JP3316328B2 - Superconducting magnet test apparatus and superconducting magnet test method - Google Patents

Superconducting magnet test apparatus and superconducting magnet test method

Info

Publication number
JP3316328B2
JP3316328B2 JP219295A JP219295A JP3316328B2 JP 3316328 B2 JP3316328 B2 JP 3316328B2 JP 219295 A JP219295 A JP 219295A JP 219295 A JP219295 A JP 219295A JP 3316328 B2 JP3316328 B2 JP 3316328B2
Authority
JP
Japan
Prior art keywords
coil
superconducting magnet
superconducting
propulsion
underframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP219295A
Other languages
Japanese (ja)
Other versions
JPH08191508A (en
Inventor
井 元 昭 寺
浦 秋 彦 三
田 真 史 藤
合 正 道 河
森 順 次 大
尾 裕 行 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP219295A priority Critical patent/JP3316328B2/en
Publication of JPH08191508A publication Critical patent/JPH08191508A/en
Application granted granted Critical
Publication of JP3316328B2 publication Critical patent/JP3316328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気浮上式鉄道におい
て、軌道に設置された推進コイルが短絡した時に、車両
に搭載された超電導コイル及びそれを含む超電導磁石装
置に発生する電磁力を模擬的に発生させ、その電磁力の
影響を試験するための超電導磁石試験装置及び超電導磁
石試験方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention simulates the electromagnetic force generated in a superconducting coil mounted on a vehicle and a superconducting magnet device including the same when a propulsion coil installed on a track is short-circuited in a magnetic levitation railway. TECHNICAL FIELD The present invention relates to a superconducting magnet test apparatus and a superconducting magnet test method for generating electromagnetic waves and testing the effect of the electromagnetic force.

【0002】[0002]

【従来の技術】従来の技術を図6及び図7を用いて説明
する。図6は磁気浮上式鉄道の車両及び軌道の正面図
を、図7は超電導磁石装置2の正面図をそれぞれ示して
いる。
2. Description of the Related Art A conventional technique will be described with reference to FIGS. FIG. 6 is a front view of a vehicle and a track of the magnetic levitation railway, and FIG. 7 is a front view of the superconducting magnet device 2.

【0003】超電導磁石装置2は、磁気浮上式鉄道の車
両1に搭載され車両1の浮上、案内及び推進用に用いら
れる超電導コイル3を含んでいる。超電導磁石装置2の
周囲は、真空断熱容器である外槽5によって覆われてい
る。外槽5の中には支持具6を介して円環状の内槽4が
宙づりにされており、この支持具6によって超電導磁石
装置2全体が車両1の台枠10に支持固定されている。
内槽4の中には、超電導コイル3とそれを冷やす冷媒
(例えば液体ヘリウム)が収納されている。
The superconducting magnet device 2 includes a superconducting coil 3 mounted on a vehicle 1 of a magnetic levitation railway and used for levitation, guidance and propulsion of the vehicle 1. The periphery of the superconducting magnet device 2 is covered by an outer tank 5 which is a vacuum heat insulating container. An annular inner tub 4 is suspended in the outer tub 5 via a support 6, and the entire superconducting magnet device 2 is supported and fixed to the underframe 10 of the vehicle 1 by the support 6.
The inner tank 4 contains the superconducting coil 3 and a refrigerant (for example, liquid helium) for cooling the coil.

【0004】磁気浮上式鉄道の車両1は、軌道7に設置
された推進コイル8によって推進力を得る。その推進力
によって車両1が動き始めるとそれと共に超電導コイル
3の励磁電流による磁界が変化するため、電磁誘導によ
って軌道7上に設置された浮上コイル9に浮上電流が誘
起され浮上力が発生する。車両1は、その浮上力を得て
走行する。
[0004] A vehicle 1 of a magnetic levitation railway obtains propulsion by a propulsion coil 8 installed on a track 7. When the vehicle 1 starts to move due to the propulsion force, the magnetic field generated by the exciting current of the superconducting coil 3 changes at the same time, so that the levitation current is induced in the levitation coil 9 installed on the track 7 by electromagnetic induction, and a levitation force is generated. The vehicle 1 travels by obtaining the levitation force.

