JPH03252624A - Ferroelectric liquid crystal element - Google Patents

Ferroelectric liquid crystal element

Info

Publication number
JPH03252624A
JPH03252624A JP2049582A JP4958290A JPH03252624A JP H03252624 A JPH03252624 A JP H03252624A JP 2049582 A JP2049582 A JP 2049582A JP 4958290 A JP4958290 A JP 4958290A JP H03252624 A JPH03252624 A JP H03252624A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
state
defects
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2049582A
Other languages
Japanese (ja)
Other versions
JP2612503B2 (en
Inventor
Yukio Haniyu
由紀夫 羽生
Yutaka Inaba
豊 稲葉
Masanobu Asaoka
正信 朝岡
Osamu Taniguchi
修 谷口
Kenji Shinjo
健司 新庄
Toshiharu Uchiumi
俊治 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2049582A priority Critical patent/JP2612503B2/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to AT91103125T priority patent/ATE180580T1/en
Priority to AU72047/91A priority patent/AU634031B2/en
Priority to DE69131258T priority patent/DE69131258T2/en
Priority to US07/663,436 priority patent/US5189536A/en
Priority to EP98119023A priority patent/EP0886173A3/en
Priority to EP91103125A priority patent/EP0444705B1/en
Priority to KR1019910003441A priority patent/KR940005123B1/en
Publication of JPH03252624A publication Critical patent/JPH03252624A/en
Priority to US08/272,652 priority patent/US5481387A/en
Priority to US08/527,775 priority patent/US6456349B1/en
Application granted granted Critical
Publication of JP2612503B2 publication Critical patent/JP2612503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To display high-contrast images without generating after-images by forming a ferroelectric liquid crystal so as to have a specific orientation state. CONSTITUTION:This element has a pair of substrates 11a, 11b subjected to a uniaxial orientation treatment in the same direction. The four states having further a chevron structure in the C1 orientation states exist if the ferroelectric liquid crystal 15 is so formed as to have the orientation state expressed by theta<alpha+delta where the pretilt angle of the ferroelectric liquid crystal 15 is designated as alpha, the tilt angle as theta, and the angle of inclination of the Sm*C layer as delta. Of these four C1 states, the two states form a bistable state and the uniform state of the C1 orientation is higher in contrast than the bistable state in the C2 orientation. The large tilt angle theta is, therefore, generated by driving the liquid crystal in this uniform state. The high-contrast images are displayed in this way and the generation of the after-images is obviated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液晶表示素子や液晶光シャッタ等で用いる液
晶素子、特に強誘電性液晶素子に関し、更に詳しくは、
液晶分子の配向状態を改善することにより、表示特性を
改善した液晶素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid crystal element, particularly a ferroelectric liquid crystal element, used in a liquid crystal display element, a liquid crystal optical shutter, etc.
The present invention relates to a liquid crystal element with improved display characteristics by improving the alignment state of liquid crystal molecules.

[従来技術] 強誘電性液晶分子の屈折率異方性を利用して偏光素子と
の組み合わせにより透過光線を制御する型の表示素子が
クラーク(C1ark)及びラガーウォル(Lager
wal 1)により提案され5 6 ている(特開昭56−107216号公報、米国特許第
4367924号明細書等)。この強誘電性液晶は、一
般に特定の温度域において、非らせん構造のカイラルス
メクチックC相(SmC″)又はH相(SmH” )を
有し、この状態において、加えられる電界に応答して第
1の光学的安定状態と第2の光学的安定状態のいずれか
を取り、且つ電界の印加のないときはその状態を維持す
る性質、すなわち双安定性を有し、また電界の変化に対
する応答も速やかであり、高速ならびに記憶型の表示素
子用としての広い利用が期待され、特にその機能から大
画面で高精細なデイスプレーへの応用が期待されている
[Prior Art] A type of display element that uses the refractive index anisotropy of ferroelectric liquid crystal molecules to control transmitted light in combination with a polarizing element has been developed by Clark and Lager.
wal 1) 5 6 (Japanese Unexamined Patent Publication No. 56-107216, US Pat. No. 4,367,924, etc.). This ferroelectric liquid crystal generally has a non-helical chiral smectic C phase (SmC'') or H phase (SmH'') in a specific temperature range, and in this state, it responds to an applied electric field to It has the property of being in one of the optically stable state and the second optically stable state and maintaining that state when no electric field is applied, that is, it has bistability, and it also responds rapidly to changes in the electric field. It is expected that it will be widely used as a high-speed and memory-type display element, and in particular, it is expected to be applied to large-screen, high-definition displays due to its functions.

この双安定性を有する液晶を用いた光学変調素子が所定
の駆動特性を発揮するためには、一対の平行基板間に配
置される液晶が、電界の印加状態とは無関係に、上記2
つの安定状態の間での変換が効果的に起るような分子配
列状態にあることが必要である。
In order for an optical modulation element using this bistable liquid crystal to exhibit predetermined driving characteristics, the liquid crystal disposed between a pair of parallel substrates must be
It is necessary that the molecules be in such a state that conversion between two stable states can occur effectively.

また、液晶の複屈折を利用した液晶素子の場合、直交ニ
コル下での透過率は、 1/Io= 5in24θs i n 2些yrλ で表わされる。前述の非らせん構造におけるチルト角θ
は、第1と第2の配向状態てのねしれ配列した液晶分子
の平均分子軸方向の角度として現われることになる。上
式によれは、かかるチルト角θが22.5°の角度の時
最犬の透過率となり、双安定性を実現する非らせん構造
でのチルト角θが、22.5°にできる限り近いことが
必要である。
Furthermore, in the case of a liquid crystal element that utilizes the birefringence of liquid crystal, the transmittance under crossed Nicols is expressed as: 1/Io=5in24θs in 2minyrλ. Tilt angle θ in the non-helical structure mentioned above
is expressed as an angle between the average molecular axes of the liquid crystal molecules arranged in a heply manner in the first and second alignment states. According to the above formula, when the tilt angle θ is 22.5°, the transmittance is the highest, and the tilt angle θ in a non-helical structure that achieves bistability is as close as possible to 22.5°. It is necessary.

ところで、強話電性液晶の配向方法としては、大きな面
積に亘って、スメクチック液晶を形成する複数の分子で
組織された分子層を、その法線に沿って一軸方向に配向
させることができ、しかも製造プロセスも、簡便なラビ
ング処理により実現できるものが望ましい。
By the way, as a method for aligning a strong electroconductive liquid crystal, a molecular layer organized by a plurality of molecules forming a smectic liquid crystal can be uniaxially aligned along its normal line over a large area. Furthermore, it is desirable that the manufacturing process be realized by a simple rubbing process.

強誘電性液晶、特に非らせん構造のカイラルスメクチッ
ク液晶のための配向方法としては、例えば米国特許第4
561726号公報に記載されたものなどが知られてい
る。
As an alignment method for ferroelectric liquid crystals, especially chiral smectic liquid crystals with a non-helical structure, for example, US Pat.
The one described in Japanese Patent No. 561726 is known.

[発明が解決しようとする課題] しかしながら、これまで用いられてきた配向方法、特に
ラビング処理したポリイミド膜による配向方法を、前述
のクラークとラガウォールによって発表された双安定性
を示す非らせん構造の強誘電性液晶に対して適用した場
合には、下達の如き問題点を有していた。
[Problems to be Solved by the Invention] However, the orientation methods that have been used so far, especially the orientation method using a rubbed polyimide film, cannot be improved by the strong non-helical structure that exhibits bistability, as announced by Clark and Lagerwal. When applied to dielectric liquid crystals, it has the following problems.

すなわち、木発明者らの実験によれは、従来のラビング
処理したポリイミド膜によって配向させて得られた非ら
せん構造の強誘電性液晶でのみかけのチルト角θ(2つ
の安定状態の分子軸のなす角度の1/2)がらせん構造
をもつ強誘電性液晶でのチルト角(後述の第4(A)図
に示す三角錐の頂角の1/2の角度θ)と較べて小さく
なっていることが判明した。特に、従来のラビング処理
したポリイミド膜によって配向させて得た非らせん構造
の強誘電性液晶でのチルト角θは、一般に3°〜8°程
度で、その時の透過率はせいぜい3〜5%程度であった
In other words, the experiment conducted by the inventors revealed that the apparent tilt angle θ (between the molecular axes in the two stable states) of a ferroelectric liquid crystal with a non-helical structure obtained by aligning with a conventional rubbed polyimide film 1/2 of the angle formed) is smaller than the tilt angle of the ferroelectric liquid crystal with a helical structure (angle θ, which is 1/2 of the apex angle of the triangular pyramid shown in Fig. 4 (A) described later). It turned out that there was. In particular, the tilt angle θ of a ferroelectric liquid crystal with a non-helical structure obtained by aligning with a conventional rubbed polyimide film is generally about 3° to 8°, and the transmittance at that time is about 3 to 5% at most. Met.

この様に、クラークとラガウォールによれば双安定性を
実現する非らせん構造の強誘電性液晶でのチルl−角か
らせん構造をもつ強誘電性液晶でのチルト角と同一の角
度をもつはずであるが、実際には非らせん構造でのチル
ト角θの方がらせん構造でのチルト角eより小さくなっ
ている。しかも、この非らせん構造でのチルト角θがら
せん構造でのチルト角θより小さくなる原因が非らせん
構造での液晶分子のねじれ配列に帰因していることが判
明した。つまり、非らせん構造をもつ強誘電性液晶では
、液晶分子か基板の法線に対して上基板に隣接する液晶
分子の軸より下基板に隣接する液晶分子の軸へ連続的に
ねしれて配列しており、このことが非らせん構造てのチ
ルト角θがらせん構造でのチルト角θより小さくなる原
因とな9 0 っている。
In this way, according to Clark and Lagerwal, the tilt angle in a ferroelectric liquid crystal with a non-helical structure that achieves bistability should be the same as the tilt angle in a ferroelectric liquid crystal with a helical structure. However, in reality, the tilt angle θ in the non-helical structure is smaller than the tilt angle e in the helical structure. Moreover, it has been found that the reason why the tilt angle θ in the non-helical structure is smaller than the tilt angle θ in the helical structure is due to the twisted arrangement of the liquid crystal molecules in the non-helical structure. In other words, in a ferroelectric liquid crystal with a non-helical structure, the liquid crystal molecules are continuously twisted from the axis of the liquid crystal molecules adjacent to the upper substrate to the axis of the liquid crystal molecules adjacent to the lower substrate with respect to the normal to the substrate. This is the reason why the tilt angle θ of the non-helical structure is smaller than the tilt angle θ of the helical structure.90

また、従来のラビング処理したポリイミド配向膜によっ
て生じたカイラルスメクチック液晶の配向状態は、電極
と液晶層の間に絶縁体層としてのポリイミド配向膜が存
在するため、第1の光学的安定状態(例えは、白の表示
状態)から、第2の光学的安定状態(例えば、黒の表示
状態)にスイッチングするための一方極性電圧を印加し
た場合、この一方極性電圧の印加解除後、強誘電性液晶
層には他方極性の逆電界V revか生じ、この逆電界
V raVかデイスプレィの際の残像を惹き起していた
Furthermore, the alignment state of the chiral smectic liquid crystal produced by the conventional rubbed polyimide alignment film is in the first optically stable state (e.g. When a one-polar voltage is applied to switch from a white display state to a second optically stable state (e.g., a black display state), after the one-polar voltage is removed, the ferroelectric liquid crystal A reverse electric field V rev of the other polarity is generated in the layer, and this reverse electric field V raV causes an afterimage during display.

この逆電界発生現象は、例えば“吉田明雄著、昭和62
年10月「液晶討論会予稿集J P、142〜143の
rS S F LCのスイッチング特性」°°て明らか
にされている。
This reverse electric field generation phenomenon can be explained, for example, in “Akio Yoshida, 1986.
This was clarified in October 2007, "Switching Characteristics of rS SF LC, Proceedings of the Liquid Crystal Conference JP, 142-143."

方、本発明者らの一人は、以前、強誘電性液晶の配向状
態に関して、以下のような現象を発見した。
Meanwhile, one of the present inventors previously discovered the following phenomenon regarding the alignment state of ferroelectric liquid crystal.

基板上に比較的プレチルトの低いLP64 (東しく株
)製)などの配向膜を塗布しラビングしたものを、上下
2枚ラビング方向を同じにして間隙を約1.5μmに保
って貼り合わせてセルを構成し、これにC31014(
チッソ(株)製)などの強誘電性液晶を注入し温度を降
下させていくと、第2図<8)〜(e)に示す経過をた
どる。
An alignment film such as LP64 (manufactured by Toshiku Co., Ltd.), which has a relatively low pre-tilt, is coated on the substrate and rubbed, and then the upper and lower sheets are bonded together with the same rubbing direction and a gap of approximately 1.5 μm to form a cell. and add C31014 (
When a ferroelectric liquid crystal (manufactured by Chisso Corporation) or the like is injected and the temperature is lowered, the process shown in Fig. 2<8) to (e) follows.

