅広く用いられ
るようになったが、これらの表示素子の殆どは、ネマチ
ック液晶を用いるTN型液晶セルである。このTN型液
晶セルの表示方法では、その駆動が液晶の比誘電率の異
方性に基づいているため、その応答速度は遅く、改善の
必要性に迫られていた。
2. Description of the Related Art In recent years, liquid crystal cells have been widely used as display elements utilizing characteristics such as thinness, light weight, and low power consumption. Most of these display elements are TN type using nematic liquid crystal. It is a liquid crystal cell. In the display method of the TN type liquid crystal cell, since the driving is based on the anisotropy of the relative permittivity of the liquid crystal, the response speed is slow, and there is a need for improvement.

【0003】これに対し、Meyer氏等により見出さ
れた強誘電性を示すカイラルスメクチックC相(SmC
* 相)を有する液晶を用いた液晶セルは、ネマチック液
晶では達成し得なかった高速応答性やメモリー性を有し
ている。このため、これらの特性を生かした強誘電性液
晶セルへの応用研究が精力的に行われている。しかし、
この表示方法に必要とされる良好な配向性やメモリー性
を実際の液晶セルで実現することは、外部からのショッ
クに弱い等のため、解決すべき問題が数多く残ってい
る。
On the other hand, a chiral smectic C phase (SmC) exhibiting ferroelectricity discovered by Meyer et al.
A liquid crystal cell using a liquid crystal having ( * phase) has a high-speed response and a memory property that cannot be achieved by a nematic liquid crystal. For this reason, application research on ferroelectric liquid crystal cells utilizing these characteristics has been vigorously conducted. But,
Achieving good orientation and memory properties required for this display method in an actual liquid crystal cell is vulnerable to external shocks and the like, so there are many problems to be solved.

【0004】一方、最近になってChandani氏等
によって、上記SmC* 相の低温側に三安定状態を示す
反強誘電相(SmCA * 相)が発見された。このSmC
A *相は、隣接する層毎に双極子が反平行に配列した熱
力学的に安定な相を示し、印加電圧に対して明確な閾値
と二重履歴特性をもつことを特徴とする反強誘電相−強
誘電相間の電界誘起相転移を起こす。そこで、このスイ
ッチング挙動を応用して、新規な表示方法への応用、例
えば、反強誘電性液晶セルの検討が始まっている。
On the other hand, by Chandani Mr. etc. Recently, the SmC * phase antiferroelectric phase showing three stable states on the lower temperature side of (SmC A * phase) was found. This SmC
The A * phase is a thermodynamically stable phase in which dipoles are arranged antiparallel in each adjacent layer, and has a distinct threshold and double hysteresis characteristics with respect to applied voltage. An electric field-induced phase transition between the dielectric phase and the ferroelectric phase occurs. Therefore, application of this switching behavior to a new display method, for example, investigation of an antiferroelectric liquid crystal cell has begun.

【0005】ところで、このような液晶セルにおける反
強誘電性液晶の二重履歴特性は、図14にて模式的に示
すような印加電圧と透過光量の関係にある。この特性
は、例えば、配向処理を施した両電極基板をスペーサを
介し重ね合わせ、これら両電極基板間に反強誘電性液晶
を注入して形成した液晶セルを光電子倍増管付き偏光顕
微鏡に設置し、両偏光板のクロスニコル下で液晶セルに
三角波電圧を印加し、その時の透過光の変化を測定する
ことにより得られる。
Incidentally, the double hysteresis characteristic of the antiferroelectric liquid crystal in such a liquid crystal cell has a relationship between the applied voltage and the amount of transmitted light as schematically shown in FIG. For example, a liquid crystal cell formed by superposing an alignment-processed two electrode substrates via a spacer and injecting an antiferroelectric liquid crystal between the two electrode substrates is installed in a polarization microscope with a photomultiplier tube. It can be obtained by applying a triangular wave voltage to the liquid crystal cell under crossed Nicols of both polarizing plates and measuring a change in transmitted light at that time.

【0006】この液晶セルのコントラストは、明輝度/
暗輝度の比で表すことができる。ここで、明輝度は、図
14中のb%に相当し、暗輝度はa%に相当する。これ
らの値は、常に一定の透過光量となるように偏光顕微鏡
光源を設定し、その時の輝度を100%とし、また、完
全遮光状態時の輝度を0%として求めることができる。
[0006] The contrast of this liquid crystal cell is expressed by bright luminance /
It can be represented by the ratio of dark luminance. Here, the bright luminance corresponds to b% in FIG. 14, and the dark luminance corresponds to a%. These values can be obtained by setting the polarization microscope light source so that the transmitted light amount is always constant, setting the luminance at that time to 100%, and setting the luminance in the completely light-shielded state to 0%.

【0007】そこで、このような液晶セルにおいてコン
トラストを向上させるには、上記コントラストの定義か
ら、暗輝度の低減が効果的であるといえる。この暗輝度
は、無電界時の光透過率であり、液晶セルに用いられる
反強誘電性液晶の配向状態の善し悪しに依存してくる。
即ち、反強誘電性液晶は、ネマチック液晶とは異なり、
液晶分子がスメクチック層と呼ばれる層構造を形成して
いる。例えば、ラビング方法のような一軸配向処理を施
した液晶セルに反強誘電性液晶を注入すると、この液晶
の光軸がラビング方向に向く。例えば、反強誘電性液晶
の場合、図15(a)にて示すように、一般に、上記ス
メクチック層はラビング方向と垂直方向に形成される。
従って、反強誘電性液晶の光軸にクロスニコル状態の2
枚の偏光板の一方を合わせれば、暗状態が得られる。
Therefore, in order to improve the contrast in such a liquid crystal cell, it can be said from the definition of the above-mentioned contrast that the reduction of dark luminance is effective. This dark luminance is the light transmittance in the absence of an electric field, and depends on the quality of the orientation state of the antiferroelectric liquid crystal used in the liquid crystal cell.
That is, the antiferroelectric liquid crystal is different from the nematic liquid crystal,
Liquid crystal molecules form a layer structure called a smectic layer. For example, when an antiferroelectric liquid crystal is injected into a liquid crystal cell that has been subjected to a uniaxial alignment treatment such as a rubbing method, the optical axis of the liquid crystal is oriented in the rubbing direction. For example, in the case of an antiferroelectric liquid crystal, the smectic layer is generally formed in a direction perpendicular to the rubbing direction, as shown in FIG.
Therefore, the crossed Nicol state of the optical axis of the antiferroelectric liquid crystal
A dark state can be obtained by combining one of the polarizing plates.

【0008】[0008]

【発明が解決しようとする課題】しかし、この状態にお
いて液晶セルを駆動すると、図15(b)に示すように
スメクチック層が初期状態(ラビング方向と平行な状
態)からずれて両電極基板と平行な面(紙面と平行な
面)内にて回転するという層回転現象が観察されること
がある。この現象が生ずると、反強誘電性液晶の光軸が
偏光板の光軸からずれるため、暗状態で光漏れが大きく
なり、コントラストの低下を引き起こすという不具合を
生ずる。
However, when the liquid crystal cell is driven in this state, the smectic layer deviates from the initial state (a state parallel to the rubbing direction) as shown in FIG. In some cases, a layer rotation phenomenon of rotating in a plane (a plane parallel to the paper surface) is observed. When this phenomenon occurs, the optical axis of the antiferroelectric liquid crystal is shifted from the optical axis of the polarizing plate, so that light leakage increases in the dark state, causing a problem of lowering the contrast.