【0005】ここで、車両1の走行中に何らかの原因で
推進コイル8が短絡した場合を考える。この時、推進コ
イル8にはその短絡によって閉ループが形成される。こ
の閉ループが形成された推進コイル8には、超電導コイ
ル3を流れる励磁電流により生じる磁界が車両1の走行
と共に進行方向に向かって変化するため、電流が誘起さ
れることになる。この短絡電流による磁界と超電導コイ
ル3の励磁電流とによってローレンツ力が生じ、超電導
コイル3には電磁力が発生する。さらに推進コイル8を
流れる短絡電流による磁界は、走行中の車両1内の外槽
5に渦電流を誘起し、この渦電流と超電導コイル3によ
る直流磁界とによってローレンツ力が生じ、外槽5にも
電磁力が働く。
Here, consider a case where the propulsion coil 8 is short-circuited for some reason while the vehicle 1 is running. At this time, a closed loop is formed in the propulsion coil 8 due to the short circuit. The magnetic field generated by the exciting current flowing through the superconducting coil 3 changes in the traveling direction as the vehicle 1 travels in the propulsion coil 8 in which the closed loop is formed, so that a current is induced. The Lorentz force is generated by the magnetic field due to the short-circuit current and the exciting current of the superconducting coil 3, and an electromagnetic force is generated in the superconducting coil 3. Further, the magnetic field due to the short-circuit current flowing through the propulsion coil 8 induces an eddy current in the outer tub 5 in the running vehicle 1, and a Lorentz force is generated by the eddy current and the DC magnetic field generated by the superconducting coil 3. Also electromagnetic force works.

【0006】こうした電磁力は衝撃力として、超電導コ
イル3や図示していない永久電流スイッチのクエンチ、
図示していない冷却配管系の破損、真空断熱機能を有す
る外槽5の変形及び推進コイル8と浮上コイル9とを含
めた地上コイルの破損の原因となる。
Such an electromagnetic force is used as an impact force to quench the superconducting coil 3 or a permanent current switch (not shown),
This causes damage to a cooling piping system (not shown), deformation of the outer tank 5 having a vacuum insulation function, and damage to ground coils including the propulsion coil 8 and the levitation coil 9.

【0007】更に、超電導磁石装置2と車両台枠10と
の支持部分の剛性は、車両走行時の乗客の乗り心地に影
響を与えると共に、超電導コイル3に働く負荷にも影響
を与え、この負荷が超電導コイル3にクエンチを引き起
こす原因となるうる。
Further, the rigidity of the supporting portion between the superconducting magnet device 2 and the vehicle frame 10 affects not only the ride comfort of the passenger when the vehicle is running, but also the load acting on the superconducting coil 3. May cause quench in the superconducting coil 3.

【0008】[0008]

【発明が解決しようとする課題】このような電磁力によ
る衝撃に対する超電導コイル3の耐クエンチ性、真空断
熱機能を有する外槽5の耐衝撃性、各種構成部品の耐衝
撃性及び支持部分の剛性のクエンチへの影響度を予め検
証する必要がある。
The quench resistance of the superconducting coil 3 against such an electromagnetic force, the shock resistance of the outer tank 5 having a vacuum heat insulating function, the shock resistance of various components, and the rigidity of the supporting portion. It is necessary to verify in advance the degree of influence on quench.

【0009】しかし、従来このような電磁力を発生させ
てその影響を検証をするには実機である車両及び軌道を
用いる以外にその方法が存在しなかった。
However, conventionally, there has been no method for generating such an electromagnetic force and verifying the influence thereof, except for using a vehicle and a track which are actual machines.