すなわち、高温相からSc”相に転移した直後の同図(
a)に示す状態においてはコントラストの小さい配向状
態(C1配向状態)21および22をとり、温度を下げ
、ある温度領域に達すると同図(b)に示すようにジグ
ザグ状の欠陥23が発生じ、その欠陥を境にしてコント
ラストの高い配向状態(C2配向状態)24と25が現
われる。
In other words, the same figure immediately after the transition from the high temperature phase to the Sc'' phase (
In the state shown in a), orientation states 21 and 22 with low contrast (C1 orientation state) are taken, and when the temperature is lowered and reaches a certain temperature range, a zigzag-shaped defect 23 occurs as shown in FIG. , high-contrast alignment states (C2 alignment states) 24 and 25 appear with the defect as a boundary.

更に温度か下がるとともに02配向状態が拡がり(同図
(C)、(d))、ついには全体かC2配向状態になる
(同図(e))。
As the temperature further decreases, the 02 orientation state spreads (Figures (C) and (d)), and finally the entire structure becomes the C2 orientation state (Figure (e)).

C1およびC2の2fffi類の配向状態は、第3図に
示すようなスメクチック層のシェブロン構造の違いで説
明されている。第3図で、31はスメクチック層、32
はC1配向の領域、33はC2配向の領域を表わす。
The orientation states of the 2fffi types of C1 and C2 are explained by the difference in the chevron structure of the smectic layer as shown in FIG. In Figure 3, 31 is a smectic layer, 32
33 represents a C1-oriented region, and 33 represents a C2-oriented region.

スメクチック液晶は一般に層構造をもつがSA相からS
c相またはS。′相に転移すると層間隔か縮むので第3
図のように層が上下基板の中央で折れ曲がった構造(シ
ェブロン構造をとる)。折れ曲がる方向は図に示すよう
に01と02の2つ有り得るが、よく知られているよう
にラビングによって基板界面の液晶分子は基板に対して
角度をなしくプレチルト)、その方向はラビング方向に
向って液晶分子が頭をもたげる(先端が浮いた格好にな
る)向きである。このプレチルトのためにC1配向とC
2配向は弾性エネルギー的に等価でなく、上述のように
ある温度で転移が起こる。また機械的な歪みで転わが起
こることもある。
Smectic liquid crystals generally have a layered structure, ranging from SA phase to S phase.
c phase or S. ’ phase, the interlayer spacing decreases, so the third
As shown in the figure, the layers are bent at the center of the upper and lower substrates (a chevron structure). There are two possible bending directions, 01 and 02, as shown in the figure, but as is well known, due to rubbing, the liquid crystal molecules at the substrate interface are tilted at no angle to the substrate (pre-tilt), and the direction is toward the rubbing direction. The orientation is such that the liquid crystal molecules raise their heads (the tips appear floating). Because of this pretilt, C1 orientation and C
The two orientations are not equivalent in terms of elastic energy, and a transition occurs at a certain temperature as described above. Rolling may also occur due to mechanical strain.

第3図の層構造を平面的にみると、ラビング方向に向っ
てC1配向からC2配向に移るときの境界34はジグザ
グの稲妻状でライトニング欠陥と呼ばれ、C2配向から
C1配向に移るときの境界35は幅の広いゆるやかな曲
線でヘアピン欠陥と呼ばれる。従来は、該C1およびC
2配向において、コントラストの観点からC2の配向状
態を用いた液晶素子を提供するものであった。しかし、
本発明はさらに高コントラストな液晶素子を提供するも
のである。
When the layer structure in Fig. 3 is viewed in plan, the boundary 34 when changing from the C1 orientation to the C2 orientation in the rubbing direction has a zigzag lightning shape and is called a lightning defect, and the boundary 34 when changing from the C2 orientation to the C1 orientation The boundary 35 is a wide gentle curve and is called a hairpin defect. Conventionally, the C1 and C
2 orientation, a liquid crystal element using the C2 orientation state was provided from the viewpoint of contrast. but,
The present invention provides a liquid crystal element with even higher contrast.

従って、本発明の目的は、前述の問題点を解決し、さら
に高コントラストな強誘電性液晶素子を提供すること、
特にカイラルスメタヂック液晶の非らせん構造での大き
なチルト角θを生じ、高コントラストな画像が表示され
、且つ残像を生じないデイスプレィを達成できる強誘電
性液晶素子を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a ferroelectric liquid crystal element with further high contrast.
In particular, the object of the present invention is to provide a ferroelectric liquid crystal element that can produce a large tilt angle θ in a non-helical structure of chiral methacrylic liquid crystal, display a high-contrast image, and achieve a display that does not produce an afterimage.

[課題を解決するための手段] そこで本発明は強誘電性液晶素子は、強誘電性液晶と、
この強誘電性液晶を間に保持して対向するとともにその
対向面にはそれぞれ強誘電性液晶に電圧を印加するため
の電極が形成されかつ強誘電性液晶を配向するための相
互にほぼ平行で同方向の一軸性配向処理か施された一対
の基板とを備え、 3 4 ■ 強誘電性液晶のプレチルト角をα、チルト角をΘ、
Sm*C層の傾斜角をδとすれば、強誘電性液晶は、 θ〈α + δ で表わされる配向状態を有するか、 ■ 強誘電性液晶は、この基板間のスペーサ等の異物に
よってまたは基板に歪みを加えることによってヘアピン
欠陥およびライトニング欠陥に囲まれた配向状態を生じ
、かつこの配向状態は、プレチルトにより液晶分子が配
向表面から浮いている方向に対してライトニング欠陥お
よびアスビン欠陥の順序でこれら欠陥が生じることによ
って生じるものであるか、 ■ 強誘電性液晶は、この基板間のスペーサ等の異物に
よってまたは基板に歪みを加えることによってヘアピン
欠陥およびライトニング欠陥に囲まれた配向状態を生じ
、かつこの配向状態は、ラビング方向に対してライトニ
ング欠陥およびヘアピン欠陥の順序でこれら欠陥が生じ
ることによって生じるものであるか、または ■ 強誘電性液晶は、配向状態がSmA等の高温からS
m*Cに降温する過程で欠陥を伴う配向変化がないもの
であり、 かつ ■ 該配向状態における強誘電性液晶が少なくとも2つ
の安定状態を示し、それらの光学軸のなす角度の1/2
であるθaと該強誘電性液晶のチルト角eとか O〉Θ、 )e/2 の関係を有するか、 ■ 該配向状態における強誘電性液晶が少なくとも2つ
の安定状態を示し、それらの光学軸のなす角を2等分す
る位置に一方の偏光板の吸収軸を合わせ、それに垂直に
他方の偏光板の吸収軸を合わせた配置から一方の偏光板
だけを時計方向に3°〜30°回転させたときの第1の
安定状態の呈する色と、反時計方向に同じ角度回転させ
たときの第2の安定状態の呈する色が同じであるか、■
 該配向状態における強誘電性液晶がクロスニコル下、
消光値の透過率の低い2つの安定状態と、クロスニコル
下、消光位の透過率の高い1つまたは2つの安定状態の
計3または4状態を有するか、または ■ 強誘電性液晶がクロスニコル下、消光位の透過率の
低い第1と第2の2つの安定状態と、クロスニコル下、
消光位の透過率の高い第3と第4の2つの安定状態の4
つの安定状態を示し、それらの光学軸のなす角を2等分
する位置に一方の偏光板の吸収軸を合わせ、それに垂直
に他方の偏光板の吸収軸を合わせた配置から一方の偏光
板だけを時計方向に3゛〜30°回転させたときの第1
の安定状態の呈する色と、反時計方向に同じ角度回転さ
せたときの第2の安定状態の呈する色が同じであり、一
方の偏光板だけを時計方向に3°〜30°回転させたと
きの第3の安定状態の呈する色と、反時計方向に同じ角
度回転させたときの第4の安定状態の呈する色が異なる
、 ことを特徴とする強銹電液晶素子を提供するものである
[Means for Solving the Problems] Accordingly, the present invention provides a ferroelectric liquid crystal element that includes a ferroelectric liquid crystal,
The ferroelectric liquid crystals are held in between and face each other, and electrodes for applying voltage to the ferroelectric liquid crystals are formed on the opposing surfaces of the ferroelectric liquid crystals. 3 4 ■ The pretilt angle of the ferroelectric liquid crystal is α, the tilt angle is Θ,
If the tilt angle of the Sm*C layer is δ, then the ferroelectric liquid crystal has an alignment state expressed by θ〈α + δ, or ■ The ferroelectric liquid crystal has an orientation state expressed by θ<α + δ. By applying strain to the substrate, an alignment state surrounded by hairpin defects and lightning defects is produced, and this alignment state is caused by the pretilt in the order of lightning defects and asbin defects with respect to the direction in which the liquid crystal molecules are floating from the alignment surface. Is this caused by the occurrence of these defects? ■ The ferroelectric liquid crystal is in an alignment state surrounded by hairpin defects and lightning defects due to foreign objects such as spacers between the substrates or by applying distortion to the substrates. Also, this orientation state is caused by the occurrence of these defects in the order of lightning defects and hairpin defects in the rubbing direction, or.
There is no alignment change accompanied by defects during the process of cooling to m*C, and ■ The ferroelectric liquid crystal in the alignment state exhibits at least two stable states, and the angle formed by their optical axes is 1/2
θa and the tilt angle e of the ferroelectric liquid crystal, O〉Θ, )e/2, Align the absorption axis of one polarizing plate to the position that bisects the angle formed by the angle, and align the absorption axis of the other polarizing plate perpendicularly thereto, then rotate only one polarizing plate by 3° to 30° clockwise. Is the color exhibited by the first stable state when rotated counterclockwise the same as the color exhibited by the second stable state when rotated by the same angle counterclockwise?
The ferroelectric liquid crystal in the alignment state is under crossed nicols,
The ferroelectric liquid crystal has a total of 3 or 4 states: two stable states with low transmittance at the extinction value and one or two stable states with high transmittance at the extinction value under crossed nicols, or ■ the ferroelectric liquid crystal is in a crossed nicol state Below, two stable states, first and second, with low transmittance at the extinction position, and under crossed Nicols,
4 of two stable states, 3rd and 4th, with high transmittance at extinction position
The absorption axis of one polarizing plate is aligned at a position that bisects the angle formed by these optical axes, and the absorption axis of the other polarizing plate is aligned perpendicularly thereto. The first result when rotated 3° to 30° clockwise.
The color exhibited by the stable state is the same as the color exhibited by the second stable state when rotated counterclockwise by the same angle, and when only one polarizing plate is rotated 3° to 30° clockwise. To provide a strong electrostatic liquid crystal element characterized in that the color exhibited by the third stable state is different from the color exhibited by the fourth stable state when rotated by the same angle in the counterclockwise direction.

前記配向状態は、SmAからSrn*Cに転移する温度
を11℃とすると(Tl   s)tから(Tl   
(10ないし40))*Cまでの、全温度範囲で存在す
るのが好ましい。
The orientation state changes from (Tl s)t to (Tl
It is preferably present over the entire temperature range from (10 to 40))*C.

また、プレチルト角αとSm*C層の傾斜角δとの関係
が、はぼ δくα で表わされる配向状態を有するのが好ましい。
Further, it is preferable that the relationship between the pretilt angle α and the inclination angle δ of the Sm*C layer has an orientation state represented by δ and α.

さらに、前記■および■の場合は、配向状態がライトニ
ング欠陥およびヘアピン欠陥を介さない3つまたは4つ
の異なる安定状態を有するのが好ましい。
Furthermore, in the cases of (1) and (2) above, it is preferable that the alignment state has three or four different stable states that are not mediated by lightning defects and hairpin defects.

[発明の態様の詳細な説明] 第1図は、本発明の強誘電性液晶セルの1例を模式的に
描いたものである。
[Detailed Description of Aspects of the Invention] FIG. 1 schematically depicts one example of a ferroelectric liquid crystal cell of the present invention.

11aとflbは、それぞれr n203やITO(I
ndium Tin 0xide)等の透明電極12a
と12bて被覆された基板(ガラス板)であり、その上
に200〜3000人厚の絶縁膜13aと13 b (
Si20膜、TiO2膜、T a 205膜など)と、
前7 8 記−船蔵で示すポリイミドで形成した50〜1000人
厚の配向制御膜14aと14bとがそれぞれ積層されて
いる。配向制御膜14aと14bは配向方向が、平行か
つ同−向き(第1図でいえばA方向)になるようラビン
グ処理(矢印方向)しである。基板11aと11bとの
間には、強誘電性スメクチック液晶15が配置され、基
板11aと11bとの間の距離は、強誘電性スメクチッ
ク液晶15のらせん配列構造の形成を抑制するのに十分
に小さい距Ill!(例えば0,1〜3μm)に設定さ
れ、強誘電性スメクチック液晶15は双安定性配向状態
を生じている。上述の十分に小さい距離は、基板11a
とfibとの間に配置したビーズスペーサ16(シリカ
ビーズ、アルミナビーズ)によって保持される。17a
、17bは偏光板である。
11a and flb are r n203 and ITO (I
Transparent electrode 12a such as ndium Tin Oxide)
12b is a substrate (glass plate) coated with insulating films 13a and 13b (
Si20 film, TiO2 film, Ta205 film, etc.),
The alignment control films 14a and 14b made of polyimide and having a thickness of 50 to 1000 layers are laminated, respectively. The alignment control films 14a and 14b are subjected to rubbing treatment (in the direction of the arrow) so that their alignment directions are parallel and in the same direction (direction A in FIG. 1). A ferroelectric smectic liquid crystal 15 is disposed between the substrates 11a and 11b, and the distance between the substrates 11a and 11b is sufficient to suppress the formation of a helical alignment structure of the ferroelectric smectic liquid crystal 15. Small distance! (for example, 0.1 to 3 μm), and the ferroelectric smectic liquid crystal 15 is in a bistable alignment state. The above-mentioned sufficiently small distance is the distance between the substrate 11a
and fib by bead spacers 16 (silica beads, alumina beads). 17a
, 17b are polarizing plates.