【0009】なお、最近、反強誘電性液晶における層回
転現象につき、中山氏等(奈良高専)により報告されて
いる(第20回液晶討論会予稿集106頁(1994
年)参照)が、その内容は、反強誘電性液晶を水平配向
させたスペーサエッジセルという配向膜のないセルにお
いて、非対称波形の交流電圧を印加したところ、エッジ
付近でスメクチック層が回転するというものである。し
かし、層回転現象の発生原因の詳細や液晶セルにおける
層回転現象の発生防止対策についてまでは言及されてい
ない。
Recently, a layer rotation phenomenon in an antiferroelectric liquid crystal has been reported by Nakayama et al. (Nara National College of Technology).
However, the content is that the smectic layer rotates near the edge when an asymmetric waveform AC voltage is applied to a cell without an alignment film called a spacer edge cell in which antiferroelectric liquid crystal is horizontally aligned. Things. However, there is no mention of details of the cause of the layer rotation phenomenon or measures for preventing the layer rotation phenomenon in the liquid crystal cell.

【0010】一方、本発明者等は、反強誘電性液晶の配
向状態を安定化する配向膜を両電極基板に形成した液晶
セルにおいて、対称波形の交流電圧を印加しているにも
かかわらず、上述と同様の層回転現象が発生するという
ことを発見した。本発明は、かかる層回転現象の発生を
制御する反強誘電性液晶セルの構成因子の新規発見に基
づくものである。
On the other hand, the inventors of the present invention have found that although a liquid crystal cell in which an alignment film for stabilizing the alignment state of an antiferroelectric liquid crystal is formed on both electrode substrates, an AC voltage having a symmetric waveform is applied. Discovered that a layer rotation phenomenon similar to that described above occurs. The present invention is based on a novel discovery of a constituent factor of an antiferroelectric liquid crystal cell which controls the occurrence of such a layer rotation phenomenon.

【0011】即ち、本発明者等は、種々の実験等による
検討の結果、層回転現象は、液晶セルに交流電圧を印加
した時の反強誘電性液晶の光透過率の立ち下がり応答速
度の極性非対称性と関連しているという実験事実を発見
した。図16(a)に示すような波形の交流電圧を液晶
セルに印加した時の反強誘電性液晶の光学応答波形を図
16(b)に示し、また、電界誘起相転移する反強誘電
性液晶の各配向状態を図17に示す。
That is, the present inventors have studied various experiments and the like. As a result, the layer rotation phenomenon is caused by the fall response speed of the light transmittance of the antiferroelectric liquid crystal when an AC voltage is applied to the liquid crystal cell. We have found experimental evidence that it is associated with polar asymmetry. FIG. 16B shows an optical response waveform of the antiferroelectric liquid crystal when an AC voltage having a waveform as shown in FIG. 16A is applied to the liquid crystal cell. FIG. 17 shows each alignment state of the liquid crystal.

【0012】ここで、反強誘電性液晶の光透過率の立ち
下がり応答速度の極性非対称性とは、図16に示すよう
に、交流電圧を正電界にて印加した時の明状態(F+
強誘電相)から暗状態(AF:反強誘電相)への応答時
間(τd + )と、交流電圧を負電界で印加した時の明状
態(F- :強誘電相)から暗状態(AF:反強誘電相)
への応答時間(τd - )とが異なることである。
Here, the polarity asymmetry of the falling response speed of the light transmittance of the antiferroelectric liquid crystal refers to a bright state (F + ) when an AC voltage is applied in a positive electric field, as shown in FIG. :
The response time (τ d + ) from a ferroelectric phase to a dark state (AF: antiferroelectric phase) and the light state (F : ferroelectric phase) when an AC voltage is applied in a negative electric field to a dark state ( AF: antiferroelectric phase)
Is different from the response time (τ d ).

【0013】そこで、本発明者等は、これら両応答時間
(τd + )、(τd - )を近似ないしは等しくすれば、
反強誘電性液晶の層回転現象の抑制が可能であり、ひい
ては、動作中におけるコントラストの低下を防止できる
ことに着目した。即ち、上述したように、AF、F+
- の三状態の電界誘起相転移は反強誘電性液晶に固有
の現象である。従って、本発明者等は、交流駆動する液
晶セルにおいて、反強誘電性液晶の第1安定状態(強誘
電相)から第3安定状態(反強誘電相)への応答時間
と、第2安定状態(強誘電相)から第3安定状態への応
答時間とを近似ないしは等しくするような対策を講じれ
ば、反強誘電性液晶の層回転現象を抑制できるという認
識に到達した。
[0013] Therefore, the present inventors have both of these response time (τ d +), - if approximate or equal to, (tau d)
We focused on the fact that the layer rotation phenomenon of the antiferroelectric liquid crystal can be suppressed, and that the contrast can be prevented from lowering during operation. That is, as described above, AF, F + ,
The electric field-induced phase transition in the three states of F is a phenomenon inherent to the antiferroelectric liquid crystal. Accordingly, the present inventors have found that in a liquid crystal cell driven by AC, the response time of the antiferroelectric liquid crystal from the first stable state (ferroelectric phase) to the third stable state (antiferroelectric phase) and the second stable state It has been recognized that if measures are taken to make the response time from the state (ferroelectric phase) to the third stable state approximate or equal, the layer rotation phenomenon of the antiferroelectric liquid crystal can be suppressed.

【0014】また、本発明者等は、ラビング条件やパネ
ル構成に限らず、上記両応答速度を近似ないしは等しく
すれば、層回転現象を抑制できることも確認した。この
両応答速度を近似ないしは等しくする例としては、以下
の対策が考えられる。 (1)両電極基板において反強誘電性液晶の配向作用を
近似ないしは等しくすることにより、F+ 状態とF-
態とでほぼ同一の配向状態を実現する。例えば、反強誘
電性液晶の配向分子膜の種類を統一すること、ラビング
条件を同一にすること、及び両配向膜の光学的屈折率異
方性を統一すること等が考えられる。 (2)反強誘電性液晶の光透過率の応答時間の長い極性
の側において、液晶セルに対する印加電圧波形にオフセ
ット(直流成分重畳)を与えることが考えられる。
The present inventors have also confirmed that the layer rotation phenomenon can be suppressed by approximating or equalizing the two response speeds, not limited to the rubbing conditions and the panel configuration. The following countermeasures can be considered as examples of approximating or equalizing both response speeds. (1) By approximating or equalizing the alignment action of the antiferroelectric liquid crystal in both electrode substrates, substantially the same alignment state is realized in the F + state and the F state. For example, it is conceivable to unify the types of alignment molecular films of the antiferroelectric liquid crystal, make the rubbing conditions the same, and unify the optical refractive index anisotropy of both alignment films. (2) It is conceivable to give an offset (DC component superposition) to the voltage waveform applied to the liquid crystal cell on the side of the polarity where the response time of the light transmittance of the antiferroelectric liquid crystal is long.