【0010】そこで、本発明の目的は軌道に設置された
推進コイルが短絡した時に、車両に搭載された超電導コ
イル及び超電導磁石装置に生じる電磁力を模擬的に発生
させ、その電磁力の影響の試験を行いうる超電導磁石試
験装置及び超電導磁石試験方法を提供することにある。
Accordingly, an object of the present invention is to simulate the electromagnetic force generated in a superconducting coil and a superconducting magnet device mounted on a vehicle when a propulsion coil installed on a track is short-circuited, and to simulate the effect of the electromagnetic force. An object of the present invention is to provide a superconducting magnet testing apparatus and a superconducting magnet testing method capable of performing a test.

【0011】[0011]

【課題を解決するための手段】本発明の超電導磁石試験
装置は、磁気浮上式鉄道の軌道に設置された推進コイル
が短絡した時に磁気浮上式鉄道の車両に搭載された超電
導コイル及びそれを含む超電導磁石装置に加わる力を模
擬的に発生させる超電導磁石試験装置であって、互いに
所定の間隔をおいて平行に配置された第1及び第2の板
状の台枠と、第1の台枠の第2の台枠との対向面に取付
けられている推進コイルと、第2の台枠の第1の台枠と
の対向面に、超電導コイルの軸が推進コイルの軸と一致
するように、超電導コイルと共に支持部によって取付け
られている超電導磁石装置とを備えているものである。
更に本発明の超電導磁石試験方法は、その超電導磁石試
験装置の超電導コイル及び超電導磁石装置に加えられる
電磁力の影響を試験する超電導磁石試験方法において、
車両内で流される電流を流して超電導コイルを励磁する
ステップと、軌道上で短絡が生じた時に誘導される電流
を推進コイルに流すステップと、超電導コイル及び超電
導磁石装置に加わる電磁力の影響を試験するステップと
を有する。
SUMMARY OF THE INVENTION A superconducting magnet test apparatus according to the present invention includes a superconducting coil mounted on a vehicle of a magnetically levitated railway when a propulsion coil installed on a track of the magnetically levitated railway short-circuits, and the superconducting coil mounted thereon. A superconducting magnet test apparatus for simulating a force applied to a superconducting magnet apparatus, comprising: a first and a second plate-shaped underframe arranged in parallel at a predetermined interval from each other; And the propulsion coil attached to the surface of the second underframe facing the first underframe so that the axis of the superconducting coil coincides with the axis of the propulsion coil. , And a superconducting magnet device mounted by a support together with a superconducting coil.
Further, the superconducting magnet test method of the present invention is a superconducting magnet test method for testing the effect of electromagnetic force applied to a superconducting coil and a superconducting magnet device of the superconducting magnet test device,
Exciting the superconducting coil by flowing a current flowing in the vehicle, flowing a current induced to the propulsion coil when a short circuit occurs on the track, and controlling the effect of electromagnetic force applied to the superconducting coil and the superconducting magnet device. Testing.

【0012】[0012]

【作用】本発明の超電導磁石試験装置は、実機と同様に
推進コイルと超電導コイルを含む超電導磁石試験装置と
を対向して設置し、実際に車両内で流される電流を流し
て超電導コイルを励磁した後、実際に推進コイルが短絡
した時に誘導される電流を模擬的に流す。超電導コイル
には、推進コイルに流した電流による磁場と超電導コイ
ルの電流の相互作用により電磁力が生じる。これによ
り、実機走行中に推進コイルの短絡により超電導コイル
に働く電磁力を模擬的に発生させることが可能になり、
その電磁力による超電導磁石装置の信頼性への影響を試
験することができる。
In the superconducting magnet test apparatus of the present invention, a propulsion coil and a superconducting magnet test apparatus including a superconducting coil are installed facing each other, as in the actual machine, and the current actually passed in the vehicle flows to excite the superconducting coil. After that, the current induced when the propulsion coil is actually short-circuited is simulated. An electromagnetic force is generated in the superconducting coil due to the interaction between the magnetic field generated by the current flowing through the propulsion coil and the current of the superconducting coil. This makes it possible to simulate the electromagnetic force acting on the superconducting coil due to the short circuit of the propulsion coil while the actual machine is running,
The effect of the electromagnetic force on the reliability of the superconducting magnet device can be tested.