このような構成において、本発明者等は特定の配向膜と
液晶の組み合わせを用いると ■上記のC1−C2転移が起こりにくく、液晶材料によ
っては全<C2配内状態が生じないこと、および、 ■C1配向内に従来見出されていた低コントラストの2
つの安定状態のほかに、コントラストの高い別の2つの
安定状態が現われること を新たに発見した。
In such a configuration, the present inventors have found that if a specific alignment film and liquid crystal combination is used, (1) the above C1-C2 transition is less likely to occur, and depending on the liquid crystal material, the total<C2 configuration state does not occur; ■Low contrast 2 previously found in C1 orientation
In addition to this stable state, we newly discovered that two other stable states with high contrast appear.

そこで、表示素子として画面全体を01配向状態に統一
し、かつC1配内内の高コントラストの2状態を白黒表
示の2状態として用いれば、従来より品位の高いデイス
プレィができると期待される。
Therefore, if the entire screen as a display element is unified to the 01 orientation state and the two high contrast states in the C1 area are used as the two states of black and white display, it is expected that a display with higher quality than before can be achieved.

つまり、本発明者らは、強誘電性液晶素子を、強誘電性
液晶と、この強誘電性液晶を間に保持して対向するとと
もにその対向面にはそれぞれ強誘電性液晶に電圧を印加
するための電極が形成されかつ強誘電性液晶を配向する
ための相互にほぼ平行で同一方向の一軸性配向処理が施
された一対の基板とを備え、強誘電性液晶のプレチルト
角をα、チルト角(コーン角の1/2)をΘ、Sm”0
層の傾斜角をδとすれば、強誘電性液晶は、eくα+δ で表わされる配向状態を有するようにすると、C1配向
状態においてさらにシェブロン構造を有する4つの状態
が存在することを確認した。この4つの01状態は従来
の01状態とは異なっており、なかでも4つの01状態
のうち2つの状態は、双安定状態(ユニフォーム状態)
を形成している。このC1配向のユニフォーム状態は、
従来用いていたC2配向における双安定状態よりもコン
トラストが高く、シたがって、このユニフォーム状態に
おいて、液晶を駆動させることにより、大きなチルト角
eを生じ、高コントラストな画像がデイスプレィされ、
且つ残像も生じない。
In other words, the present inventors placed a ferroelectric liquid crystal element facing a ferroelectric liquid crystal with the ferroelectric liquid crystal held between them, and applied a voltage to each of the ferroelectric liquid crystals on the opposing surfaces. a pair of substrates on which electrodes are formed and uniaxially aligned in the same direction and substantially parallel to each other for aligning the ferroelectric liquid crystal, and the pretilt angle of the ferroelectric liquid crystal is α, The angle (1/2 of the cone angle) is Θ, Sm”0
It was confirmed that if the ferroelectric liquid crystal has an orientation state expressed by α+δ, where the tilt angle of the layer is δ, there are four states having a chevron structure in the C1 orientation state. These four 01 states are different from the conventional 01 states, and two of the four 01 states are bistable states (uniform states).
is formed. This uniform state of C1 orientation is
The contrast is higher than the conventionally used bistable state in the C2 orientation, and therefore, by driving the liquid crystal in this uniform state, a large tilt angle e is generated and a high contrast image is displayed.
Moreover, no afterimage occurs.

以下、上記の、■について詳しく説明する。Below, the above item (2) will be explained in detail.

■の点についていうと、C1→C2転Sの起こりやすさ
は、第1表に示すように、基板界面付近の液晶分子が基
板と成す角度(プレチルト角)、層の傾き角、および液
晶のチルト角に依存している。
Regarding point (2), as shown in Table 1, the likelihood of C1→C2 transition S occurring depends on the angle that the liquid crystal molecules near the substrate interface form with the substrate (pretilt angle), the tilt angle of the layer, and the liquid crystal It depends on the tilt angle.

第1表 第1表は、プレチルト角の異なる3種類の配向膜A−C
のセルにチルト角の異なる3種類の液晶a ”−eを注
入して配向状態を見た結果である。ただし、配向11!
AはLP64 (東しく株)製)、配向膜Bは5E61
0(日産化学(株)製)、配向1IICは第11図で示
される構造式のポリアミド酸を焼成して得られるポリイ
ミドで、プレチルト角1 2 はそれぞれ2.5°、6°  12°であった。
Table 1 Table 1 shows three types of alignment films A-C with different pretilt angles.
These are the results of injecting three types of liquid crystals a''-e with different tilt angles into a cell and observing the alignment state. However, the alignment is 11!
A is LP64 (manufactured by Toshiku Co., Ltd.), alignment film B is 5E61
0 (manufactured by Nissan Chemical Co., Ltd.) and orientation 1IIC are polyimides obtained by firing polyamic acid having the structural formula shown in FIG. Ta.

第1表から、プレチルト角が大きくてチルト角が小さい
場合にC1配向が維持されることがわかる。この結果は
以下のように考えれば理解できる。
From Table 1, it can be seen that the C1 orientation is maintained when the pretilt angle is large and the tilt angle is small. This result can be understood if considered as follows.

C1配向、C2配向での基板近くのダイレクタはそれぞ
れ第4(A)図(a)および(b)のコーン41上にあ
るから、チルト角e、プレチルト角αおよび順傾斜角δ
の間には C1配向のとき e+δ〉α  (2)C2配向のとき
 θ−δ〉α  (3)の関係が成り立っていなければ
ならない。順傾斜角δはチルト角eより少し小さい値を
持つので、チルト角eの小さい液晶では、 e−δ も
小さく、プレチルト角αが大きい場合には(3)式の関
係が満たされなくなり、C2配向が現われないのである
。したがって、本発明でいうC2配向を生ぜずC1配向
を生じさせるための条件はe−δくα      (4
) であることが必要になる。
Since the directors near the substrate in the C1 orientation and the C2 orientation are on the cones 41 in FIGS. 4A and 4B, respectively, the tilt angle e, the pretilt angle α, and the forward tilt angle δ are
The following relationship must hold between e+δ>α for C1 orientation (2) and θ−δ>α for C2 orientation (3). Since the forward tilt angle δ has a value slightly smaller than the tilt angle e, for liquid crystals with a small tilt angle e, e−δ is also small, and when the pretilt angle α is large, the relationship in equation (3) is no longer satisfied, and C2 Orientation does not appear. Therefore, the conditions for producing C1 orientation without producing C2 orientation in the present invention are e−δ α (4
) is required.

チルト角と順傾斜角は液晶の温度に依存するので、ある
温度で(4)式が成り立っても、更に低温ではその条件
が破れてC2配向が現われることがある。(4)式の条
件はその液晶を表示装置として用いる全温度範囲で成り
立っている必要がある。
Since the tilt angle and forward tilt angle depend on the temperature of the liquid crystal, even if equation (4) holds true at a certain temperature, this condition may be broken at even lower temperatures and a C2 orientation may appear. The condition of equation (4) needs to hold true over the entire temperature range in which the liquid crystal is used as a display device.

本発明において、プレチルト角αは、好ましくは6°く
αく30°、より好ましくは8°くαく30°、さらに
好ましくは10°〈αく30°を示し、チルト角eは7
’ <8<27°を示し、δは0°〈δ〈25′″を示
すとよい。
In the present invention, the pretilt angle α is preferably 6° × α × 30°, more preferably 8° × α × 30°, even more preferably 10° < α × 30°, and the tilt angle e is 7°.
'<8<27°, and δ preferably represents 0°<δ<25''.

第4図(B)は代表的な液晶のチルト角θと層の傾き角
δの温度変化の様子を示す。eおよびδは5A−3c″
相転移点TAc直下で急な変化を示し、転移点から離れ
るにつれて大きくなるが、温度変化はゆるやかになる。
FIG. 4(B) shows how the tilt angle θ of a typical liquid crystal and the layer inclination angle δ change with temperature. e and δ are 5A-3c''
It shows a sudden change just below the phase transition point TAc, and increases as it moves away from the transition point, but the temperature change becomes gradual.

第4(B)図に示すように、eと6の差はT ”” T
 A Cでは0であり、低温になるにつれて大きくなる
As shown in Figure 4(B), the difference between e and 6 is T
It is 0 at AC, and increases as the temperature decreases.

したがって、(4)式は、相転移点から液晶と配向膜と
で決まる一定温度までの範囲で成立し、それ以下では成
立しない。この温度範囲内で表示素子として用いればC
1配向を維持することができるから、できるだけ広い温
度範囲を有することが望ましいが、実用的には5deg
〜35degの温度範囲が確保できれば十分である。
Therefore, formula (4) holds true in the range from the phase transition point to a certain temperature determined by the liquid crystal and the alignment film, and does not hold below that temperature. If used as a display element within this temperature range, C
Since it is possible to maintain one orientation, it is desirable to have as wide a temperature range as possible, but in practical terms
It is sufficient if a temperature range of ~35 deg can be secured.

方、相転移点にあまり近い温度ではeが小さずきて実用
に供さないので、実際には相転移点から5deg程度離
れたところから使うことが多い。したがって、相転移点
をTAc℃として(4)式は少なくとも(TAo−5)
℃から(TAclO)℃の範囲で成立していること、望
ましくは(TAC5)tから(TAC40)℃までの範
囲で成立していることが必要である。
On the other hand, if the temperature is too close to the phase transition point, e becomes too small to be of practical use, so in reality, it is often used at a temperature about 5 degrees away from the phase transition point. Therefore, assuming that the phase transition point is TAc℃, equation (4) is at least (TAo-5)
It is necessary that the temperature is satisfied in the range from .degree. C. to (TAClO).degree. C., preferably in the range from (TAC5)t to (TAC40).degree.

次に■の点について説明する。従来の低プレチルト配向
膜では、C1配向においては比較的コントラストの低い
2つの状態しか安定には存在しえなかった。ところが、
第1表に示した配向膜Cのような高プレチルト配向膜で
は、C1配向のなかに4つの状態が存在して、そのうち
の2つは従来と同じ低コントラストの2状態(偏光顕微
鏡の視野下では消光位かなく青く見えるので液晶のダイ
レクタか上下の基板間てねしれている。以下、スプレィ
状態と呼ぶ)で、ほかの2つはきわたってコントラスト
の高い、かつ見掛けのチルト角の大ぎい状態(偏光顕微
鏡下で消光位がある。以下、ユニフォーム状態と呼ぶ)
である。新たに見出された二二フ(−ム状態のコントラ
ストと透過率はC2配向での値よりも高い。そして、C
1のユニフォーム状態はC1のスプレィ状態に比へ、ク
ロスニコル下、消光位の透過率が低くC1のスプレィ状
態は2つの状態の区別がつかなくなり、ユニフォーム2
状態とスプレィ1状態の計3状態のみ観測される場合も
ある。
Next, point (■) will be explained. In the conventional low pretilt alignment film, only two states with relatively low contrast could stably exist in the C1 alignment. However,
In a high pretilt alignment film such as alignment film C shown in Table 1, there are four states in the C1 orientation, two of which are the same low contrast two states (under the field of view of a polarizing microscope) as before. In this case, there is no extinction level and it appears blue, so the liquid crystal director is twisted between the upper and lower substrates (hereinafter referred to as a splay state), and the other two have extremely high contrast and a large apparent tilt angle. state (there is an extinction position under a polarizing microscope. Hereafter referred to as uniform state)
It is. The contrast and transmittance of the newly discovered 22-frame state are higher than those in the C2 orientation.
The uniform state of C1 is compared to the spray state of C1, under crossed nicols, and the transmittance at the extinction position is low, and the spray state of C1 is indistinguishable between the two states.
In some cases, only a total of three states, the 1st state and the 1st spray state, are observed.