【0015】そこで、本発明は、以上述べた観点から、
反強誘電性液晶の層回転現象を抑制する工夫を凝らした
液晶表示装置を提供することを目的とする。
Therefore, the present invention has been made from the viewpoint described above.
It is an object of the present invention to provide a liquid crystal display device that is devised to suppress the layer rotation phenomenon of an antiferroelectric liquid crystal.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明によれば、液晶表示装置の制
御装置が、液晶セルの反強誘電性液晶の第1強誘電状態
から反強誘電状態への応答時間と第2強誘電状態から反
強誘電状態への第2応答時間とを近似させるように、印
加電圧に直流成分を重畳して液晶セルに印加する。
In order to achieve the above object, according to the first aspect of the present invention, the control device of the liquid crystal display device is configured to change the antiferroelectric liquid crystal of the liquid crystal cell from the first ferroelectric state. A DC component is superimposed on the applied voltage and applied to the liquid crystal cell so as to approximate the response time to the antiferroelectric state and the second response time from the second ferroelectric state to the antiferroelectric state.

【0017】これにより、反強誘電性液晶の層回転を抑
制でき、その結果、表示コントラストを良好に確保でき
る。
Thus, the layer rotation of the antiferroelectric liquid crystal can be suppressed, and as a result, a favorable display contrast can be ensured.

【0018】[0018]

【発明の実施の形態】以下、本発明の第1実施の形態を
図面に基づき説明する。本発明に係る液晶セルの製作に
あたり、図1にて示す構成の液晶セルを多数準備した。
これらの液晶セルは、それぞれ、両電極基板10、20
を、スペーサ30並びに帯状シール及び接着性微粒子
(図示しない)を介し、重ね合わせ、かつ、これら両電
極基板10、20間に反強誘電性液晶40を封入して構
成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In manufacturing the liquid crystal cell according to the present invention, many liquid crystal cells having the configuration shown in FIG. 1 were prepared.
These liquid crystal cells are provided with two electrode substrates 10, 20 respectively.
Are overlapped via a spacer 30, a band-shaped seal and adhesive fine particles (not shown), and an antiferroelectric liquid crystal 40 is sealed between the two electrode substrates 10 and 20.

【0019】ここで、電極基板10は、ガラス基板11
の内表面に、複数条の透明電極12(Indium T
in Oxideからなる)、絶縁膜(図示しない)及
び配向膜13を順次形成して構成されている。一方、電
極基板20は、ガラス基板21の内表面に、複数条の透
明電極22(Indium Tin Oxideからな
る)、絶縁膜(図示しない)及び配向膜23を順次形成
して構成されている。複数条の透明電極22は、複数条
の透明電極12と共に格子状の複数の画素を構成するよ
うに形成されている。なお、ガラス基板11、21の厚
さは1.1mmであり、反強誘電性液晶40の層の厚さ
は1.8μmである。
Here, the electrode substrate 10 is a glass substrate 11
Are provided with a plurality of transparent electrodes 12 (Indium T
in Oxide), an insulating film (not shown), and an alignment film 13 are sequentially formed. On the other hand, the electrode substrate 20 is formed by sequentially forming a plurality of transparent electrodes 22 (made of Indium Tin Oxide), an insulating film (not shown), and an alignment film 23 on the inner surface of a glass substrate 21. The plurality of transparent electrodes 22 are formed so as to form a plurality of pixels in a lattice shape together with the plurality of transparent electrodes 12. The thickness of the glass substrates 11 and 21 is 1.1 mm, and the thickness of the layer of the antiferroelectric liquid crystal 40 is 1.8 μm.

【0020】両配向膜13、23は、その各内表面に
て、反強誘電性液晶40を挟んで対向しており、これら
配向膜13、23は、同種の高分子材料(例えば、ポリ
イミド)により、同一の膜厚(例えば、200Å)にて
形成されている。また、反強誘電性液晶40の液晶分子
を配向させるため、両配向膜13、23の各内表面に
は、ラビング処理が、各液晶セルにつき、次のような条
件で施されている。
The two alignment films 13 and 23 face each other with an antiferroelectric liquid crystal 40 interposed therebetween on their inner surfaces. These alignment films 13 and 23 are made of the same kind of polymer material (for example, polyimide). Thus, they are formed with the same film thickness (for example, 200 °). In order to align the liquid crystal molecules of the antiferroelectric liquid crystal 40, rubbing treatment is performed on the inner surfaces of the alignment films 13 and 23 for each liquid crystal cell under the following conditions.

【0021】即ち、ラビングは、一般的なラビングロー
ラを用いた方法で行った。ラビング方向は、両配向膜1
3、23で、互いに反平行となっており、ラビングロー
ラの送り方向は、ローラの回転方向とは逆とした。ま
た、ラビング布は、ナイロン布を用いた。ラビングロー
ラのローラ半径は、3.7cmとし、ローラ回転数は1
000r.p.mとし、液晶セルを置くステージの移動
速度は、3.3cm/secとし、ラビング回数は5回
とした。また、ラビングローラの配向膜の内表面に対す
る押し込み量は、0.3mm乃至0.5mmとした。
That is, rubbing was performed by a method using a general rubbing roller. The rubbing direction is the orientation film 1
In Nos. 3 and 23, they were antiparallel to each other, and the rubbing roller feeding direction was opposite to the roller rotation direction. As the rubbing cloth, a nylon cloth was used. The roller radius of the rubbing roller is 3.7 cm, and the number of roller rotation is 1
000r. p. m, the moving speed of the stage on which the liquid crystal cell was placed was 3.3 cm / sec, and the number of rubbing times was 5. The amount of the rubbing roller pressed into the inner surface of the alignment film was 0.3 mm to 0.5 mm.

【0022】反強誘電性液晶40としては、4−(1−
トリフルオロメチルヘプトキシカルボニル)フェニル−
4’−オクチルオキシビフェニル−4−カルボキシレー
ト(以下、TFMHPOBCという)、4−(1−トリ
フルオロメチルヘプトキシカルボニル)フェニル−4’
−デシルビフェニル−4−カルボキシレート(以下、T
FMHPDBCという)、4−(メチルヘプトキシカル
ボニル)フェニル−4’−オクチルオキシビフェニル−
4−カルボキシレート(以下、MHPOBCという)及
びこれらの同族体を含む混合液を採用した。
As the antiferroelectric liquid crystal 40, 4- (1-
Trifluoromethylheptoxycarbonyl) phenyl-
4'-octyloxybiphenyl-4-carboxylate (hereinafter referred to as TFMHPOBC), 4- (1-trifluoromethylheptoxycarbonyl) phenyl-4 '
-Decylbiphenyl-4-carboxylate (hereinafter referred to as T
FMHPDBC), 4- (methylheptoxycarbonyl) phenyl-4'-octyloxybiphenyl-
A mixed solution containing 4-carboxylate (hereinafter, referred to as MHPOBC) and a homolog thereof was employed.

【0023】この混合液は次の相系列を示す。This liquid mixture shows the following phase sequence.