【0013】[0013]

【実施例】図1を基に本発明による超電導磁石試験装置
の一実施例を説明する。図1はこの実施例の側面図を示
している。図示するように、地面に台座13が複数個置
かれており、それらの上に1枚の基盤14が水平方向に
載せられ固定されている。基盤14上には、互いに間隔
をおいて平行に第1の板状の台枠11s及び第2の板状
の台枠11eが配置されており、さらに第1の台枠11
s及び第2の台枠11eの上には、天井枠11tが水平
方向に載せられ固定されている。第1の台枠11s及び
第2の台枠11eが基盤14と頑丈に固定されるよう
に、第1の補強材15s及び第2の補強材15eが基盤
14の縁と第1の台枠11s及び第2の11eの上端と
の間にそれぞれ配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a superconducting magnet test apparatus according to the present invention will be described with reference to FIG. FIG. 1 shows a side view of this embodiment. As shown in the figure, a plurality of pedestals 13 are placed on the ground, and a single base 14 is placed and fixed thereon in a horizontal direction. On the base 14, a first plate-shaped frame 11 s and a second plate-shaped frame 11 e are arranged in parallel at an interval from each other.
On the second frame 11e and the second frame 11e, a ceiling frame 11t is horizontally mounted and fixed. The first reinforcement 15s and the second reinforcement 15e are connected to the edge of the base 14 and the first frame 11s so that the first frame 11s and the second frame 11e are firmly fixed to the base 14. And the upper end of the second 11e.

【0014】第1の台枠11sの第2の台枠11eとの
対向面には、その軸がその対向面に対して垂直になるよ
うに推進コイル8が取付けられている。他方、第2の台
枠11eの第1の台枠11sとの対向面には、超電導コ
イル3の軸がその対向面に垂直になるようにまた推進コ
イル8の軸と一致するように超電導磁石装置2が支持部
12によって取付けられている。
A propulsion coil 8 is mounted on a surface of the first frame 11s facing the second frame 11e so that its axis is perpendicular to the surface facing the second frame 11e. On the other hand, the superconducting magnet is provided on the surface of the second underframe 11e facing the first underframe 11s such that the axis of the superconducting coil 3 is perpendicular to the facing surface and coincides with the axis of the propulsion coil 8. The device 2 is mounted by a support 12.

【0015】まず、車両走行中の状態を模擬するため、
超電導磁石装置2に含まれる超電導コイル3に電流を流
し励磁する。次に、推進コイル8が短絡した状態を模擬
するため、図2に示すような実際に軌道上で推進コイル
8が短絡した時に流れる電流を推進コイル8に流す。
First, in order to simulate a state in which the vehicle is running,
An electric current flows through the superconducting coil 3 included in the superconducting magnet device 2 to excite it. Next, in order to simulate a state in which the propulsion coil 8 is short-circuited, a current flowing when the propulsion coil 8 is actually short-circuited on the track as shown in FIG.

【0016】図2は、短絡電流を流す時間とその短絡電
流による起磁力との関係を示しており、短絡電流による
起磁力が最大になる時間が時間0となるように時間軸を
設定している。この場合、時間(−5)msecから推
進コイル8に電流を流し始め、時間0msecまでその
電流値を大きくしていき、以後時間5msecで電流値
が0となるように電流を流している。
FIG. 2 shows the relationship between the time during which the short-circuit current flows and the magnetomotive force due to the short-circuit current. The time axis is set so that the time at which the magnetomotive force due to the short-circuit current is maximized is time 0. I have. In this case, the current starts to flow to the propulsion coil 8 at time (−5) msec, increases the current value until time 0 msec, and thereafter, the current flows so that the current value becomes 0 at time 5 msec.