第2表は、いくつかの液晶a〜dのスプレィ状態での無
電界時のみかけのチルl−角θ 5playと、ユニフ
ォーム状態でのみかけのチルト角θ unlf。
Table 2 shows the apparent tilt l-angle θ 5play in the absence of an electric field in the spray state of some liquid crystals a to d, and the apparent tilt angle θ unlf in the uniform state.

rmおよびデル1−角θを示したものである。第2表中
にはθ 5playおよびθ uniformとeとの
比も示しである。この表かられかるように、同じ液晶材
料でもみかけのチルト角はスプレィ状態て小さ5 6 く、ユニフォーム状態で大きい。eとの比でみても、ス
プレィ状態てはθ@pla)’/9≦0.4、ユニフォ
ーム状態てはθunlform/6≧0.5である。こ
こで、本発明では、C1状態における4つの状態のうち
、e〉Θ、>e/2の関係を示す状態をユニフォーム状
態という。
rm and del1-angle θ are shown. Table 2 also shows the ratio of θ 5play and θ uniform to e. As can be seen from this table, even with the same liquid crystal material, the apparent tilt angle is small in the spray state and large in the uniform state. Looking at the ratio to e, θ@pla)'/9≦0.4 in the spray state, and θunlform/6≧0.5 in the uniform state. Here, in the present invention, among the four states in the C1 state, a state exhibiting a relationship of e>Θ and >e/2 is referred to as a uniform state.

第2表 そこで本発明は、強誘電性液晶索子を、強誘電性液晶と
、この強誘電性液晶を間に保持して対向するとともにそ
の対向面にはそれぞれ強誘電性液晶に電圧を印加するた
めの電極が形成されかつ強誘電性液晶を配向するための
相互にほぼ平行で同一方向の一軸性配向処理が施された
一対の基板とを備え、強誘電性液晶のプレチルト角をα
、チルト角(コーン角の1/2)をΘ、Sm*C層の傾
斜角を6とすれば、強誘電性液晶は、 eくα+δ で表わされる配向状態を有し、かつ該配向状態における
強誘電性液晶が少なくとも2つの安定状態を示し、それ
らの光学軸のなす角度の1/2であるC8と該強誘電性
液晶のチルト角eとがe〉Θ、 >0/2 の関係を満たすC1配向におけるユニフォーム状態を表
示に利用しようとするものである。
Table 2 Therefore, in the present invention, a ferroelectric liquid crystal is held facing a ferroelectric liquid crystal with the ferroelectric liquid crystal held between them, and a voltage is applied to each of the ferroelectric liquid crystals on the opposing surfaces. a pair of substrates on which electrodes are formed to align the ferroelectric liquid crystal, and a pair of substrates are uniaxially aligned in the same direction and approximately parallel to each other for aligning the ferroelectric liquid crystal, and the pretilt angle of the ferroelectric liquid crystal is
, the tilt angle (1/2 of the cone angle) is Θ, and the inclination angle of the Sm*C layer is 6, then the ferroelectric liquid crystal has an orientation state expressed by e α + δ, and in this orientation state, The ferroelectric liquid crystal exhibits at least two stable states, and the relationship between C8, which is 1/2 of the angle formed by their optical axes, and the tilt angle e of the ferroelectric liquid crystal is e〉Θ, >0/2. The purpose is to utilize the uniform state in the C1 orientation that satisfies this requirement for display.

また、本発明でいうC1状態は、基板間のスペーサ等の
異物によってまたは基板に歪みを加えることによってヘ
アピン欠陥およびライトニング欠陥に囲まれた配向状態
を生じ、かっこの配向状態は、プレチルトにより液晶分
子が配向表面から浮いている方向に対しであるいはラビ
ング方向に対シテ、ライトニング欠陥およびアスビン欠
陥の順序でこれら欠陥が生じることによって生じる状態
である。または、スメクチックA (SmA)等の高温
からスメクチックc (Sm” c)に降温する過程で
欠陥を伴う配向変化がない状態であるということができ
る。
In addition, the C1 state referred to in the present invention is an alignment state surrounded by hairpin defects and lightning defects caused by foreign substances such as spacers between the substrates or by applying distortion to the substrates, and the alignment state of the parentheses is caused by pretilting of liquid crystal molecules. This is a state that occurs when these defects occur in the order of anti-site defects, lightning defects, and asbin defects in the direction in which the surface is floating from the oriented surface or in the rubbing direction. Alternatively, it can be said that there is no orientation change accompanied by defects in the process of lowering the temperature from a high temperature such as smectic A (SmA) to smectic c (Sm''c).

本発明のC1配向におけるスプレィ状態とユニフォーム
状態との違いは、前述のみかけのチルト角が違うことの
他に、コントラストの違いがある。スプレィ配向は上述
のように暗状態においてもクロスニコル下で完全な消光
位が得られず、偏光板をクロスニコルから数度捩フた位
置に配置するほうがより暗くなる。これに対し、ユニフ
ォーム配向はクロスニコル下でほぼ完全な消光位があり
、このために高いコントラスト比を示す。この違いは次
のような測定を行えばいっそうはっきりする。
The difference between the spray state and the uniform state in the C1 orientation of the present invention is not only the difference in the above-mentioned apparent tilt angle but also the difference in contrast. As mentioned above, in the splay orientation, even in the dark state, a perfect extinction position cannot be obtained under crossed nicols, and it becomes darker when the polarizing plate is arranged at a position twisted several degrees from crossed nicols. On the other hand, the uniform orientation has an almost complete extinction position under crossed nicols, and therefore exhibits a high contrast ratio. This difference becomes even clearer when the following measurements are performed.

まず、クロスニコル下でアップ・ダウンの2状態のコン
トラストかなくなる位置、すなわち2状態の光学軸のな
す角を2等分する方向(スメクチック層方向)に一方の
偏光板の吸収軸を合わせ、これに垂直に他方の偏光板の
吸収軸を合わせる。
First, align the absorption axis of one polarizing plate to the position where the contrast between the up and down two states disappears under crossed Nicol conditions, that is, the direction that bisects the angle formed by the optical axes of the two states (smectic layer direction). Align the absorption axis of the other polarizing plate perpendicular to .

この位置から検光子(観測者側の偏光板)だけを時計方
向に3°〜30°の適当な角度回転させるとアップ・ダ
ウン2状態の透過光状態に差が生じコントラストがつく
。多くの場合、アップの状態が色濃く見え、ダウンの状
態は色が淡くなる。逆に、検光子な反時計方向に同じ角
度回転させると、逆の色づきがみられる。すなわち、ア
ップの状態は色淡くなり、ダウン状態は色濃くなる。
If only the analyzer (polarizing plate on the observer's side) is rotated clockwise by an appropriate angle of 3° to 30° from this position, a difference is created between the transmitted light states in the up and down states, creating a contrast. In many cases, the color appears darker when viewed up, and the color appears lighter when viewed down. Conversely, if you rotate the analyzer counterclockwise by the same angle, you will see the opposite coloration. That is, the color becomes lighter in the up state, and the color becomes darker in the down state.

そこで、この検光子回転に対する色づきの様子に着目す
ると、1.0μmなし)し2.0μmのギャップをもつ
セルにあっては、 (1)スプレィ配向のアップ・ダウン2状態については
時計方向に回転したときのアップの色はかっ色ないし赤
紫色であるのに対し、反時計方向に回転したときのダウ
ンの色は青色ないし藍色な呈9 0 していて、この2つの色は異なる。一方、(2)ユニフ
ォーム配向のアップ・ダウン2状態については、上記2
つの色はともにかっ色ないし赤紫色で同じである。
Therefore, focusing on the appearance of coloration with respect to the rotation of the analyzer, we find that for cells with a gap of 1.0 μm) and 2.0 μm, (1) For two states of up and down spray orientation, rotation clockwise. The color of the up view when rotated is brownish to reddish-purple, while the color of the down view when rotated counterclockwise is blue to indigo, and these two colors are different. On the other hand, regarding (2) the two states of up and down uniform orientation,
Both are the same color, ranging from brownish to reddish-purple.

この違いは、後述のように上下基板間でダイレクタが捩
れているか否かに基づくものと考えられるが、いずれに
してもこの測定からスプレィ配向とユニフォーム配向を
質的に区別することができる。
This difference is thought to be based on whether or not the director is twisted between the upper and lower substrates as described below, but in any case, the splayed orientation and the uniform orientation can be qualitatively distinguished from this measurement.

また、本発明におけるC1配向の4つの状態は電界をか
けると互いに遷移する。弱い正負のパルス電界を印加す
るとスプレィ2状態間の遷移が起こり、強い正負のパル
ス電界を印加するとユニフオーム2状態間の遷移が起こ
る。ユニフォーム2状態を用いると従来より明るくコン
トラストの高い表示゛素子が実現できる。
Furthermore, the four states of C1 orientation in the present invention transition to each other when an electric field is applied. Applying a weak positive and negative pulsed electric field causes a transition between two spray states, and applying a strong positive and negative pulsed electric field causes a transition between two uniform states. By using the uniform 2 state, a display element that is brighter and has higher contrast than the conventional one can be realized.

ところで、液晶の選択の仕方によっては、該ユニフォー
ム状態の生じ易さに差がある。第1表の配向膜Cを用い
ていくつかの液晶でユニフォーム状態の有無を調べた結
果が第3表である。傾斜角の小さい液晶はどユニフォー
ム状態を取りやすいことが分かる。この原因は必ずしも
明らかではないが、次のようなことが推察される。
Incidentally, depending on how the liquid crystal is selected, there is a difference in the ease with which the uniform state occurs. Table 3 shows the results of examining the presence or absence of a uniform state in several liquid crystals using the alignment film C shown in Table 1. It can be seen that liquid crystals with small tilt angles tend to take a uniform state. Although the cause of this is not necessarily clear, the following is presumed.

第3表 ユニフォーム状態においては、その光学的性質からみて
ダイレクタが上下基板間でねしれていないと考えられる
。第5(A)図はC1配向の各状態における基板間の各
位置でのダイレクタの配置を示す模式図である。図中、
51〜54は各状態においてダイレクタをコーンの底面
に投影し、これを底面方向から見た様子を示しており、
51および52がスプレィ状態、53および54がユニ
フォーム状態と考えられるダイレクタの配置である。同
図から分かるとおり、ユニフォームの2状態53と54
においては、上下いずれかの基板界面の液晶分子の位置
がスプレィ状態の位置と入れ替わっている。第5(B)
図は、C2配向を示しており、界面のスイッチングはな
く、内部のスイッチングで2状態がある。第6図は界面
分子位置の異なる2つの領域の境界付近のダイレクタの
様子を示したものである。界面分子の位置は同図に示す
ようにコーンの頂点60を通って一方から他方へ移ると
考えられるので、チルト角の小さいほうが移りやすい。
In the uniform state shown in Table 3, it is considered that the director is not twisted between the upper and lower substrates in view of its optical properties. FIG. 5A is a schematic diagram showing the arrangement of the director at each position between the substrates in each state of C1 orientation. In the figure,
51 to 54 show the director projected onto the bottom surface of the cone in each state, as viewed from the bottom direction,
51 and 52 are director arrangements considered to be in a spray state, and 53 and 54 to be considered to be in a uniform state. As can be seen from the same figure, the two states of the uniform 53 and 54
In this case, the position of the liquid crystal molecules at either the upper or lower substrate interface is replaced with the position in the spray state. Fifth (B)
The figure shows the C2 orientation, with no interfacial switching and two states due to internal switching. FIG. 6 shows the state of the director near the boundary between two regions with different interfacial molecular positions. Since the position of the interfacial molecules is considered to shift from one side to the other through the apex 60 of the cone as shown in the figure, the smaller the tilt angle, the easier the shift.

このためチルト角の小さい液晶でユニフォーム状態が実
現されるのである。
For this reason, a uniform state can be achieved using liquid crystals with a small tilt angle.

界面の分子が一方の位置から他方の位置へ電界によって
診る際に受けるトルクの方向は、分子がコーン上のどの
位置にあるかによって異なる。すなわち、第6図のコー
ン端61および62よりもプレチルトの高い位置にあれ
はコーンの頂点60を通る方向にトルクを受け、逆にコ
ーン端61および62よりも低い位置にあれば分子は基
板に押し付けられる方向にトルクを受ける。したがって
、前者の位置にあるほうがスイッチングが起こりやすい
。プレチルトがコーン端61および62よりも高い位置
に来るための条件は簡単な幾何学的考察により、 5ina>sinδcosθ  (5)となり、プレチ
ルト角α、順傾斜角δ、チルト角eが小さいときはこの
条件は近似的に、α〉δ        (6) となる。順傾斜角δはチルト角θに近い値を持つのて第
3表に示した実験結果が得られたと解釈される。
The direction of the torque that a molecule at the interface experiences as it is moved from one location to another by an electric field depends on where the molecule is on the cone. That is, if the pretilt is at a higher position than the cone ends 61 and 62 in FIG. 6, the torque will be applied in the direction passing through the apex 60 of the cone; Receives torque in the direction of being pushed. Therefore, switching is more likely to occur in the former position. The condition for the pretilt to be higher than the cone ends 61 and 62 is 5ina>sin δ cos θ (5) based on simple geometric considerations, and when the pretilt angle α, forward inclination angle δ, and tilt angle e are small, this condition is satisfied. Approximately, the condition is α>δ (6). It is interpreted that the experimental results shown in Table 3 were obtained because the forward tilt angle δ has a value close to the tilt angle θ.