【0024】 (−20℃) (70℃) (72℃) (85℃) 結晶 → SmCA * → SmC* → SmA → 等方性液体 ここで、SmCA * 相は、反強誘電性スメクチック液晶
相を表し、SmC* 相は、強誘電性スメクチック液晶相
を示し、また、SmA相は、常誘電性スメクチック液晶
相を表す。
(−20 ° C.) (70 ° C.) (72 ° C.) (85 ° C.) Crystal → SmC A * → SmC * → SmA → Isotropic Liquid Here, the SmC A * phase is an antiferroelectric smectic liquid crystal. A SmC * phase represents a ferroelectric smectic liquid crystal phase, and an SmA phase represents a paraelectric smectic liquid crystal phase.

【0025】以上のように製作した各液晶セルにつき、
次のような層回転現象の測定方法を適用した。まず、温
度制御可能なホットステージ内において、電極基板10
が電極基板20の上側に位置するように、液晶セルを、
偏光顕微鏡のステージ上に設置する。このとき、液晶セ
ルは、クロスニコルの状態に配置した偏光顕微鏡の両偏
光板の間に配置される。そして、透過光強度検出用光電
子倍増管を偏光顕微鏡の上部に設けるとともにオシロス
コープに接続して、反強誘電性液晶40の電気光学特性
をモニターする。
For each liquid crystal cell manufactured as described above,
The following method of measuring the layer rotation phenomenon was applied. First, the electrode substrate 10 is placed in a hot stage capable of controlling the temperature.
Is positioned on the upper side of the electrode substrate 20.
It is set on the stage of a polarizing microscope. At this time, the liquid crystal cell is arranged between the two polarizing plates of the polarizing microscope arranged in a crossed Nicols state. Then, a photomultiplier for transmitted light intensity detection is provided above the polarization microscope and connected to an oscilloscope to monitor the electro-optical characteristics of the antiferroelectric liquid crystal 40.

【0026】このようなモニター状態にて、液晶セルに
対し無電界のまま、暗視野となるようにステージを回転
させる。即ち、反強誘電性液晶の光軸が一方の偏光板の
光軸と一致し0度をなすようにする。この状態で、電極
基板10が正側となり、電極基板20が負側となるよう
に配線した後、図2(a)にて示す波形の交流電圧を両
電極基板10、20間に印加し、F+ →AF応答時間
(τd + )、F- →AF応答時間(τd - )及び層回転
角度θを測定する。
In such a monitor state, the stage is rotated so as to provide a dark field with no electric field applied to the liquid crystal cell. That is, the optical axis of the antiferroelectric liquid crystal coincides with the optical axis of one of the polarizers and forms 0 degree. In this state, after wiring is performed so that the electrode substrate 10 is on the positive side and the electrode substrate 20 is on the negative side, an AC voltage having a waveform shown in FIG. F + → AF response time (τ d +), F - → AF response time (τ d -) and measuring the layer rotation angle theta.

【0027】応答時間τd (=τd + 或いはτd - )の
測定は、交流電圧印加直後において、両極性のF状態
(F+ 及びF- の状態)の透過光強度が等しいことを確
認した後、F状態の透過光強度を100%とし、AF状
態の透過光強度を0%として、100%から0%となる
までの時間を両極性で測定する。なお、応答時間が10
0msecよりも長くなる場合には、F状態からAF状
態まで戻り切らないため、応答期間測定時のみの印加電
圧波形のリセット期間をAF状態まで戻るような長さに
変えて測定する。
The measurement of the response time τ d (= τ d + or τ d ) confirms that the transmitted light intensities in the bipolar F state (F + and F states) are equal immediately after the application of the AC voltage. After that, assuming that the transmitted light intensity in the F state is 100% and the transmitted light intensity in the AF state is 0%, the time from 100% to 0% is measured in both polarities. The response time is 10
When the time is longer than 0 msec, since the return from the F state to the AF state is not completed, the reset period of the applied voltage waveform only during the response period measurement is changed to a length that returns to the AF state.

【0028】また、或る液晶セルと他の液晶セルにおい
て、両応答時間τd + 、τd - の間の差が同じであって
も、τd + 及びτd - の各長さが液晶セルによって若干
異なってくるため、応答時間の極性非対称性も異なって
くる。そこで、応答時間の極性非対称性の度合いを以下
のように規格化した。即ち、測定した両応答時間τ
d + 、τd - の間の差Δτd (=τd + −τd -)を、両
応答時間τd + 、τd -の平均値τdav (=(τd +
τd - )/2)により除した値Δτd /τdav を用い
た。
Further, in one liquid crystal cell and another liquid crystal cell,
And both response times τd + , Τd - The difference between is the same
Also, τd + And τd -Each length is slightly depending on the liquid crystal cell
The response time has different polar asymmetries
come. Therefore, the degree of the polarity asymmetry of the response time is
It was standardized as follows. That is, both measured response times τ
d + , Τd - Difference Δτ betweend (= Τd + −τd -), Both
Response time τd + , Τd -The average value τ ofdav (= (Τd + +
τd -) / 2) divided by Δτd / Τdav Using
Was.

【0029】層回転角度θについては、液晶セルに対す
る電圧印加後10分経過した後の無電界時に、ステージ
を回転させ暗視野となるようにし、このときのステージ
の回転角度を層回転角度θとする。10分経過後の層回
転角度θを用いるのは、上記各液晶セルにおいて、層回
転角度θの増加が約10分で飽和するためである。ま
た、反強誘電性液晶の層回転角度方向は、電極基板10
を上にした液晶セルを上面から見た状態にて、反強誘電
性液晶の光軸が0度から反時計まわりに回転したとき
に、正とし、時計まわりに回転したときに、負とする。
With respect to the layer rotation angle θ, the stage is rotated so that a dark field is obtained when there is no electric field after 10 minutes have passed from the application of a voltage to the liquid crystal cell. I do. The reason why the layer rotation angle θ after the lapse of 10 minutes is used is that the increase in the layer rotation angle θ is saturated in about 10 minutes in each of the liquid crystal cells. The direction of the layer rotation angle of the antiferroelectric liquid crystal is
When the optical axis of the antiferroelectric liquid crystal is rotated counterclockwise from 0 degrees in a state where the liquid crystal cell with the top is viewed from the top, it is positive when the optical axis is rotated clockwise and negative when the optical axis is rotated clockwise. .

【0030】作製例1 上記のように作製した各液晶セルのうち、セルNO.A
11乃至A18の8個の液晶セルについて、各応答時間
τd + 、τd - 、Δτd 、Δτd /τdav 及び層回転角
度θを上記測定方法により測定し、図3にて示す図表の
ような結果を得た。但し、これら8個の液晶セルについ
ては、上記ラビング条件のうち、ローラ押し込み量を、
両電極基板10、20共に、0.3mmと同一にして作
製してある。
Production Example 1 Of the liquid crystal cells produced as described above, cell No. A
The response times τ d + , τ d , Δτ d , Δτ d / τ dav and the layer rotation angle θ of the eight liquid crystal cells 11 to A18 were measured by the above-described measuring method, and the results are shown in FIG. I got the result like this. However, for these eight liquid crystal cells, of the rubbing conditions described above,
Both the electrode substrates 10 and 20 are manufactured in the same manner as 0.3 mm.