【0017】この推進コイル8に流された電流によって
変動磁場が生じ、その変動磁場とコイル3を流れる励磁
電流との相互作用によって電磁力が生じる。こうして、
車両走行中に推進コイル8に生じる短絡電流により超電
導コイル3及び超電導磁石装置2に加えられる電磁力す
なわち衝撃力を模擬的に発生させることができ、例え
ば、推進コイル8に流す電流を変更することによって超
電導コイル3がクエンチする時の電磁力を求めることが
できる。
The current flowing through the propulsion coil 8 generates a fluctuating magnetic field, and an interaction between the fluctuating magnetic field and the exciting current flowing through the coil 3 generates an electromagnetic force. Thus,
An electromagnetic force, i.e., an impact force applied to the superconducting coil 3 and the superconducting magnet device 2 can be simulated by a short-circuit current generated in the propulsion coil 8 during running of the vehicle. For example, changing the current flowing in the propulsion coil 8 Thus, the electromagnetic force when the superconducting coil 3 is quenched can be obtained.

【0018】これによって、実機を実際に走行させずに
超電導コイル及び超電導磁石装置にかかる衝撃力の影響
を検証することができる。
Thus, it is possible to verify the influence of the impact force applied to the superconducting coil and the superconducting magnet device without actually running the actual machine.

【0019】更に別の実施例を図3を用いて説明する。
図3はこの実施例の正面図を示している。図示するよう
に、上述した実施例と違い、推進コイル8の軸と超電導
磁石装置2に含まれる超電導コイル3の軸とが、前後方
向に互いに長さDXだけ、高さ方向にDZだけずらされ
て各台枠11s,11eに支持固定されている。このよ
うに各コイルの軸をずらして各台枠11s、11eに固
定して、上述した手順で電磁力を発生させると、この電
磁力の回転モーメントを変更させることができる。
Another embodiment will be described with reference to FIG.
FIG. 3 shows a front view of this embodiment. As shown in the drawing, unlike the above-described embodiment, the axis of the propulsion coil 8 and the axis of the superconducting coil 3 included in the superconducting magnet device 2 are shifted from each other by the length DX in the front-rear direction and by DZ in the height direction. And are supported and fixed to the respective underframes 11s and 11e. In this manner, when the axes of the coils are shifted and fixed to the frames 11s and 11e and the electromagnetic force is generated in the above-described procedure, the rotational moment of the electromagnetic force can be changed.

【0020】なお、図4にDX=0mmの場合の、図5
にDX=175mmの場合の超電導コイル3にかかる回
転モーメントを示しておく。図4及び図5のいずれも、
それぞれの回転モーメントが最大になる時間が時間0と
なるように時間軸を設定している。時間(−5)mse
cから推進コイル8に電流を流し始め、時間0msec
までその電流値を大きくしていき、以後時間5msec
で電流値が0となるように電流を流している。Mxは前
後方向の回転モーメントを、Myは左右方向の回転モー
メントを、Mzは高さ方向の回転モーメントをそれぞれ
示している。
FIG. 4 shows a case where DX = 0 mm in FIG.
Shows the rotational moment applied to the superconducting coil 3 when DX = 175 mm. Both FIG. 4 and FIG.
The time axis is set so that the time at which each rotational moment is maximized is time 0. Time (-5) mse
c, the current starts flowing to the propulsion coil 8 for 0 msec.
The current value is increased until the time is 5 msec.
And the current is passed so that the current value becomes zero. Mx indicates a rotational moment in the front-rear direction, My indicates a rotational moment in the left-right direction, and Mz indicates a rotational moment in the height direction.

【0021】このように、方向の異なる電磁力を模擬的
に発生させることができるため、方向の異なる電磁力の
影響を試験することも可能になる。
As described above, since electromagnetic forces having different directions can be simulated, it is possible to test the effects of electromagnetic forces having different directions.