よって、C1配向におけるユニフォーム状態をより安定
に形成させるには、ざらにα〉δの関係を満たすことが
効果的である。
Therefore, in order to more stably form a uniform state in the C1 orientation, it is effective to roughly satisfy the relationship α>δ.

また、ユニフォーム状態を安定に形成させるために上下
基板のラビング方向をO〜20″の範囲でずらしたクロ
スラビングも可能である。
Further, in order to stably form a uniform state, cross rubbing is also possible in which the rubbing directions of the upper and lower substrates are shifted within a range of 0 to 20''.

なお、以上の実験におけるチルト角Θ、層の傾3 4 き角δ、プレチルト角α、およびみかけのチルト角θa
は以下のようにして測定した。
In addition, in the above experiment, the tilt angle Θ, the layer tilt angle δ, the pretilt angle α, and the apparent tilt angle θa
was measured as follows.

チルト角θの測定 10V〜30VのDCをFLC素子の上下基板間に印加
しながら直交クロスニコル下、その間に配置されたFL
C素子を偏光板と水平に回転させ第1の消光位(透過率
が最も低くなる位置)をさがし、次に上記と逆極性のD
Cを印加しながら第2の消光位をさがす。このときの第
1の消光位から第2の消光位までの角度の1/2をチル
ト角eとした。
Measurement of tilt angle θ While applying 10V to 30V DC between the upper and lower substrates of the FLC element, the FL placed between them is
Rotate the C element horizontally with the polarizing plate to find the first extinction position (the position where the transmittance is lowest), then rotate the D element with the opposite polarity to the above.
While applying C, search for the second extinction position. 1/2 of the angle from the first extinction position to the second extinction position at this time was defined as the tilt angle e.

みかけのチルト角θaの測定 液晶のしきい値の単発パルスを印加した後、無電界下、
かつ直交クロスニコル下、その間に配置されたFLC素
子を偏光板と水平に回転させ第1の消光位をさがし、次
に上記の単発パルスと逆極性のパルスを印加した後、無
電界下、第2の消光位をさがす。このときの第1の消光
位から第2の消光位までの角度の1/2を08とした。
Measurement of apparent tilt angle θa After applying a single pulse of the threshold value of the liquid crystal, under no electric field,
Then, under orthogonal crossed nicols, the FLC element placed between them was rotated horizontally with the polarizing plate to find the first extinction position, and then, after applying a pulse with the opposite polarity to the above single pulse, the first extinction position was applied under no electric field. Find the extinction position of 2. At this time, 1/2 of the angle from the first extinction position to the second extinction position was set as 08.

層の傾き角δの測 X線解析装置RAD−11B (45KV、30mA)
を用いてX線解析法で6を測定した。
Layer inclination angle δ measuring X-ray analyzer RAD-11B (45KV, 30mA)
6 was measured using X-ray analysis method.

プレチルト角αの測 Jpn、J、八pp1.Phys、vol19 (19
80)NO,10,5hortNotes 2013に
記載されている方法(クリスタルローテーション法)に
従って求めた。
Measurement of pretilt angle α Jpn, J, 8pp1. Phys, vol19 (19
80) NO,10,5 It was determined according to the method described in hortNotes 2013 (crystal rotation method).

つまり、平行かつ反対方向にラビングした基板を貼り合
せてセル厚20μmのセルを作成し、0℃〜60℃の範
囲でSmA相を有する液晶(A)を封入し測定を行った
That is, a cell with a cell thickness of 20 μm was created by bonding substrates rubbed in parallel and opposite directions, and a liquid crystal (A) having an SmA phase was filled in the cell at a temperature of 0° C. to 60° C., and measurements were performed.

液晶セルを上下基板に垂直かつ配向処理軸を含む面で回
転させながら回転軸と45°の角度をなす偏光面をもつ
ヘリウム・ネオンレーザ光を回転軸に垂直な方向から照
射し、その反対側で入射偏光面と平行な透過軸をもつ偏
光板を通してフォトダイオードで透過光強度を測定した
While rotating the liquid crystal cell in a plane perpendicular to the upper and lower substrates and including the alignment axis, a helium-neon laser beam with a polarization plane making an angle of 45° with the rotation axis is irradiated from a direction perpendicular to the rotation axis, and the opposite side is The intensity of transmitted light was measured using a photodiode through a polarizing plate with a transmission axis parallel to the incident polarization plane.

干渉によってできた透過光強度の双曲線群の中心となる
角と液晶セルに垂直な線となす角度をφオとし、下式に
代入してプレチルト角α0を求めた。
The angle between the central corner of the hyperbolic group of transmitted light intensity created by interference and a line perpendicular to the liquid crystal cell was defined as φo, and the pretilt angle α0 was determined by substituting it into the following formula.

no:常光屈折率 n8 :異常光屈折率 [実施例] 以下、本発明に係る液晶素子を作成した実施例を説明す
る。
no: ordinary light refractive index n8: extraordinary light refractive index [Example] Hereinafter, an example in which a liquid crystal element according to the present invention was created will be described.

釆」1吐土 透明電極の付いたガラス基板上に酸化タンタルの薄膜を
スパッタ法で形成し、その上に日立化成(株)製のポリ
アミド酸LQ1802の1%NMP溶液をスピンナで塗
布し270℃で1時間焼成した。次に、この基板をラビ
ングし、同じ処理をしたもう1枚の基板とラビング方向
が平行かつ同方向になるように15μmのギャップを保
って貼り合わせ、セルを作成した。該セルのプレチルト
角はクリスタルローテーション法により14゜である。
1. A thin film of tantalum oxide was formed by sputtering on a glass substrate with a transparent electrode, and a 1% NMP solution of polyamic acid LQ1802 (manufactured by Hitachi Chemical Co., Ltd.) was applied using a spinner, and the film was heated at 270°C. Baked for 1 hour. Next, this substrate was rubbed and bonded to another similarly treated substrate with a gap of 15 μm maintained so that the rubbing direction was parallel and in the same direction to create a cell. The pretilt angle of the cell is 14° by the crystal rotation method.

該セルにフェニルピリミジンを主成分とする混合液晶で
、チルト角は室温で12°、要領斜角は室温で10°の
強誘電性液晶を注入した。
A mixed liquid crystal containing phenylpyrimidine as a main component, a ferroelectric liquid crystal having a tilt angle of 12° at room temperature and an oblique angle of 10° at room temperature, was injected into the cell.

相転移温度は以下のとおりであった。The phase transition temperature was as follows.

−20℃ 45℃ 70℃ 78℃ Crysta14−3♂←5A4−Ch←■s。-20℃ 45℃ 70℃ 78℃ Crysta14-3♂←5A4-Ch←■s.

第7図はこの液晶のチルト角の温度変化を示したもので
ある。
FIG. 7 shows the change in the tilt angle of this liquid crystal with temperature.

液晶を注入したセルを100℃で1時間エージングした
後、Sc″相の範囲で温度を下げながら観測したところ
、全温度範囲でC1配向が保たれ、電界による4状態の
遷穆が可能てあった。第8図はこの4つの状態が混在す
るセルの偏光顕微鏡での観察スケッチで81と82はス
プレィ状態、83と84がユニフォーム状態である。見
掛けのチルト角はスプレィ2状態間では5″、ユニフオ
ーム2状態間で10°であり、波高値24Vの矩形パル
スを印加すると、パルス幅20μsでスプレィ状態間の
スイッチングが起こり、パルス幅60μsでユニフォー
ム状態間のスイッチングが7 8 起こった。
After aging the cell injected with liquid crystal at 100°C for 1 hour, we observed it while lowering the temperature within the Sc'' phase range, and found that the C1 orientation was maintained over the entire temperature range, and four-state transition was possible using an electric field. Figure 8 is a polarizing microscope observation sketch of a cell in which these four states are mixed, 81 and 82 are in the splay state, and 83 and 84 are in the uniform state.The apparent tilt angle is 5'' between the two splay states. , 10° between the two uniform states, and when a rectangular pulse with a peak value of 24 V was applied, switching between the spray states occurred with a pulse width of 20 μs, and switching between the uniform states occurred with a pulse width of 60 μs 7 8 .

次に、該ユニフォーム状態での表示特性を評価する。Next, display characteristics in the uniform state are evaluated.

上述の液晶セルを一対の90°クロスニコル偏光子の間
に挟み込んでから、50μsecの30■パルスを印加
して90°クロスニコルを消光位(最暗状態)にセット
し、このときの透過率をホトマルチブレターにより測定
し、続いて50μSeeの一30Vパルスを印加し、こ
のときの透過率(明状態)を同様の方法で測定したとこ
ろ、暗状態時の透過率は0.5%で、明状態時の透過率
は10%であり、従って、コントラスト比は50:1で
あった。
After sandwiching the above-mentioned liquid crystal cell between a pair of 90° crossed Nicol polarizers, 30 pulses of 50 μsec are applied to set the 90° crossed Nicols at the extinction position (darkest state), and the transmittance at this time is determined. was measured using a photomultibler, then a 30V pulse of 50μSee was applied, and the transmittance (bright state) was measured in the same manner.The transmittance in the dark state was 0.5%. Transmission in the bright state was 10%, so the contrast ratio was 50:1.

また、光学的な応答(透過光量変化0〜97%)時間を
測定したところ、O,1secであった(第10図)。
Further, when the optical response time (change in amount of transmitted light from 0 to 97%) was measured, it was 0.1 sec (Fig. 10).

つまり、切り換わりのよいスイッチングが行なわれる。In other words, efficient switching is performed.

さらに、上下の基板にストライブ状の電極を付け、それ
らの交叉部に画素を形成した以外は上記と同じ構成でマ
トリクス表示パネルを作り、第9図の駆動波形を印加し
たところ、良好に動作した。第9図においてSN、5N
41などは走査電極に印加する電圧波形、■は信号電極
に印加する電圧波形、I−S、などは画素に印加される
電圧波形である。
Furthermore, when we fabricated a matrix display panel with the same configuration as above, except that stripe-shaped electrodes were attached to the upper and lower substrates and pixels were formed at the intersections of these electrodes, and the driving waveform shown in Figure 9 was applied, it worked well. did. In Figure 9, SN, 5N
41 and the like are voltage waveforms applied to the scanning electrodes, ■ are voltage waveforms applied to the signal electrodes, and I-S are voltage waveforms applied to the pixels.

釆】l辻且 実施例1て用いたのと同じ配向膜のセルに、やはりフェ
ニルピリミジンを主成分とする別の液晶(室温において
チルト角21°、傾斜角17°)を入れた。C1配向で
ユニフォーム状態は示すものの、マトリクス駆動波形を
印加すると、該室温ではスプレィ状態が多く存在してし
まう。しかし、55℃以上で用いると(該55℃ではチ
ルト角11°、傾斜角9°)ユニフォーム状態が安定に
存在するようになった。この液晶の相転移温度は、次の
よってあった。
1 Tsuji: Another liquid crystal containing phenylpyrimidine as a main component (tilt angle of 21° and tilt angle of 17° at room temperature) was placed in a cell with the same alignment film as used in Example 1. Although a uniform state is shown in the C1 orientation, when a matrix driving waveform is applied, a splayed state often exists at room temperature. However, when used at 55°C or higher (tilt angle of 11° and inclination angle of 9° at 55°C), a uniform state stably existed. The phase transition temperature of this liquid crystal was as follows.

高温で使用することにより、傾斜角を小さくし、式(5
)または式(6)の条件を満たすようにすれば、コント
ラストのみならずマトリクス駆動に最適に利用できる、
より安定なユニフォーム状態が形成できる。
By using it at high temperature, the inclination angle can be reduced and the formula (5
) or satisfying the condition of equation (6), it can be optimally used not only for contrast but also for matrix drive.
A more stable uniform state can be formed.

土軟週 低プレチルト角の配向膜として東しく株)製のLP64
を用いた以外は実施例1と同様にして液晶セルを作成し
、液晶(室温においてチルト角17°、傾斜角13.5
°)を注入したところ、C2配向状態になった。
LP64 manufactured by Toshiku Co., Ltd. as an alignment film with a low pre-tilt angle.
A liquid crystal cell was prepared in the same manner as in Example 1, except that the liquid crystal cell (tilt angle 17° and tilt angle 13.5
) was injected, resulting in a C2 orientation state.

該セルのプレチルト角は、クリスタルローテーション法
で計ったところ、2.5°であった。
The pretilt angle of the cell was 2.5° as measured by the crystal rotation method.

暗状態の透過率は1%で、明状態での透過率は6%であ
り、コントラストは6:1、光学応答時間は2.0se
cであった(第10図)。
Transmittance in dark state is 1%, transmittance in bright state is 6%, contrast is 6:1, optical response time is 2.0se
c (Figure 10).