【0031】作製例2 上記のように作製した各液晶セルのうち、セルNO.B
11乃至B14の4個の液晶セルについて、各応答時間
τd + 、τd - 、Δτd 、Δτd /τdav 及び層回転角
度θを上記測定方法により測定し、図4にて示す図表の
ような結果を得た。但し、これら4個の液晶セルについ
ては、上記ラビング条件のうち、ローラ押し込み量を、
上基板(電極基板10)について0.3mmとし、下基
板(電極基板20)について0.5mmとして作製して
ある。
Production Example 2 Of the liquid crystal cells produced as described above, cell No. B
The response times τ d + , τ d , Δτ d , Δτ d / τ dav and the layer rotation angle θ of the four liquid crystal cells 11 to B14 were measured by the above-described measurement methods, and the results are shown in FIG. I got the result like this. However, for these four liquid crystal cells, of the rubbing conditions described above,
The upper substrate (electrode substrate 10) is made 0.3 mm, and the lower substrate (electrode substrate 20) is made 0.5 mm.

【0032】作製例3 上記のように作製した各液晶セルのうち、セルNO.C
11乃至C14の4個の液晶セルについて、各応答時間
τd + 、τd - 、Δτd 、Δτd /τdav 及び層回転角
度θを上記測定方法により測定し、図5の図表にて示す
ような結果を得た。但し、これら4個の液晶セルについ
ては、上記ラビング条件のうち、ローラ押し込み量を、
上基板(電極基板10)について0.5mmとし、下基
板(電極基板20)について0.3mmとして作製して
ある。
Production Example 3 Of the liquid crystal cells produced as described above, cell No. C
The response times τ d + , τ d , Δτ d , Δτ d / τ dav and the layer rotation angle θ of the four liquid crystal cells 11 to C14 were measured by the above-described measurement method, and are shown in the chart of FIG. I got the result like this. However, for these four liquid crystal cells, of the rubbing conditions described above,
The upper substrate (electrode substrate 10) is made 0.5 mm, and the lower substrate (electrode substrate 20) is made 0.3 mm.

【0033】図6は、上記作製例1乃至3の各液晶セル
の測定結果に基づき、層回転角度θとΔτd /τdav
の間の特性を示す。ここで、図6において、符号○は、
作製例1の場合の特性を示し、符号●は、作製例2の場
合の特性を示し、符号▲は、作製例3の場合の特性を示
す。この図6の特性によれば、両応答時間τd + 、τ d
- が互いに近い値になる程、反強誘電性液晶の層回転が
発生しにくいことが分かる。
FIG. 6 shows each liquid crystal cell of Production Examples 1 to 3.
Based on the measurement results, the layer rotation angles θ and Δτd / Τdav When
Shows the characteristics between Here, in FIG.
The characteristics in the case of Production Example 1 are shown.
The symbol ▲ indicates the characteristic in the case of Production Example 3.
You. According to the characteristics of FIG. 6, both response times τd + , Τ d 
- Are closer to each other, the layer rotation of the antiferroelectric liquid crystal becomes
It can be seen that it hardly occurs.

【0034】また、本発明者等は、反強誘電性液晶の層
回転角度θが−1°から+1°の範囲から外れると、反
強誘電性液晶の配向暗輝度が悪化し、液晶セルのコント
ラストが初期値の90%以下に低下してしまうことを実
験等で確認済みである。このため、上記コントラストを
良好に確保するには、層回転角度θの許容角度範囲は、
−1°から+1°の範囲内とするのが好ましい。
Further, the present inventors have found that when the layer rotation angle θ of the antiferroelectric liquid crystal is out of the range of -1 ° to + 1 °, the darkness of the orientation of the antiferroelectric liquid crystal deteriorates, and It has been confirmed by experiments and the like that the contrast is reduced to 90% or less of the initial value. Therefore, in order to ensure the above-mentioned contrast well, the allowable angle range of the layer rotation angle θ is as follows:
It is preferable that the angle be in the range of -1 ° to + 1 °.

【0035】また、作製例1の液晶セルのように、ラビ
ング押し込み量を両電極基板10、20につき等しくす
れば、応答時間τd の極性非対称度合は小さく、セルN
O.A11、A12、A14及びA17を除けば、層回
転角度θは、上記許容角度範囲内に抑えられる。しか
し、両作製例2、3の液晶セルの場合のように、両電極
基板10、20における各ラビング押し込み量に差をつ
けると、応答時間τd の非対称の度合が大きくなり、層
回転角度θも大きくなっている。
Further, as in the liquid crystal cell of Preparation Example 1, if the rubbing amount is equal for both the electrode substrates 10 and 20, the degree of polarity asymmetry of the response time τ d is small and the cell N
O. Except for A11, A12, A14 and A17, the layer rotation angle θ is kept within the allowable angle range. However, as in the case of the liquid crystal cells of both Production Examples 2 and 3, when the rubbing indentation amounts of the two electrode substrates 10 and 20 are different, the degree of asymmetry of the response time τ d increases, and the layer rotation angle θ Is also getting bigger.

【0036】以上のことから、両電極基板10、20の
構成が互いに同一のとき、これら両電極基板10、20
の各ラビング条件(例えば、ラビング押し込み量)が共
に同じであれば、ラビング後の両電極基板10、20の
各配向膜には、同一の配向規制力が付与され、これによ
って、層回転角度θの発生を抑制し得ると考えられる。
From the above, when the configurations of the two electrode substrates 10 and 20 are the same as each other, these two electrode substrates 10 and 20
If the rubbing conditions (for example, the rubbing indentation amount) are the same, the same alignment regulating force is applied to each alignment film of the electrode substrates 10 and 20 after the rubbing, whereby the layer rotation angle θ Is considered to be able to suppress the occurrence of.

【0037】しかし、図7に示すように、両電極基板5
0、60のうち、一方の電極基板60のみにカラーフィ
ルタ61等を付加してなる構成の液晶セルの場合には、
両電極基板50、60の各厚さが互いに異なる。このた
め、両電極基板50、60に対するラビング条件(ラビ
ング押し込み量、ラビング回転数等)を、層回転現象を
上記許容角度範囲に抑えるように、予め、実験等により
調整しておく必要がある。
However, as shown in FIG.
In the case of a liquid crystal cell having a configuration in which a color filter 61 or the like is added to only one of the electrode substrates 60 among 0 and 60,
The thicknesses of the two electrode substrates 50 and 60 are different from each other. For this reason, it is necessary to adjust the rubbing conditions (rubbing push-in amount, rubbing rotation speed, etc.) for both electrode substrates 50 and 60 by experiments and the like in advance so as to suppress the layer rotation phenomenon to the allowable angle range.