【0022】更に、支持部12と第2の台枠11eとを
取り付けるボルトの本数を変更したり、支持部12の材
質を変更したりする等超電導磁石装置2と第2の台枠1
1eとの支持剛性を変更することによって、超電導コイ
ル3に働く負荷を変更することができる。その結果、超
電導磁石装置2と車両台枠の支持剛性による超電導コイ
ル3で発生するクエンチへの影響を試験できる。
Further, the superconducting magnet device 2 and the second underframe 1 are used to change the number of bolts for attaching the support 12 to the second underframe 11e or to change the material of the support 12.
The load acting on the superconducting coil 3 can be changed by changing the support rigidity with respect to 1e. As a result, the effect on the quench generated in the superconducting coil 3 due to the superconducting magnet device 2 and the support rigidity of the vehicle underframe can be tested.

【0023】更に、推進コイル8と第1の台枠11sと
の取付け構造を、実際の軌道に取付ける構造とすれば、
推進コイル短絡時の推進コイル8に働く現象を模擬をす
ることができる。また、実際に軌道に取付ける構造と異
なる構造によって推進コイル8と台枠11sとを取付け
て試験をすることもできる。例えば、推進コイル8の背
面全体を第1の台枠11sに固定して試験を行えば、実
際に軌道に固定される推進コイル8に短絡が生じる条件
よりも更に厳しい条件によって、超電導磁石装置2に負
荷を与える試験を行うことができ、超電導磁石装置2の
信頼性を検証できる。
Further, if the structure for mounting the propulsion coil 8 and the first underframe 11s is a structure for mounting on an actual track,
A phenomenon acting on the propulsion coil 8 when the propulsion coil is short-circuited can be simulated. Further, the test can be performed by attaching the propulsion coil 8 and the underframe 11s by a structure different from the structure actually attached to the track. For example, if the test is performed with the entire back surface of the propulsion coil 8 fixed to the first underframe 11 s, the superconducting magnet device 2 is subjected to a more severe condition than a condition where a short circuit occurs in the propulsion coil 8 actually fixed to the track. A test for applying a load to the superconducting magnet device 2 can be verified.

【0024】[0024]

【発明の効果】本発明により、軌道に設置された推進コ
イルが短絡した時に車両に搭載された超電導コイル及び
超電導磁石装置に生じる電磁力を模擬的に発生させ、そ
の影響の試験を行いうる超電導磁石試験装置及び超電導
磁石試験方法を提供することができる。
According to the present invention, a superconducting coil capable of simulating the electromagnetic force generated in a superconducting coil and a superconducting magnet device mounted on a vehicle when a propulsion coil installed on a track is short-circuited and capable of testing the effect thereof. A magnet test apparatus and a superconducting magnet test method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による超電導磁石試験装置の一実施例を
示す側面図。
FIG. 1 is a side view showing one embodiment of a superconducting magnet test apparatus according to the present invention.

【図2】推進コイルに流す電流とそれにより励磁される
起磁力との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between a current flowing through a propulsion coil and a magnetomotive force excited by the current.

【図3】本発明による別の実施例を示す正面図。FIG. 3 is a front view showing another embodiment according to the present invention.

【図4】推進コイルと超電導コイルの軸をずらさずに設
置した時の推進コイルに流す電流とそれにより生じる回
転モーメントとの関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the current flowing through the propulsion coil and the rotational moment generated when the propulsion coil and the superconducting coil are installed without shifting their axes.

【図5】推進コイルと超電導コイルの軸をずらして設置
した時の推進コイルに流す電流とそれにより生じる回転
モーメントとの関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the current flowing through the propulsion coil and the rotational moment generated when the propulsion coil and the superconducting coil are installed with their axes shifted.

【図6】磁気浮上式鉄道の軌道と車両とを示す正面図。FIG. 6 is a front view showing a track and a vehicle of the magnetic levitation railway.

【図7】超電導磁石装置を示す正面図。FIG. 7 is a front view showing the superconducting magnet device.