[発明の効果] 以上説明したように、C1配向におけるユニフォーム状
態を表示に利用した本発明の液晶素子は、高コントラス
トな画像で且つスイッチング良好な残像を生しないデイ
スプレィを達成できる液晶素子となる。
[Effects of the Invention] As explained above, the liquid crystal element of the present invention that utilizes the uniform state in the C1 orientation for display is a liquid crystal element that can achieve a display with high contrast images, good switching, and no afterimages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の強誘電性液晶セルの1例を示す模式
図、 第2図(a)〜(e)は、第1図の液晶セルに強誘電性
液晶を注入し、温度を降下させていったときの配向状態
の変化を示す模式図、 第3図は、C1およびC2の2種類の配向状態の相違を
示す説明図、 第4(A)図(a)および(b)は、C1およびC2配
向でのチルト角、プレチルト角および要領斜角間の関係
を示す説明図、 第4(B)図は、液晶のチルト角eと層の傾き角δの温
度変化を示す図、 第5(A)図は、C1配向の各状態にお+−Jる基板間
の各位置てのダイレクタの配置を示す模式第5(B)図
は、C2配向の各状態における基板間の各位置でのダイ
レクタの配置を示す模式第6図は、界面分子位置の異な
る2つの領域の境界付近のダイレクタの様子を示す模式
図、第7図は、本発明の一実施例に係る液晶素子におけ
るチルト角の温度変化を示すグラフ、第8図は、前記液
晶素子における4つの状態が混存する様子をスケッチし
た模式図、 第9図は、前記液晶素子に印加した駆動波形を示すタイ
ミングチャート、そして 第10図は、実施例1のユニフォーム配向状態における
光学特性の測定結果、並びに比較例の光学特性の測定結
果を比較するグラフ、そして第11図は、ポリアミド酸
を焼成して得られるポリイミド配向膜の構造式である。 11a、11b:基板、12a、12b:透明電極、1
3a、13b:絶縁膜、14a、14b配向制御膜、1
5:強誘電性液晶。 ×100 xlOO 第2図 (25°C] 第2図 O 如しト角O メEのイ1〔ぎ山g (69p) [9−1zll+
FIG. 1 is a schematic diagram showing an example of a ferroelectric liquid crystal cell of the present invention, and FIGS. 2(a) to (e) show a ferroelectric liquid crystal injected into the liquid crystal cell of FIG. FIG. 3 is an explanatory diagram showing the difference between the two types of orientation states of C1 and C2; FIG. is an explanatory diagram showing the relationship between the tilt angle, pretilt angle, and point oblique angle in C1 and C2 orientations; FIG. 4(B) is a diagram showing temperature changes in the tilt angle e of the liquid crystal and the tilt angle δ of the layer; FIG. 5(A) is a schematic diagram showing the arrangement of directors at each position between substrates in each state of C1 orientation. FIG. 5(B) is a schematic diagram showing the arrangement of directors at each position between substrates in each state of C2 orientation. FIG. 6 is a schematic diagram showing the arrangement of the director at different positions. FIG. 7 is a schematic diagram showing the state of the director near the boundary between two regions with different interfacial molecular positions. A graph showing temperature changes in tilt angle, FIG. 8 is a schematic diagram sketching how four states coexist in the liquid crystal element, FIG. 9 is a timing chart showing a driving waveform applied to the liquid crystal element, and FIG. 10 is a graph comparing the measurement results of optical properties in the uniform orientation state of Example 1 and the measurement results of optical properties of Comparative Example, and FIG. 11 is a graph of the polyimide alignment film obtained by firing polyamic acid. The structural formula is 11a, 11b: Substrate, 12a, 12b: Transparent electrode, 1
3a, 13b: insulating film, 14a, 14b orientation control film, 1
5: Ferroelectric liquid crystal. ×100 xlOO Figure 2 (25°C) Figure 2 O

Claims (22)