【0038】なお、液晶セルの実際の製造工程の途中に
おいて、応答時間τd を測定検査すれば、層回転による
コントラスト不良の液晶セルを排除できる。次に、本発
明の第2実施の形態を、図8乃至図10に基づき説明す
る。液晶としてネマチック液晶を用いた液晶セルにおい
て、この液晶の配向異常を検査する一般的手段として、
ラビング後の配向膜内表面の光学的位相差測定が西野氏
等により報告されている(第17回液晶討論会予稿集頁
33(1991)参照)。この報告は、上記光学的位相
差の値の異常に基づき配向膜の配向規制力の異常を検査
するというものである。
If the response time τ d is measured and inspected during the actual manufacturing process of the liquid crystal cell, the liquid crystal cell having a poor contrast due to the layer rotation can be eliminated. Next, a second embodiment of the present invention will be described with reference to FIGS. In a liquid crystal cell using a nematic liquid crystal as a liquid crystal, as a general means for inspecting the alignment abnormality of the liquid crystal,
The measurement of the optical phase difference of the inner surface of the alignment film after rubbing has been reported by Nishino et al. (Refer to the 17th Liquid Crystal Symposium Proceedings, page 33 (1991)). This report examines an abnormality in the alignment regulating force of the alignment film based on the abnormality in the value of the optical phase difference.

【0039】配向膜を構成している高分子はラビングに
より一軸方向に延伸され、ラビング方向に光学的な屈折
率異方性を発現する。ここで、この屈折率異方性の方向
と大きさを光学的位相差値Δndとして表す。そして、
一般に、ラビング方向において屈折率異方性の大きさが
均一な領域では、液晶分子が均一に配向するとされてい
る。
The polymer constituting the alignment film is stretched in a uniaxial direction by rubbing, and develops optical refractive index anisotropy in the rubbing direction. Here, the direction and the magnitude of the refractive index anisotropy are represented as an optical retardation value Δnd. And
Generally, in a region where the magnitude of the refractive index anisotropy is uniform in the rubbing direction, the liquid crystal molecules are uniformly aligned.

【0040】ラビング工程においては、電極基板の凹凸
や異物等がラビングされる配向膜内表面に付着して、配
向規制力の不均一化が発生する。上記第1実施の形態に
て述べた作製例1の場合のセルNO.A11、A12、
A14及びA17の各液晶セルは、何らかの原因で、配
向規制力の不均一化が発生したものと推定される。そこ
で、本発明者等は、Δτd /τdav の観点からではな
く、配向膜の位相差値Δndの観点から配向規制力を把
握することにより、応答時間τd の極性非対称度合や層
回転の発生度合を観察してみた。
In the rubbing step, irregularities and foreign substances on the electrode substrate adhere to the inner surface of the alignment film to be rubbed, causing non-uniform alignment regulating force. The cell NO. In the case of the fabrication example 1 described in the first embodiment. A11, A12,
In each of the liquid crystal cells A14 and A17, it is presumed that the alignment regulating force became non-uniform for some reason. Therefore, the present inventors grasp the orientation regulating force not from the viewpoint of Δτ d / τ dav but from the viewpoint of the phase difference value Δnd of the alignment film, and thereby, the degree of polarity asymmetry of the response time τ d and the layer rotation can be obtained. The degree of occurrence was observed.

【0041】配向膜の位相差値の測定にあたり、高感度
自動複屈折測定装置(オーク製作所製ADR−100X
Y型)を用いた。上記第1実施の形態と同様の構成の液
晶セルを16枚作製した。また、各液晶セルの両電極基
板を重ね合わせる前に、両電極基板の各配向膜の位相差
値を測定した。ここで、計測スポットは1mmの直径と
した。
In measuring the phase difference value of the alignment film, a high-sensitivity automatic birefringence measuring device (ADR-100X manufactured by Oak Manufacturing Co., Ltd.)
Y type). Sixteen liquid crystal cells having the same configuration as in the first embodiment were manufactured. In addition, before superposing both electrode substrates of each liquid crystal cell, the phase difference value of each alignment film of both electrode substrates was measured. Here, the measurement spot had a diameter of 1 mm.

【0042】この測定において、ラビング前と後で位相
差値を測定しておき、ラビング後の値からラビング前の
値を差し引くことで、下地の影響を除去できる。これに
より、ラビングで誘起された配向膜の屈折率異方性を位
相差値として求めることができる。図8及び図9の図表
は、各液晶セルの重ね合わせ領域の両配向膜の位相差値
の差ΔD(=下基板の配向膜の位相差値Δnd−上基板
の配向膜の位相差値Δnd)と、測定した層回転角度θ
を示す。また、図10は、図8及び図9の図表に示す結
果に基づき作成した層回転角度θと位相差値の差ΔDと
の関係を示すグラフである。
In this measurement, the influence of the background can be removed by measuring the phase difference value before and after rubbing and subtracting the value before rubbing from the value after rubbing. Thereby, the refractive index anisotropy of the alignment film induced by the rubbing can be obtained as a retardation value. The charts of FIGS. 8 and 9 show a difference ΔD (= phase difference value Δnd of the alignment film of the lower substrate−phase difference value Δnd of the alignment film of the upper substrate) of the phase difference value of the two alignment films in the overlapping region of each liquid crystal cell. ) And the measured layer rotation angle θ
Is shown. FIG. 10 is a graph showing the relationship between the layer rotation angle θ and the difference ΔD of the phase difference value created based on the results shown in the tables of FIGS. 8 and 9.

【0043】これによれば、層回転角度θを上記許容角
度範囲内とするには、両配向膜の位相差値Δndの差Δ
Dが、−0.1nm以上で+0.1nm以下であればよ
いことが分かった。つまり、このような範囲のΔDに該
当する両配向膜の位相差値Δndを用いることにより、
反強誘電性液晶の層回転発生を抑制できる。また、位相
差値の差ΔDと上記第1実施の形態にて述べたΔτd
τdav との関係を調べてみたところ、図11にて示すよ
うな結果が得られた。
According to this, in order to make the layer rotation angle θ fall within the allowable angle range, the difference Δnd between the phase difference values Δnd of both alignment films is obtained.
It was found that D should be -0.1 nm or more and +0.1 nm or less. That is, by using the phase difference value Δnd of both alignment films corresponding to ΔD in such a range,
Layer rotation of the antiferroelectric liquid crystal can be suppressed. Further, the difference ΔD between the phase difference values and Δτ d /
When the relationship with τ dav was examined, the result as shown in FIG. 11 was obtained.

【0044】これによれば、ΔDとΔτd /τdav
は、互いに略比例関係にあることが分かる。従って、本
第2実施の形態における配向膜の位相差値の観点からみ
た層回転抑制と上記第1実施の形態にて述べたΔτd
τdav の観点からみた層回転抑制とでは、理想的には、
正確さに差がないと考えられる。しかし、ラビング条件
において、ラビング押し込み量やローラ回転数等の設定
は容易であるものの、他の条件設定は不安定である。従
って、作製例1のように、層回転角度θとΔτd/τdav
との関係の観点から反強誘電性液晶の層回転抑制を図
ると、ばらつきを生じ易い。これに比べ、配向膜の位相
差値Δndの測定は容易であって安定性がある。その結
果、配向膜の位相差値の観点から層回転発生抑制を図る
方が、現状では、より正確さに富むと考えられる。
According to this, it is understood that ΔD and Δτ d / τ dav are substantially proportional to each other. Therefore, the layer rotation suppression from the viewpoint of the phase difference value of the alignment film in the second embodiment and the Δτ d /
With layer rotation suppression from the viewpoint of τ dav , ideally,
It seems that there is no difference in accuracy. However, in the rubbing condition, although the setting of the rubbing pushing amount and the number of rotations of the roller are easy, other condition settings are unstable. Therefore, as in Production Example 1, the layer rotation angle θ and Δτ d / τ dav
If the layer rotation of the antiferroelectric liquid crystal is suppressed from the viewpoint of the relationship, the variation is likely to occur. On the other hand, the measurement of the phase difference value Δnd of the alignment film is easier and more stable. As a result, from the viewpoint of the phase difference value of the alignment film, it is considered that it is more accurate to suppress the occurrence of layer rotation at present.

【0045】次に、本発明の第3実施の形態について説
明する。上記第1及び第2の実施の形態では、Δτd
τdav 及び位相差値Δndの観点から、反強誘電性液晶
の層回転発生を抑制できる液晶セルの製作について述べ
た。これとは異なり、本第3実施の形態では、液晶セル
に印加する交流電圧に直流成分を重畳すれば、反強誘電
性液晶にかかる実効電圧が増減し、応答時間τd の値も
増減して、極性の対称化が可能であることに着目した。
Next, a third embodiment of the present invention will be described. In the first and second embodiments, Δτ d /
From the viewpoint of τ dav and the phase difference value Δnd, fabrication of a liquid crystal cell capable of suppressing the occurrence of layer rotation of an antiferroelectric liquid crystal has been described. In contrast, in the third embodiment, when a DC component is superimposed on an AC voltage applied to the liquid crystal cell, the effective voltage applied to the antiferroelectric liquid crystal increases and decreases, and the value of the response time τ d also increases and decreases. Attention was paid to the fact that the polarity can be symmetric.

【0046】例えば、上記第1実施の形態にて述べた作
製例2の場合のある液晶セルにおいては、τd + =80
msであり、τd - =14msあって、応答時間τd
極性非対称であり、層回転角度θが7°である。このよ
うな液晶セルに対し、交流電圧全体に直流成分(−0.
8V)を重畳した電圧(図12参照)を、図13にて示
すような制御装置Sの走査電極駆動回路から印加して、
τd + =34ms、τ d - =35msとなるように極性
対称化したところ、反強誘電性液晶の層回転角度θを略
0°とすることができた。
For example, the operation described in the first embodiment is performed.
In a liquid crystal cell in the case of Production Example 2, τd + = 80
ms and τd - = 14 ms, response time τd But
It is polar asymmetric, and the layer rotation angle θ is 7 °. This
For such a liquid crystal cell, a DC component (−0.
8V) (see FIG. 12) is shown in FIG.
Applied from the scan electrode drive circuit of the control device S,
τd + = 34 ms, τ d - = Polarity to be 35ms
After the symmetry, the layer rotation angle θ of the antiferroelectric liquid crystal is approximately
It could be 0 °.

【0047】ここで、制御装置Sは、垂直同期信号VS
YC及び水平同期信号HSYCに基づきコントロール回
路により、上記走査電極駆動回路の液晶セルに対する印
加駆動電圧波形を制御し、ANR,G,B信号及びコン
トロール回路からの制御出力に基づき信号電圧駆動回路
の液晶セルに対する印加電圧を制御するように構成され
ている。
Here, the control device S sets the vertical synchronizing signal VS
The control circuit controls the drive voltage waveform applied to the liquid crystal cell of the scan electrode drive circuit based on the YC and the horizontal synchronization signal HSYC, and controls the liquid crystal of the signal voltage drive circuit based on the ANR, G, B signals and the control output from the control circuit. It is configured to control an applied voltage to the cell.

【0048】なお、本発明の実施にあたり、上記第3実
施の形態にて述べた交流電圧に対する重畳直流電圧の値
は、τd + とτd - とが近似ないしは等しくなるように
選定すればよく、例えば、図2(b)にて示す光学応答
波形のうち、F+ 状態からAF状態への立ち下がり波形
部がその立ち下がりに要する時間と、F- 状態からAF
状態への立ち下がり波形部がその立ち下がりに要する時
間とが近似ないしは等しくなるように、両立ち下がり波
形部の一方に直流電圧を重畳してもよい。
[0048] Incidentally, in implementing the present invention, the value of the superimposed DC voltage with respect to the AC voltage as described in the third embodiment, tau d + and tau d - and well be selected such that approximate or equal For example, of the optical response waveforms shown in FIG. 2B, the time required for the falling waveform portion from the F + state to the AF state to fall and the F - state to the AF state.
The DC voltage may be superimposed on one of the falling waveform portions so that the time required for the falling waveform portion to enter the state to approximate or equal the time required for the falling waveform portion.

【0049】また、上記第3実施の形態においては、第
1実施の形態にて述べた液晶セルに対し、交流電圧に直
流電圧を重畳した合成電圧を印加して層回転の発生を抑
制する例について説明したが、これに限ることなく、上
記第1実施の形態にて述べたラビング条件を施さない液
晶セルに上記合成電圧を印加して実施しても、上記第3
実施の形態と同様の作用効果を達成できる。
In the third embodiment, an example in which a combined voltage obtained by superimposing a DC voltage on an AC voltage is applied to the liquid crystal cell described in the first embodiment to suppress the occurrence of layer rotation. However, the present invention is not limited to this, and even if the above-described combined voltage is applied to a liquid crystal cell which is not subjected to the rubbing conditions described in the first embodiment and the above-described operation is performed,
The same operation and effect as the embodiment can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施の形態における各液晶セルの
概略断面図である。
FIG. 1 is a schematic sectional view of each liquid crystal cell according to a first embodiment of the present invention.

【図2】(a)は、各液晶セルに対する印加電圧波形を
示すタイミングチャートであり、(b)は、各液晶セル
に電圧を印加した場合の反強誘電性液晶の光学応答状態
を示すタイミングチャートである。
FIG. 2A is a timing chart showing a voltage waveform applied to each liquid crystal cell, and FIG. 2B is a timing chart showing an optical response state of the antiferroelectric liquid crystal when a voltage is applied to each liquid crystal cell. It is a chart.

【図3】作製例1における各液晶セルの測定データを示
す図表である。
FIG. 3 is a table showing measurement data of each liquid crystal cell in Production Example 1.

【図4】作製例2における各液晶セルの測定データを示
す図表である。
FIG. 4 is a table showing measurement data of each liquid crystal cell in Production Example 2.

【図5】作製例3における各液晶セルの測定データを示
す図表である。
FIG. 5 is a table showing measurement data of each liquid crystal cell in Production Example 3.

【図6】反強誘電性液晶の層回転角度θとΔτd /τ
dav との関係を示す特性図である。
FIG. 6: Layer rotation angle θ and Δτ d / τ of antiferroelectric liquid crystal
FIG. 4 is a characteristic diagram showing a relationship with dav .

【図7】カラーフィルタを有する液晶セルの断面図であ
る。
FIG. 7 is a cross-sectional view of a liquid crystal cell having a color filter.

【図8】本発明の第2実施の形態における各液晶セル測
定データの一部を示す図表である。
FIG. 8 is a table showing a part of measurement data of each liquid crystal cell according to the second embodiment of the present invention.

【図9】当該第2実施の形態における各液晶セル測定デ
ータの残部を示す図表である。
FIG. 9 is a table showing a remaining part of each liquid crystal cell measurement data in the second embodiment.

【図10】反強誘電性液晶の層回転角度θと両位相差値
Δndの差ΔDとの関係を示す特性図である。
FIG. 10 is a characteristic diagram showing a relationship between a layer rotation angle θ of an antiferroelectric liquid crystal and a difference ΔD between both phase difference values Δnd.

【図11】Δτd /τdav とΔDとの関係を示す特性図
である。
FIG. 11 is a characteristic diagram showing a relationship between Δτ d / τ dav and ΔD.

【図12】図2(a)にて示す交流電圧に直流成分(−
0.8V)を重畳した場合の電圧波形を示すタイミング
チャートである。
FIG. 12 shows a DC component (−) added to the AC voltage shown in FIG.
8 is a timing chart showing a voltage waveform when superimposed is 0.8 V).

【図13】上記第1実施の形態の液晶セルに接続した制
御装置の概略構成図である。
FIG. 13 is a schematic configuration diagram of a control device connected to the liquid crystal cell of the first embodiment.

【図14】反強誘電性液晶の光透過率と印加電圧との関
係を示す二重ヒステレシス特性図である。
FIG. 14 is a double hysteresis diagram showing the relationship between the light transmittance of the antiferroelectric liquid crystal and the applied voltage.

【図15】(a)及び(b)は、ラビング処理した液晶
セル中の反強誘電性液晶の層回転の発生前及び発生後の
液晶分子状態をそれぞれ示す模式図である。
FIGS. 15 (a) and (b) are schematic diagrams respectively showing liquid crystal molecular states before and after occurrence of layer rotation of an antiferroelectric liquid crystal in a rubbed liquid crystal cell.

【図16】(a)は、反強誘電性液晶を注入した液晶セ
ルに対する印加電圧波形を示すタイミングチャートであ
り、(b)は、液晶セルに電圧を印加した場合の反強誘
電性液晶の光学応答状態を示すタイミングチャートであ
る。
FIG. 16 (a) is a timing chart showing a voltage waveform applied to a liquid crystal cell into which antiferroelectric liquid crystal has been injected, and FIG. 16 (b) is a timing chart of the antiferroelectric liquid crystal when a voltage is applied to the liquid crystal cell. 5 is a timing chart showing an optical response state.

【図17】反強誘電性液晶に電圧を印加した場合の当該
反強誘電性液晶の液晶分子状態の変化を示す模式図であ
る。
FIG. 17 is a schematic diagram illustrating a change in a liquid crystal molecular state of the antiferroelectric liquid crystal when a voltage is applied to the antiferroelectric liquid crystal.

【符号の説明】[Explanation of symbols]

10、20、50、60・・・電極基板、13、23・
・・配向膜、S・・・制御装置。
10, 20, 50, 60 ... electrode substrate, 13, 23
..Orientation film, S ... Control device.

フロントページの続き (72)発明者 山本 典生 愛知県西尾市下羽角町岩谷14番地 株式 会社日本自動車部品総合研究所内 (72)発明者 山田 祐一郎 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (72)発明者 尾崎 正明 愛知県刈谷市昭和町1丁目1番地 株式 会社デンソー内 (56)参考文献 特開 平7−43676(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/133 560 G09G 3/36 Continuing on the front page (72) Norio Yamamoto, Inventor 14 Iwatani, Shimowasumi-machi, Nishio-shi, Aichi Prefecture Inside Japan Automotive Parts Research Institute Co., Ltd. (72) Inventor Yuichiro Yamada 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. 72) Inventor Masaaki Ozaki 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Denso Corporation (56) References JP-A-7-43676 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) G02F 1/133 560 G09G 3/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正又は負の電圧を印加されて第1又は第
2の強誘電状態となり電圧の無印加時に反強誘電状態と
なる反強誘電性液晶を介し両電極基板をその各配向膜に
て対向するように重ね合わせてなる液晶セルと、この液
晶セルに電圧を印加して駆動制御する制御装置(S)と
を備えた液晶表示装置において、 前記制御装置が、前記第1強誘電状態から前記反強誘電
状態への応答時間と前記第2強誘電状態から前記反強誘
電状態への応答時間とを近似させるように、前記印加電
圧に直流成分を重畳して前記液晶セルに印加することを
特徴とする液晶表示装置。
1. A method according to claim 1, wherein the first and second ferroelectric states are applied when a positive or negative voltage is applied to the first and second ferroelectric states, and the antiferroelectric liquid crystal enters an antiferroelectric state when no voltage is applied. And a control device (S) for applying a voltage to the liquid crystal cell and controlling the driving of the liquid crystal cell, wherein the control device includes the first ferroelectric. A DC component is superimposed on the applied voltage and applied to the liquid crystal cell so as to approximate a response time from a state to the antiferroelectric state and a response time from the second ferroelectric state to the antiferroelectric state. A liquid crystal display device comprising:
JP31492399A 1999-11-05 1999-11-05 Liquid crystal display Expired - Fee Related JP3317291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31492399A JP3317291B2 (en) 1999-11-05 1999-11-05 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31492399A JP3317291B2 (en) 1999-11-05 1999-11-05 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08011249A Division JP3106166B2 (en) 1996-01-25 1996-01-25 Liquid crystal cell

Publications (1)

Publication Number Publication Date
JP3317291B2 true JP3317291B2 (en) 2002-08-26

Family

ID=18059281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31492399A Expired - Fee Related JP3317291B2 (en) 1999-11-05 1999-11-05 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3317291B2 (en)

Similar Documents

Publication Publication Date Title
JP2982330B2 (en) Liquid crystal display device
US5543943A (en) Chiral smectic device subjected to a simultaneous thermal and AC field treatment
JPH03252624A (en) Ferroelectric liquid crystal element
JP3106166B2 (en) Liquid crystal cell
US5999241A (en) Antiferroelectric LCD having particular rubbing density and pretilt angles
JP3317291B2 (en) Liquid crystal display
JP2000214439A (en) Liquid crystal display device
JPH10333152A (en) Liquid crystal cell
JPS62299815A (en) Production of ferroelectric liquid crystal display element
US5844653A (en) Liquid crystal mixture
JPH03100520A (en) Ferroelectric liquid crystal element
US9041896B2 (en) Bistable liquid crystal device
JP2880807B2 (en) Liquid crystal display
US5530569A (en) Ferroelectric liquid crystal device with AC electric field pretreatment for bistability
JPH06214236A (en) Liquid crystal device and information transmitter using the same
JP3091938B2 (en) Ferroelectric liquid crystal device
JPH0210323A (en) Ferroelectric liquid crystal display element
JPH01137237A (en) Ferroelectric liquid crystal display element
JP3241502B2 (en) Method for manufacturing liquid crystal electro-optical device
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH03100521A (en) Ferroelectric liquid crystal element
JPH11223816A (en) Liquid crystal device and its manufacturing method and orientation layer or its composition
JPH06186569A (en) Ferroelectric liquid crystal device
JPH0431828A (en) Liquid crystal element
JPH07181495A (en) Ferroelectric liquid crystal element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

LAPS Cancellation because of no payment of annual fees