【符号の説明】[Explanation of symbols]

1 車両 2 超電導磁石装置 3 超電導コイル 4 内槽 5 外槽 6 支持具 7 軌道 8 推進コイル 9 浮上コイル 10,11s,11e 台枠 11t 天井枠 12 支持部 13 台座 14 基盤 15s,15e 補強材 DESCRIPTION OF SYMBOLS 1 Vehicle 2 Superconducting magnet device 3 Superconducting coil 4 Inner tank 5 Outer tank 6 Supporting tool 7 Track 8 Propulsion coil 9 Floating coil 10, 11s, 11e Underframe 11t Ceiling frame 12 Supporting part 13 Base 14 Base 15s, 15e Reinforcing material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河 合 正 道 神奈川県横浜市鶴見区末広町2丁目4番 地 株式会社東芝 京浜事業所内 (72)発明者 大 森 順 次 神奈川県横浜市鶴見区末広町2丁目4番 地 株式会社東芝 京浜事業所内 (72)発明者 中 尾 裕 行 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (56)参考文献 特開 平4−190171(JP,A) 特開 平6−148105(JP,A) 実開 昭54−58701(JP,U) (58)調査した分野(Int.Cl.7,DB名) B60L 13/10 G01R 31/00 G01N 25/20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masamichi Kawai 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Works, Toshiba Corporation (72) Inventor Junji Omori Tsurumi-ku, Yokohama-shi, Kanagawa 2-4 Suehirocho, Keihin Plant, Toshiba Corporation (72) Inventor Hiroyuki Nakao 1 Toshiba-cho, Fuchu-shi, Tokyo Inside Fuchu Plant, Toshiba Corporation (56) References JP-A-4-190171 (JP) (A) JP-A-6-148105 (JP, A) JP-A-54-58701 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B60L 13/10 G01R 31/00 G01N 25/20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気浮上式鉄道の軌道に設置された推進コ
イルが短絡した時に磁気浮上式鉄道の車両に搭載された
超電導コイル及びそれを含む超電導磁石装置に加わる電
磁力を模擬的に発生させる超電導磁石試験装置であっ
て、 互いに所定の間隔をおいて平行に配置された第1及び第
2の板状の台枠と、前記第1の台枠の前記第2の台枠と
の対向面に取付けられている推進コイルと、前記第2の
台枠の前記第1の台枠との対向面に、前記超電導コイル
の軸が前記推進コイルの軸と一致するように、前記超電
導コイルと共に支持部によって取付けられている超電導
磁石装置とを備えた超電導磁石試験装置。
1. A simulated electromagnetic force applied to a superconducting coil mounted on a vehicle of a magnetically levitated railway and a superconducting magnet device including the same when a propulsion coil installed on a track of the magnetically levitated railway short-circuits. A superconducting magnet test apparatus, comprising: first and second plate-shaped underframes arranged in parallel at a predetermined distance from each other; and a surface of the first underframe facing the second underframe. The supporting coil and the superconducting coil are supported on the surface of the second underframe facing the first underframe so that the axis of the superconducting coil coincides with the axis of the propulsion coil. And a superconducting magnet device mounted by the unit.
【請求項2】前記推進コイル及び前記超電導磁石装置
は、前記推進コイル及び前記超電導コイルの互いの軸が
互いにずれるように前記第1及び第2の台枠それぞれに
取り付けられている請求項1に記載の超電導磁石試験装
置。
2. The propulsion coil and the superconducting magnet device are mounted on the first and second underframes respectively such that the axes of the propulsion coil and the superconducting coil are shifted from each other. The superconducting magnet test apparatus according to the above.
【請求項3】請求項1又は請求項2に記載の超電導磁石
試験装置の超電導コイル及び超電導磁石装置に加えられ
る電磁力の影響を試験する超電導磁石試験方法におい
て、 車両内で実際に流される電流を流して前記超電導コイル
を励磁するステップと、軌道上で短絡が生じた時に誘導
される電流を前記推進コイルに流すステップと、前記超
電導コイル及び超電導磁石装置に加わる前記電磁力の影
響を試験するステップとを有する超電導磁石試験方法。
3. A superconducting magnet test method for testing the effect of an electromagnetic force applied to a superconducting coil and a superconducting magnet device of a superconducting magnet testing device according to claim 1 or 2, wherein a current actually flowing in a vehicle is provided. To excite the superconducting coil, flowing a current induced when a short circuit occurs on the track to the propulsion coil, and testing the effect of the electromagnetic force applied to the superconducting coil and the superconducting magnet device. And a superconducting magnet test method.
【請求項4】前記支持部の剛性を変更するステップを更
に加えた請求項3に記載の超電導磁石試験方法。
4. The superconducting magnet test method according to claim 3, further comprising the step of changing the rigidity of said support portion.
【請求項5】前記第1の台枠と前記推進コイルとの取付
構造を変更するステップを更に加えた請求項3に記載の
超電導磁石試験方法。
5. The superconducting magnet test method according to claim 3, further comprising a step of changing a mounting structure between the first underframe and the propulsion coil.
JP219295A 1995-01-10 1995-01-10 Superconducting magnet test apparatus and superconducting magnet test method Expired - Lifetime JP3316328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP219295A JP3316328B2 (en) 1995-01-10 1995-01-10 Superconducting magnet test apparatus and superconducting magnet test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP219295A JP3316328B2 (en) 1995-01-10 1995-01-10 Superconducting magnet test apparatus and superconducting magnet test method

Publications (2)

Publication Number Publication Date
JPH08191508A JPH08191508A (en) 1996-07-23
JP3316328B2 true JP3316328B2 (en) 2002-08-19

Family

ID=11522506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP219295A Expired - Lifetime JP3316328B2 (en) 1995-01-10 1995-01-10 Superconducting magnet test apparatus and superconducting magnet test method

Country Status (1)

Country Link
JP (1) JP3316328B2 (en)

Also Published As

Publication number Publication date
JPH08191508A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
US4803563A (en) Rotor-in-stator examination magnetic carriage and positioning apparatus
JP5917384B2 (en) Dynamic durability test method for superconducting magnetic levitation railway ground coil
JP4431061B2 (en) Derailment prevention device
JP7268922B1 (en) Magnetic levitation railway running state simulator and its simulation method
JP3316328B2 (en) Superconducting magnet test apparatus and superconducting magnet test method
US7592727B1 (en) Quiet load for motor testing
JP2011038816A (en) Electromagnetic excitation fatigue testing device utilizing superconducting magnet magnetic field
WO2024050991A1 (en) Electric magnetic-levitation magnet vibration and impact test apparatus
JPH05109B2 (en)
JP2002143771A (en) Ground-coil electromagnetic excitation test apparatus
JP3704630B2 (en) Magnetically levitated train with torsional vibration detection coil of superconducting magnet
Sakamoto et al. Development of a MAGLEV superconducting magnet for the Yamanashi test line in Japan: Vibration characteristics and analysis for design
CN114694468A (en) Full simulation ground dynamic test device for rotor magnet of superconducting magnetic suspension linear motor
Suzuki Heating phenomena in the superconducting magnet of a maglev vehicle caused by electromagnetic vibration
JP3959361B2 (en) Magnetically supported electromagnetic vibration device and vibration method
JPH01440A (en) Linear motor testing equipment
Li et al. The Design of a Testing Platform for Dynamic Stability of Superconducting Null-Flux Electrodynamic Suspension Systems
KR100235231B1 (en) Apparatus for performance test of an electromagnet of magnetically levitated train
Ohashi et al. Running characteristics of the magnetically levitated train in a curved track section
CN220136611U (en) Magnetic suspension ground mold vibration durability test device
JP3147985B2 (en) Propulsion coil and method of mounting propulsion coil
JP3787751B2 (en) Damage evaluation method for load support for magnetic levitation train
JPH10214712A (en) Method for calculating heat generation of superconducting magnet for magnetically levitated transportation system
CN117990396A (en) Rolling vibration reduction ratio test device suitable for electric suspension
JPH0264450A (en) Apparatus for inspecting deterioration of material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term