【特許請求の範囲】[Claims] (1)強誘電性液晶と、この強誘電性液晶を間に保持し
て対向するとともにその対向面にはそれぞれ強誘電性液
晶に電圧を印加するための電極が形成されかつ強誘電性
液晶を配向するための相互にほぼ平行で同一方向の一軸
性配向処理が施された一対の基板とを備え、強誘電性液
晶のプレチルト角をα、チルト角をΘ、Sm^*C層の
傾斜角をδとすれば、強誘電性液晶は、 Θ<α+δ で表わされる配向状態を有し、かつ該配向状態における
強誘電性液晶が少なくとも2つの安定状態を示し、それ
らの光学軸のなす角度の1/2であるθ_aと該強誘電
性液晶のチルト角ΘとがΘ>θ_a>Θ/2
(1) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces, respectively. It is equipped with a pair of substrates that are substantially parallel to each other and subjected to uniaxial alignment treatment in the same direction for alignment, and the pretilt angle of the ferroelectric liquid crystal is α, the tilt angle is Θ, and the tilt angle of the Sm^*C layer is set. is δ, the ferroelectric liquid crystal has an orientation state expressed by Θ<α+δ, and the ferroelectric liquid crystal in this orientation state exhibits at least two stable states, and the angle formed by their optical axes is θ_a which is 1/2 and the tilt angle Θ of the ferroelectric liquid crystal are Θ>θ_a>Θ/2
(2)強誘電性液晶と、この強誘電性液晶を間に保持し
て対向するとともにその対向面にはそれぞれ強誘電性液
晶に電圧を印加するための電極が形成されかつ強誘電性
液晶を配向するための相互にほぼ平行で同一方向の一軸
性配向処理が施された一対の基板とを備え、強誘電性液
晶のプレチルト角をα、チルト角をΘ、Sm^xC層の
傾斜角をδとすれば、強誘電性液晶は、 Θ<α+δ で表わされる配向状態を有し、かつ該配向状態における
強誘電性液晶が少なくとも2つの安定状態を示し、それ
らの光学軸のなす角を2等分する位置に一方の偏光板の
吸収軸を合わせ、それに垂直に他方の偏光板の吸収軸を
合わせた配置から一方の偏光板だけを時計方向に3°〜
30°回転させたときの第1の安定状態の呈する色と、
反時計方向に同じ角度回転させたときの第2の安定状態
の呈する色が同じであることを特徴とする強誘電性液晶
素子。
(2) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces, and the ferroelectric liquid crystal is It is equipped with a pair of substrates that are substantially parallel to each other and subjected to uniaxial alignment treatment in the same direction for alignment, and the pretilt angle of the ferroelectric liquid crystal is α, the tilt angle is Θ, and the tilt angle of the Sm^xC layer is If δ, the ferroelectric liquid crystal has an alignment state expressed by Θ<α+δ, and the ferroelectric liquid crystal in the alignment state exhibits at least two stable states, and the angle formed by their optical axes is 2. Align the absorption axis of one polarizing plate at the equal dividing position, and align the absorption axis of the other polarizing plate perpendicularly thereto, then rotate only one polarizing plate clockwise by 3 degrees.
the color exhibited by the first stable state when rotated by 30°;
A ferroelectric liquid crystal element characterized in that a second stable state exhibits the same color when rotated counterclockwise by the same angle.
(3)強誘電性液晶と、この強誘電性液晶を間に保持し
て対向するとともにその対向面にはそれぞれ強誘電性液
晶に電圧を印加するための電極が形成されかつ強誘電性
液晶を配向するための相互にほぼ平行で同一方向の一軸
性配向処理が施された一対の基板とを備え、強誘電性液
晶のプレチルト角をα、チルト角をΘ、Sm^*C層の
傾斜角をδとすれば、強誘電性液晶は、 Θ<α+δ で表わされる配向状態を有し、かつ該配向状態における
強誘電性液晶がクロスニコル下、消光位の透過率の低い
2つの安定状態と、クロスニコル下、消光位の透過率の
高い1つまたは2つの安定状態の計3または4状態を有
することを特徴とする強誘電性液晶素子。
(3) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on each of the opposing surfaces, and the ferroelectric liquid crystal is It is equipped with a pair of substrates that are substantially parallel to each other and subjected to uniaxial alignment treatment in the same direction for alignment, and the pretilt angle of the ferroelectric liquid crystal is α, the tilt angle is Θ, and the tilt angle of the Sm^*C layer is set. If δ is the ferroelectric liquid crystal, the ferroelectric liquid crystal has an orientation state expressed by Θ<α+δ, and the ferroelectric liquid crystal in this orientation state has two stable states with low transmittance: under crossed Nicols and at the extinction position. A ferroelectric liquid crystal element characterized by having a total of three or four states, including one or two stable states with high transmittance under crossed Nicols and extinction positions.
(4)強誘電性液晶がクロスニコル下、消光位の透過率
の低い第1と第2の2つの安定状態と、クロスニコル下
、消光位の透過率の高い第3と第4の2つの安定状態の
4つの安定状態を示し、それらの光学軸のなす角を2等
分する位置に一方の偏光板の吸収軸を合わせ、それに垂
直に他方の偏光板の吸収軸を合わせた配置から一方の偏
光板だけを時計方向に3°〜30°回転させたときの第
1の安定状態の呈する色と、反時計方向に同じ角度回転
させたときの第2の安定状態の呈する色が同じであり、
一方の偏光板だけを時計方向に3°〜30°回転させた
ときの第3の安定状態の呈する色と、反時計方向に同じ
角度回転させたときの第4の安定状態の呈する色が異な
ることを特徴とする請求項3記載の強誘電性液晶素子。
(4) The ferroelectric liquid crystal has two stable states: the first and second stable states under crossed nicols, with low transmittance at the extinction position, and the third and fourth stable states under crossed nicols, with high transmittance at the extinction position. Four stable states are shown, and the absorption axis of one polarizing plate is aligned at a position that bisects the angle formed by their optical axes, and the absorption axis of the other polarizing plate is aligned perpendicularly thereto. The color that appears in the first stable state when only the polarizing plate is rotated clockwise by 3° to 30° is the same as the color that appears in the second stable state when the polarizing plate is rotated by the same angle counterclockwise. can be,
The color exhibited by the third stable state when only one polarizing plate is rotated clockwise by 3° to 30° is different from the color exhibited by the fourth stable state when rotated by the same angle counterclockwise. The ferroelectric liquid crystal device according to claim 3, characterized in that:
(5)強誘電性液晶と、この強誘電性液晶を間に保持し
て対向するとともにその対向面にはそれぞれ強誘電性液
晶に電圧を印加するための電極が形成されかつ強誘電性
液晶を配向するための相互にほぼ平行で同一方向の一軸
性配向処理が施された一対の基板とを備え、強誘電性液
晶は、この基板間のスペーサ等の異物によってまたは基
板に歪みを加えることによってヘアピン欠陥およびライ
トニング欠陥に囲まれた配向状態を生じ、かつこの配向
状態は、プレチルトにより液晶分子が配向表面から浮い
ている方向に対してライトニング欠陥およびヘアピン欠
陥の順序でこれら欠陥が生じることによって生じるもの
であって、該配向状態における強誘電性液晶が少なくと
も2つの安定状態を示し、それらの光学軸のなす角度の
1/2であるθ_aと該強誘電性液晶のチルト角Θとが
Θ>θ_a>Θ/2 の関係を有することを特徴とする強誘電性液晶素子。
(5) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces of the ferroelectric liquid crystal. The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is produced by a foreign substance such as a spacer between the substrates or by applying distortion to the substrates. An alignment state surrounded by hairpin defects and lightning defects is produced, and this alignment state is caused by the formation of these defects in the order of lightning defects and hairpin defects with respect to the direction in which the liquid crystal molecules are floating from the alignment surface due to pretilt. The ferroelectric liquid crystal in the alignment state exhibits at least two stable states, and θ_a, which is 1/2 of the angle formed by their optical axes, and the tilt angle Θ of the ferroelectric liquid crystal are Θ> A ferroelectric liquid crystal element characterized by having a relationship of θ_a>Θ/2.
(6)強誘電性液晶と、この強誘電性液晶を間に保持し
て対向するとともにその対向面にはそれぞれ強誘電性液
晶に電圧を印加するための電極が形成されかつ強誘電性
液晶を配向するための相互にほぼ平行で同一方向の一軸
性配向処理が施された一対の基板とを備え、強誘電性液
晶は、この基板間のスペーサ等の異物によってまたは基
板に歪みを加えることによってヘアピン欠陥およびライ
トニング欠陥に囲まれた配向状態を生じ、かつこの配向
状態は、プレチルトにより液晶分子が配向表面から浮い
ている方向に対してライトニング欠陥およびヘアピン欠
陥の順序でこれら欠陥が生じることによつて生じるもの
であって、該配向状態における強誘電性液晶が少なくと
も2つの安定状態を示し、それらの光学軸のなす角を2
等分する位置に一方の偏光板の吸収軸を合わせ、それに
垂直に他方の偏光板の吸収軸を合わせた配置から一方の
偏光板だけを時計方向に3°〜30°回転させたときの
第1の安定状態の呈する色と、反時計方向に同じ角度回
転させたときの第2の安定状態の呈する色が同じである
ことを特徴とする強誘電性液晶素子。
(6) The ferroelectric liquid crystal is held in between and faces each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces, and the ferroelectric liquid crystal is The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is produced by a foreign substance such as a spacer between the substrates or by applying distortion to the substrates. An alignment state surrounded by hairpin defects and lightning defects is generated, and this alignment state is caused by the formation of these defects in the order of lightning defects and hairpin defects in the direction in which the liquid crystal molecules are floating from the alignment surface due to pretilt. The ferroelectric liquid crystal in the alignment state exhibits at least two stable states, and the angle formed by their optical axes is 2.
The absorption axis of one polarizing plate is aligned at the equal dividing position, and the absorption axis of the other polarizing plate is aligned perpendicularly to the position where the absorption axis of the other polarizing plate is aligned. A ferroelectric liquid crystal element characterized in that the color exhibited by a first stable state is the same as the color exhibited by a second stable state when rotated counterclockwise by the same angle.
(7)強誘電性液晶と、この強誘電性液晶を間に保持し
て対向するとともにその対向面にはそれぞれ強誘電性液
晶に電圧を印加するための電極が形成されかつ強誘電性
液晶を配向するための相互にほぼ平行で同一方向の一軸
性配向処理が施された一対の基板とを備え、強誘電性液
晶は、この基板間のスペーサ等の異物によってまたは基
板に歪みを加えることによってヘアピン欠陥およびライ
トニング欠陥に囲まれた配向状態を生じ、かつこの配向
状態は、プレチルトにより液晶分子が配向表面から浮い
ている方向に対してライトニング欠陥およびヘアピン欠
陥の順序でこれら欠陥が生じることによって生じるもの
であって、かつ該配向状態における強誘電性液晶がクロ
スニコル下、消光位の透過率の低い2つの安定状態と、
クロスニコル下、消光位の透過率の高い1つまたは2つ
の安定状態の計3または4状態を有することを特徴とす
る強誘電性液晶素子。
(7) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces of the ferroelectric liquid crystal. The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is produced by a foreign substance such as a spacer between the substrates or by applying distortion to the substrates. An alignment state surrounded by hairpin defects and lightning defects is produced, and this alignment state is caused by the formation of these defects in the order of lightning defects and hairpin defects with respect to the direction in which the liquid crystal molecules are floating from the alignment surface due to pretilt. and the ferroelectric liquid crystal in the alignment state has two stable states with low transmittance under crossed nicols and at the extinction position,
A ferroelectric liquid crystal element characterized by having a total of three or four states, one or two stable states with high transmittance at the extinction position under crossed Nicols.
(8)強誘電性液晶がクロスニコル下、消光位の透過率
の低い第1と第2の2つの安定状態と、クロスニコル下
、消光位の透過率の高い第3と第4の2つの安定状態の
4つの安定状態を示し、それらの光学軸のなす角を2等
分する位置に一方の偏光板の吸収軸を合わせ、それに垂
直に他方の偏光板の吸収軸を合わせた配置から一方の偏
光板だけを時計方向に3°〜30°回転させたときの第
1の安定状態の呈する色と、反時計方向に同じ角度回転
させたときの第2の安定状態の呈する色が同じであり、
一方の偏光板だけを時計方向に3°〜30°回転させた
ときの第3の安定状態の呈する色と、反時計方向に同じ
角度回転させたときの第4の安定状態の呈する色が異な
ることを特徴とする請求項7記載の強誘電性液晶素子。
(8) The ferroelectric liquid crystal has two stable states under crossed Nicols, the first and second stable states with low transmittance at the extinction position, and two stable states under crossed Nicols and the third and fourth stable states with high transmittance at the extinction position. Four stable states are shown, and the absorption axis of one polarizing plate is aligned at a position that bisects the angle formed by their optical axes, and the absorption axis of the other polarizing plate is aligned perpendicularly thereto. The color that appears in the first stable state when only the polarizing plate is rotated clockwise by 3° to 30° is the same as the color that appears in the second stable state when the polarizing plate is rotated by the same angle counterclockwise. can be,
The color exhibited by the third stable state when only one polarizing plate is rotated clockwise by 3° to 30° is different from the color exhibited by the fourth stable state when rotated by the same angle counterclockwise. The ferroelectric liquid crystal device according to claim 7, characterized in that:
(9)強誘電性液晶と、この強誘電性液晶を間に保持し
て対向するとともにその対向面にはそれぞれ強誘電性液
晶に電圧を印加するための電極が形成されかつ強誘電性
液晶を配向するための相互にほぼ平行で同一方向の一軸
性配向処理が施された一対の基板とを備え、強誘電性液
晶は、この基板間のスペーサ等の異物によってまたは基
板に歪みを加えることによってヘアピン欠陥およびライ
トニング欠陥に囲まれた配向状態を生じ、かつこの配向
状態は、ラビング方向に対してライトニング欠陥および
ヘアピン欠陥の順序でこれら欠陥が生じることによって
生じるものであって、かつ該配向状態における強誘電性
液晶が少なくとも2つの安定状態を示し、それらの光学
軸のなす角度の1/2であるθ_aと該強誘電性液晶の
チルト角Θとが Θ>θ_a>Θ/2 の関係を有することを特徴とする強誘電性液晶素子。
(9) The ferroelectric liquid crystal is held in between and faces each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces, and the ferroelectric liquid crystal is The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is produced by a foreign substance such as a spacer between the substrates or by applying distortion to the substrates. An oriented state surrounded by hairpin defects and lightning defects is produced, and this oriented state is caused by the occurrence of these defects in the order of the lightning defects and hairpin defects in the rubbing direction, and in the oriented state, The ferroelectric liquid crystal exhibits at least two stable states, and θ_a, which is 1/2 of the angle formed by their optical axes, and the tilt angle Θ of the ferroelectric liquid crystal have a relationship of Θ>θ_a>Θ/2. A ferroelectric liquid crystal element characterized by:
(10)強誘電性液晶と、この強誘電性液晶を間に保持
して対向するとともにその対向面にはそれぞれ強誘電性
液晶に電圧を印加するための電極が形成されかつ強誘電
性液晶を配向するための相互にほぼ平行で同一方向の一
軸性配向処理が施された一対の基板とを備え、強誘電性
液晶は、この基板間のスペーサ等の異物によってまたは
基板に歪みを加えることによってヘアピン欠陥およびラ
イトニング欠陥に囲まれた配向状態を生じ、かつこの配
向状態は、ラビング方向に対してライトニング欠陥およ
びヘアピン欠陥の順序でこれら欠陥が生じることによっ
て生じるものであって、かつ該配向状態における強誘電
性液晶が少なくとも2つの安定状態を示し、それらの光
学軸のなす角を2等分する位置に一方の偏光板の吸収軸
を合わせ、それに垂直に他方の偏光板の吸収軸を合わせ
た配置から一方の偏光板だけを時計方向に3°〜30°
回転させたときの第1の安定状態の呈する色と、反時計
方向に同じ角度回転させたときの第2の安定状態の呈す
る色が同じであることを特徴とする強誘電性液晶素子。
(10) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces of the ferroelectric liquid crystal. The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is produced by a foreign substance such as a spacer between the substrates or by applying distortion to the substrates. An oriented state surrounded by hairpin defects and lightning defects is produced, and this oriented state is caused by the occurrence of these defects in the order of the lightning defects and hairpin defects in the rubbing direction, and in the oriented state, A ferroelectric liquid crystal exhibits at least two stable states, and the absorption axis of one polarizing plate is aligned at a position that bisects the angle formed by their optical axes, and the absorption axis of the other polarizing plate is aligned perpendicularly thereto. Turn only one polarizing plate 3° to 30° clockwise from the arrangement.
A ferroelectric liquid crystal element characterized in that the color exhibited in a first stable state when rotated is the same as the color exhibited in a second stable state when rotated counterclockwise by the same angle.
(11)強誘電性液晶と、この強誘電性液晶を間に保持
して対向するとともにその対向面にはそれぞれ強誘電性
液晶に電圧を印加するための電極が形成されかつ強誘電
性液晶を配向するための相互にほぼ平行で同一方向の一
軸性配向処理が施された一対の基板とを備え、強誘電性
液晶は、この基板間のスペーサ等の異物によってまたは
基板に歪みを加えることによってヘアピン欠陥およびラ
イトニング欠陥に囲まれた配向状態を生じ、かつこの配
向状態は、ラビング方向に対してライトニング欠陥およ
びヘアピン欠陥の順序でこれら欠陥が生じることによっ
て生じるものであって、かつ該配向状態における強誘電
性液晶がクロスニコル下、消光位の透過率の低い2つの
安定状態と、クロスニコル下、消光位の透過率の高い1
つまたは2つの安定状態の計3または4状態を有するこ
とを特徴とする強誘電性液晶素子。
(11) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces, respectively. The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is produced by a foreign substance such as a spacer between the substrates or by applying distortion to the substrates. An oriented state surrounded by hairpin defects and lightning defects is produced, and this oriented state is caused by the occurrence of these defects in the order of the lightning defects and hairpin defects in the rubbing direction, and in the oriented state, The ferroelectric liquid crystal has two stable states, one under crossed Nicols, with low transmittance at the extinction position, and one under crossed Nicols, with high transmittance at the extinction position.
A ferroelectric liquid crystal element characterized by having three or four stable states, one or two stable states.
(12)強誘電性液晶がクロスニコル下、消光位の透過
率の低い第1と第2の2つの安定状態と、クロスニコル
下、消光位の透過率の高い第3と第4の2つの安定状態
の4つの安定状態を示し、それらの光学軸のなす角を2
等分する位置に一方の偏光板の吸収軸を合わせ、それに
垂直に他方の偏光板の吸収軸を合わせた配置から一方の
偏光板だけを時計方向に3°〜30°回転させたときの
第1の安定状態の呈する色と、反時計方向に同じ角度回
転させたときの第2の安定状態の呈する色が同じであり
、一方の偏光板だけを時計方向に3°〜30°回転させ
たときの第3の安定状態の呈する色と、反時計方向に同
じ角度回転させたときの第4の安定状態の呈する色が異
なることを特徴とする請求項11記載の強誘電性液晶素
子。
(12) The ferroelectric liquid crystal has two stable states, first and second, under crossed Nicols, with low transmittance at the extinction position, and two stable states, third and fourth, under crossed Nicols, with high transmittance at the extinction position. Four stable states are shown, and the angles formed by their optical axes are 2
The absorption axis of one polarizing plate is aligned at the equal dividing position, and the absorption axis of the other polarizing plate is aligned perpendicularly to the position where the absorption axis of the other polarizing plate is aligned. The color exhibited by the first stable state is the same as the color exhibited by the second stable state when rotated counterclockwise by the same angle, and only one polarizing plate is rotated clockwise by 3° to 30°. 12. The ferroelectric liquid crystal element according to claim 11, wherein the color exhibited by the third stable state is different from the color exhibited by the fourth stable state when rotated by the same angle in a counterclockwise direction.
(13)強誘電性液晶と、この強誘電性液晶を間に保持
して対向するとともにその対向面にはそれぞれ強誘電性
液晶に電圧を印加するための電極が形成されかつ強誘電
性液晶を配向するための相互にほぼ平行で同一方向の一
軸性配向処理が施された一対の基板とを備え、強誘電性
液晶は、配向状態がSmA等の高温からSm^*Cに降
温する過程で欠陥を伴う配向変化がなく、かつ該配向状
態における強誘電性液晶が少なくとも2つの安定状態を
示し、それらの光学軸のなす角度の1/2であるθ_a
と該強誘電性液晶のチルト角ΘとがΘ>θ_a>Θ/2 の関係を有することを特徴とする強誘電性液晶素子。
(13) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on each of the opposing surfaces, and the ferroelectric liquid crystal is The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is aligned in the process of cooling from a high temperature such as SmA to Sm^*C. θ_a where there is no orientation change accompanied by defects, and where the ferroelectric liquid crystal in the orientation state exhibits at least two stable states, and which is 1/2 of the angle formed by their optical axes.
and a tilt angle Θ of the ferroelectric liquid crystal having a relationship of Θ>θ_a>Θ/2.
(14)強誘電性液晶と、この強誘電性液晶を間に保持
して対向するとともにその対向面にはそれぞれ強誘電性
液晶に電圧を印加するための電極が形成されかつ強誘電
性液晶を配向するための相互にほぼ平行で同一方向の一
軸性配向処理が施された一対の基板とを備え、強誘電性
液晶は、配向状態がSmA等の高温からSm^*Cに降
温する過程で欠陥を伴う配向変化がなく、かつ該配向状
態における強誘電性液晶が少なくとも2つの安定状態を
示し、それらの光学軸のなす角を2等分する位置に一方
の偏光板の吸収軸を合わせ、それに垂直に他方の偏光板
の吸収軸を合わせた配置から一方の偏光板だけを時計方
向に3°〜30°回転させたときの第1の安定状態の呈
する色と、反時計方向に同じ角度回転させたときの第2
の安定状態の呈する色が同じであることを特徴とする強
誘電性液晶素子。
(14) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on the opposing surfaces, and the ferroelectric liquid crystal is The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is aligned in the process of cooling from a high temperature such as SmA to Sm^*C. ferroelectric liquid crystal exhibits at least two stable states in which there is no orientation change accompanied by defects, and in which the ferroelectric liquid crystal in the orientation state exhibits at least two stable states, and the absorption axis of one polarizing plate is aligned at a position that bisects the angle formed by their optical axes; The color that appears in the first stable state when only one polarizing plate is rotated 3° to 30° clockwise from the arrangement where the absorption axis of the other polarizing plate is aligned perpendicularly to that, and the same angle in the counterclockwise direction. 2nd when rotated
A ferroelectric liquid crystal element characterized in that the stable state of the ferroelectric liquid crystal element exhibits the same color.
(15)強誘電性液晶と、この強誘電性液晶を間に保持
して対向するとともにその対向面にはそれぞれ強誘電性
液晶に電圧を印加するための電極が形成されかつ強誘電
性液晶を配向するための相互にほぼ平行で同一方向の一
軸性配向処理が施された一対の基板とを備え、強誘電性
液晶は、配向状態がSmA等の高温からSm^*Cに降
温する過程で欠陥を伴う配向変化がなく、かつ該配向状
態における強誘電性液晶がクロスニコル下、消光位の透
過率の低い2つの安定状態と、クロスニコル下、消光位
の透過率の高い1つまたは2つの安定状態の計3または
4状態を有することを特徴とする強誘電性液晶素子。
(15) A ferroelectric liquid crystal and a ferroelectric liquid crystal that are held in between and face each other, and electrodes for applying a voltage to the ferroelectric liquid crystal are formed on each of the opposing surfaces, and the ferroelectric liquid crystal is The ferroelectric liquid crystal is equipped with a pair of substrates that are uniaxially aligned in the same direction and almost parallel to each other for alignment, and the ferroelectric liquid crystal is aligned in the process of cooling from a high temperature such as SmA to Sm^*C. There is no alignment change accompanied by defects, and the ferroelectric liquid crystal in the alignment state has two stable states: under crossed Nicols, with low transmittance at the extinction position, and under crossed Nicols, one or two stable states with high transmittance at the extinction position. A ferroelectric liquid crystal element characterized by having three or four stable states in total.
(16)強誘電性液晶がクロスニコル下、消光位の透過
率の低い第1と第2の2つの安定状態と、クロスニコル
下、消光位の透過率の高い第3と第4の2つの安定状態
の4つの安定状態を示し、それらの光学軸のなす角を2
等分する位置に一方の偏光板の吸収軸を合わせ、それに
垂直に他方の偏光板の吸収軸を合わせた配置から一方の
偏光板だけを時計方向に3°〜30°回転させたときの
第1の安定状態の呈する色と、反時計方向に同じ角度回
転させたときの第2の安定状態の呈する色が同じであり
、一方の偏光板だけを時計方向に3°〜30°回転させ
たときの第3の安定状態の呈する色と、反時計方向に同
じ角度回転させたときの第4の安定状態の呈する色が異
なることを特徴とする請求項15記載の強誘電性液晶素
子。
(16) The ferroelectric liquid crystal has two stable states, first and second, under crossed Nicols, with low transmittance at the extinction position, and two stable states, third and fourth, under crossed Nicols, with high transmittance at the extinction position. Four stable states are shown, and the angles formed by their optical axes are 2
The absorption axis of one polarizing plate is aligned at the equal dividing position, and the absorption axis of the other polarizing plate is aligned perpendicularly to the position where the absorption axis of the other polarizing plate is aligned. The color exhibited by the first stable state is the same as the color exhibited by the second stable state when rotated counterclockwise by the same angle, and only one polarizing plate is rotated clockwise by 3° to 30°. 16. The ferroelectric liquid crystal element according to claim 15, wherein the color exhibited by the third stable state is different from the color exhibited by the fourth stable state when rotated by the same angle in a counterclockwise direction.
(17)前記配向状態がライトニング欠陥 およびヘアピン欠陥を介さない3つまたは 4つの異なる安定状態を有する請求項1〜3、13〜1
5のいずれか1項記載の強誘電性液晶素子。
(17) Claims 1 to 3, 13 to 1, wherein the orientation state has three or four different stable states that do not involve lightning defects and hairpin defects.
5. The ferroelectric liquid crystal device according to any one of Item 5.
(18)前記配向状態が、SmAからSm^*Cに転移
する温度をT_1℃とすると(T_1−5)℃から(T
_1−10)℃までの、全温度範囲で存在する請求項1
〜16のいずれか1項記載の強誘電性液晶素子。
(18) If the temperature at which the orientation state transitions from SmA to Sm^*C is T_1°C, the transition from (T_1-5)°C to (T
Claim 1 present in the entire temperature range up to _1-10)°C
17. The ferroelectric liquid crystal device according to any one of items 1 to 16.
(19)前記配向状態が、SmAからSm^*Cに転移
する温度をT_1℃とすると(T_1−5)℃から(T
_1−20)℃までの、全温度範囲で存在する請求項1
〜16のいずれか1項記載の強誘電性液晶素子。
(19) If the temperature at which the orientation state transitions from SmA to Sm^*C is T_1°C, then it changes from (T_1-5)°C to (T
Claim 1 present in the entire temperature range up to _1-20)°C
17. The ferroelectric liquid crystal device according to any one of items 1 to 16.
(20)前記配向状態が、SmAからSm^*Cに転移
する温度をT_1℃とすると(T_1−5)℃から(T
_1−30)℃までの、全温度範囲で存在する請求項1
〜16のいずれか1項記載の強誘電性液晶素子。
(20) If the temperature at which the orientation state transitions from SmA to Sm^*C is T_1°C, the transition from (T_1-5)°C to (T
Claim 1 present in the entire temperature range up to _1-30)°C
17. The ferroelectric liquid crystal device according to any one of items 1 to 16.
(21)前記配向状態が、SmAからSm^*Cに転移
する温度をT_1℃とすると(T_1−5)℃から(T
_1−40)℃までの、全温度範囲で存在する請求項1
〜16のいずれか1項記載の強誘電性液晶素子。
(21) If the temperature at which the orientation state transitions from SmA to Sm^*C is T_1°C, the transition from (T_1-5)°C to (T
Claim 1 present over the entire temperature range from _1 to 40)°C
17. The ferroelectric liquid crystal device according to any one of items 1 to 16.
(22)プレチルト角αとSm^*C層の傾斜角δとの
関係が、ほぼ δ<α で表わされる配向状態を有する請求項1〜16記載の強
誘電性液晶素子。
(22) The ferroelectric liquid crystal device according to any one of claims 1 to 16, wherein the relationship between the pretilt angle α and the tilt angle δ of the Sm^*C layer is approximately δ<α.
JP2049582A 1990-03-02 1990-03-02 Liquid crystal element Expired - Fee Related JP2612503B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2049582A JP2612503B2 (en) 1990-03-02 1990-03-02 Liquid crystal element
AU72047/91A AU634031B2 (en) 1990-03-02 1991-03-01 Liquid crystal element and liquid crystal apparatus using the same
DE69131258T DE69131258T2 (en) 1990-03-02 1991-03-01 Liquid crystal element and liquid crystal device using this element
US07/663,436 US5189536A (en) 1990-03-02 1991-03-01 Ferroelectric liquid crystal element having uniform high temperature alignment
EP98119023A EP0886173A3 (en) 1990-03-02 1991-03-01 Liquid crystal element and liquid crystal apparatus using the same
EP91103125A EP0444705B1 (en) 1990-03-02 1991-03-01 Liquid crystal element and liquid crystal apparatus using the same
AT91103125T ATE180580T1 (en) 1990-03-02 1991-03-01 LIQUID CRYSTAL ELEMENT AND LIQUID CRYSTAL DEVICE USING SUCH ELEMENT
KR1019910003441A KR940005123B1 (en) 1990-03-02 1991-03-02 Liquid crystal display device using liquid crystal device
US08/272,652 US5481387A (en) 1990-03-02 1994-07-11 Chiral smectic liquid crystal element having uniform high temperature alignment and α≧8 degrees
US08/527,775 US6456349B1 (en) 1990-03-02 1995-09-13 Liquid crystal element and liquid crystal apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049582A JP2612503B2 (en) 1990-03-02 1990-03-02 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPH03252624A true JPH03252624A (en) 1991-11-11
JP2612503B2 JP2612503B2 (en) 1997-05-21

Family

ID=12835216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049582A Expired - Fee Related JP2612503B2 (en) 1990-03-02 1990-03-02 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP2612503B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240820A (en) * 1991-01-25 1992-08-28 Sharp Corp Liquid crystal display device
JPH05165031A (en) * 1991-12-11 1993-06-29 Sharp Corp Liquid crystal display device
JPH05188382A (en) * 1992-01-17 1993-07-30 Sharp Corp Ferroelectric liquid crystal display device
JPH05345891A (en) * 1991-11-22 1993-12-27 Canon Inc Liquid crystal composition, liquid crystal element and display device
US5305131A (en) * 1991-11-22 1994-04-19 Canon Kabushiki Kaisha Liquid crystal composition having an improved temperature dependence of response speed, liquid crystal device and display apparatus
US5458804A (en) * 1992-05-26 1995-10-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
US5582763A (en) * 1993-09-29 1996-12-10 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus using same
US5646754A (en) * 1994-09-30 1997-07-08 Sharp Kabushiki Kaisha Ferroelectric liquid crystal display device including a ferroelectric liquid crystal material capable of exhibiting the smectic A phase and the chiral smectic C phase
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6122032A (en) * 1996-07-31 2000-09-19 Canon Kabushiki Kaisha Wedge shaped LCD with change in dispersion density of spacers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537906U (en) * 1976-07-02 1978-01-24
JPS5365637U (en) * 1976-11-06 1978-06-02
JPS5814902B2 (en) * 1979-05-14 1983-03-23 積水化学工業株式会社 How to lift building units
JPS6122117Y2 (en) * 1981-03-23 1986-07-02

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537906U (en) * 1976-07-02 1978-01-24
JPS5365637U (en) * 1976-11-06 1978-06-02
JPS5814902B2 (en) * 1979-05-14 1983-03-23 積水化学工業株式会社 How to lift building units
JPS6122117Y2 (en) * 1981-03-23 1986-07-02

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240820A (en) * 1991-01-25 1992-08-28 Sharp Corp Liquid crystal display device
JPH05345891A (en) * 1991-11-22 1993-12-27 Canon Inc Liquid crystal composition, liquid crystal element and display device
US5305131A (en) * 1991-11-22 1994-04-19 Canon Kabushiki Kaisha Liquid crystal composition having an improved temperature dependence of response speed, liquid crystal device and display apparatus
JPH05165031A (en) * 1991-12-11 1993-06-29 Sharp Corp Liquid crystal display device
JPH05188382A (en) * 1992-01-17 1993-07-30 Sharp Corp Ferroelectric liquid crystal display device
US5458804A (en) * 1992-05-26 1995-10-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5582763A (en) * 1993-09-29 1996-12-10 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus using same
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
US5646754A (en) * 1994-09-30 1997-07-08 Sharp Kabushiki Kaisha Ferroelectric liquid crystal display device including a ferroelectric liquid crystal material capable of exhibiting the smectic A phase and the chiral smectic C phase
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5728318A (en) * 1994-11-10 1998-03-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
US6122032A (en) * 1996-07-31 2000-09-19 Canon Kabushiki Kaisha Wedge shaped LCD with change in dispersion density of spacers

Also Published As

Publication number Publication date
JP2612503B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
EP0444705B1 (en) Liquid crystal element and liquid crystal apparatus using the same
JPH03252624A (en) Ferroelectric liquid crystal element
JPH07234409A (en) Orientation treatment for liquid crystal and production of liquid crystal element using the method and liquid crystal element
JP2814157B2 (en) Chiral smectic liquid crystal device
JPH05203961A (en) Ferroelectric liquid crystal element
JP2614347B2 (en) Liquid crystal element and liquid crystal display
JP2794358B2 (en) Liquid crystal element
JP3000504B2 (en) Liquid crystal element
JP2582309B2 (en) Liquid crystal element
JP2612504B2 (en) Liquid crystal device
JP2794359B2 (en) Liquid crystal element
JPH0325418A (en) Liquid crystal element
JP2994854B2 (en) Liquid crystal composition and liquid crystal device using the same
JP3083016B2 (en) Liquid crystal alignment treatment method and liquid crystal element manufacturing method
US5844653A (en) Liquid crystal mixture
JP2614321B2 (en) Liquid crystal element
JP3180171B2 (en) Ferroelectric liquid crystal device
JPH0446410B2 (en)
JP2784699B2 (en) Liquid crystal element
JP3062978B2 (en) Ferroelectric liquid crystal device
JPH04316019A (en) Ferroelectric liquid crystal element
JPH06186569A (en) Ferroelectric liquid crystal device
JPH0540266A (en) Liquid crystal element
JPH06186567A (en) Ferroelectric liquid crystal device
JPH0553117A (en) Liquid crystal element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees