JP2011038816A - Electromagnetic excitation fatigue testing device utilizing superconducting magnet magnetic field - Google Patents

Electromagnetic excitation fatigue testing device utilizing superconducting magnet magnetic field Download PDF

Info

Publication number
JP2011038816A
JP2011038816A JP2009184158A JP2009184158A JP2011038816A JP 2011038816 A JP2011038816 A JP 2011038816A JP 2009184158 A JP2009184158 A JP 2009184158A JP 2009184158 A JP2009184158 A JP 2009184158A JP 2011038816 A JP2011038816 A JP 2011038816A
Authority
JP
Japan
Prior art keywords
superconducting magnet
excitation
magnetic field
coil
magnet magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009184158A
Other languages
Japanese (ja)
Other versions
JP5225949B2 (en
Inventor
Masao Suzuki
正夫 鈴木
Masayuki Aeba
雅之 饗庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2009184158A priority Critical patent/JP5225949B2/en
Publication of JP2011038816A publication Critical patent/JP2011038816A/en
Application granted granted Critical
Publication of JP5225949B2 publication Critical patent/JP5225949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic excitation fatigue testing device targeting a mold material of a ground coil in a superconducting magnetically levitated railroad and utilizing a superconducting magnet magnetic field that is excited at an optional frequency. <P>SOLUTION: The electromagnetic excitation fatigue testing device utilizing a superconducting magnet magnetic field is equipped with: a test piece 1, namely a mold material of a ground coil in a superconducting magnetically levitated railroad; a tool 2 for exciting a test piece having a link mechanism 3 disposed at both the sides of the test piece 1; a coil 6 for excitation connected to the link mechanism 3; an inverter power supply 7 connected to the coil 6 for excitation; and a superconducting magnet 8 disposed to oppose the coil 6 for excitation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超電導磁石磁場を利用した電磁加振疲労試験装置に係り、特に超電導磁石磁場を利用した地上コイルのモールド材の電磁加振疲労試験装置に関するものである。   The present invention relates to an electromagnetic vibration fatigue testing apparatus using a superconducting magnet magnetic field, and more particularly to an electromagnetic vibration fatigue testing apparatus for a ground coil mold material using a superconducting magnet magnetic field.

従来、超電導磁気浮上式鉄道における地上コイルは、雨風にさらされる屋外に配置されるとともに、超電導磁石を搭載した高速列車通過時の電磁加振を受ける環境におかれている(特許文献1,2参照)。   Conventionally, a ground coil in a superconducting magnetic levitation railway is placed in an environment where it is placed outdoors exposed to rain and wind and is subjected to electromagnetic excitation when passing through a high-speed train equipped with a superconducting magnet (Patent Documents 1 and 2). reference).

特開2006−262542号公報JP 2006-262542 A 特開2008−295240号公報JP 2008-295240 A

Factory Mart Japan ホームページ(http://www.fa−mart.co.jp/instron/03.html)Factory Mart Japan homepage (http://www.fa-mart.co.jp/instron/03.html)

上記したように、長期の屋外使用が前提となる超電導磁気浮上式鉄道の地上コイルにとって、その地上コイルを支持すべきモールド材の強度評価は極めて重要であり、実機の機械的・電気的信頼性を如何にして立証するかが当面の重要な課題である。特に、高周波での加振環境は超電導磁気浮上式鉄道に固有であり、粘弾性挙動を示すモールド材としての高分子材料の疲労強度における周波数依存性の検証は、かかる地上コイルの強度設計に不可欠である。   As mentioned above, for ground coils of superconducting magnetically levitated railways that are premised on long-term outdoor use, it is extremely important to evaluate the strength of the molding material that should support the ground coils, and the mechanical and electrical reliability of the actual machine How to prove this is an important issue for the time being. In particular, the high-frequency vibration environment is unique to superconducting magnetically levitated railways, and verification of the frequency dependence of the fatigue strength of polymer materials as viscoelastic behavior is essential for the strength design of such ground coils. It is.

一方、現在一般的に用いられている材料疲労試験装置としては、以下のようなものがある。
(1)ボールドウィンタイプ
不平衡振子を等速回転することにより遠心力を発生させ、左右の分力を板バネで拘束し上下力のみを利用した荷重一定平面曲げ疲労試験機である。
On the other hand, currently used material fatigue test apparatuses are as follows.
(1) Baldwin type This is a constant load plane bending fatigue testing machine that generates centrifugal force by rotating an unbalanced pendulum at a constant speed, restrains left and right component forces with leaf springs, and uses only vertical force.

従来の加振周波数は30Hz固定であり、試験周波数が変えられない。そのため、100Hzへの改造が試みられているが、構成部材が共振域の振動加速度に耐えられず、加振周波数を100Hzに変更することはこの種の疲労試験機では実現できる見通しがない。
(2)油圧タイプ
駆動源に油圧を利用した疲労試験機で、比較的大きな荷重が出力できる反面、樹脂片のように弾性率の小さい材料では、高周波での変位が追随しないため、高周波では高い応力が加えられない。
(3)リニアモータ駆動タイプ
駆動源にリニアモータを利用した電動疲労試験機であり、原理上高周波が出力し易いが、樹脂片のように弾性率の小さい材料では、油圧タイプと同様に高周波での変位が追随せず、高周波では高い応力を加えることができない(上記非特許文献1参照)。
The conventional excitation frequency is fixed at 30 Hz, and the test frequency cannot be changed. Therefore, remodeling to 100 Hz has been attempted, but the component members cannot withstand vibration acceleration in the resonance region, and changing the excitation frequency to 100 Hz is not expected to be realized with this type of fatigue testing machine.
(2) Hydraulic type Fatigue testing machine that uses hydraulic pressure as the drive source can output a relatively large load. On the other hand, a material with a low elastic modulus such as a resin piece does not follow high-frequency displacement, so it is high at high frequency. No stress is applied.
(3) Linear motor drive type This is an electric fatigue tester that uses a linear motor as the drive source. In principle, high frequency is easily output. However, a material with a low elastic modulus such as a resin piece has a high frequency as in the hydraulic type. Therefore, high stress cannot be applied at high frequencies (see Non-Patent Document 1 above).

本発明は、上記状況に鑑みて、超電導磁気浮上式鉄道の地上コイルのモールド材を対象に、任意の周波数での加振が可能な超電導磁石磁場を利用した電磁加振疲労試験装置を提供することを目的とする。   In view of the above situation, the present invention provides an electromagnetic vibration fatigue testing apparatus using a superconducting magnet magnetic field capable of excitation at an arbitrary frequency for a ground coil mold material of a superconducting magnetic levitation railway. For the purpose.

本発明は、上記目的を達成するために、
〔1〕超電導磁石磁場を利用した電磁加振疲労試験装置において、超電導磁気浮上式鉄道の地上コイルのモールド材である試験片と、この試験片の両側に配置されるリンク機構を有する試験片加振用治具と、前記リンク機構に連結される加振用コイルと、この加振用コイルに接続されるインバータ電源と、前記加振用コイルに対向するように配置される超電導磁石とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In an electromagnetic vibration fatigue testing apparatus using a superconducting magnet magnetic field, a test piece that is a mold material for a ground coil of a superconducting magnetic levitation railway and a test piece having a link mechanism disposed on both sides of the test piece. A vibration jig, a vibration coil coupled to the link mechanism, an inverter power source connected to the vibration coil, and a superconducting magnet disposed to face the vibration coil It is characterized by doing.

〔2〕上記〔1〕記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記インバータ電源により前記加振用コイルの加振周波数を任意に選定するようにしたことを特徴とする。
〔3〕上記〔1〕記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記インバータ電源では交流電流と直流電流とを組み合わせて、前記試験片の各種の加振条件を設定できるようにしたことを特徴とする。
[2] The electromagnetic excitation fatigue test apparatus using the superconducting magnet magnetic field according to [1], wherein the excitation frequency of the excitation coil is arbitrarily selected by the inverter power supply.
[3] In the electromagnetic vibration fatigue testing apparatus using the superconducting magnet magnetic field according to [1], the inverter power supply can set various excitation conditions of the test piece by combining an alternating current and a direct current. It is characterized by that.

〔4〕上記〔1〕記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記加振用コイルに鉄芯を有することを特徴とする。
〔5〕上記〔1〕記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記鉄芯を有する加振用コイルに前記インバータ電源から直流電流を通電し、前記鉄芯に対する前記超電導磁石による吸引力を補正することを特徴とする。
[4] The electromagnetic excitation fatigue test apparatus using the superconducting magnet magnetic field described in [1] above, wherein the excitation coil has an iron core.
[5] In the electromagnetic vibration fatigue testing apparatus using the superconducting magnet magnetic field according to [1], a direct current is passed from the inverter power source to the exciting coil having the iron core, and the superconducting magnet with respect to the iron core It is characterized by correcting the suction force due to.

本発明によれば、
(1)インバータ電源により任意の周波数・負荷が直接加振用コイルに加えられるため、幅広い条件で疲労試験が可能となる。
(2)試験片加振用治具の固定方法を工夫することにより、複数の疲労試験を同時に実行することが可能となる。
(3)加振用コイルへの通電電流として、交流電流に直流電流を組み合わせることにより、(A)完全両振り、(B)部分両振り、(C)完全片振り、(D)部分片振りが自由に設定できる。
According to the present invention,
(1) Since an arbitrary frequency and load are directly applied to the exciting coil by the inverter power supply, a fatigue test can be performed under a wide range of conditions.
(2) A plurality of fatigue tests can be performed simultaneously by devising a method for fixing the test piece vibration jig.
(3) By combining the direct current with the alternating current as the energizing current to the exciting coil, (A) complete swing, (B) partial swing, (C) complete swing, (D) partial swing Can be set freely.

本発明の実施例を示す超電導磁石磁場を利用した電磁加振疲労試験装置の構成図である。It is a block diagram of the electromagnetic vibration fatigue test apparatus using the superconducting magnet magnetic field which shows the Example of this invention. 本発明の実施例を示す超電導磁石磁場を利用した電磁加振疲労試験装置による試験片の疲労試験条件を示す図である。It is a figure which shows the fatigue test conditions of the test piece by the electromagnetic vibration fatigue test apparatus using the superconducting magnet magnetic field which shows the Example of this invention. 本発明の超電導磁石磁場を利用した電磁加振疲労試験装置を示す模式図である。It is a schematic diagram which shows the electromagnetic vibration fatigue test apparatus using the superconducting magnet magnetic field of this invention.

本発明の超電導磁石磁場を利用した電磁加振疲労試験装置は、超電導磁気浮上式鉄道の地上コイルのモールド材である試験片と、この試験片の両側に配置されるリンク機構を有する試験片加振用治具と、前記リンク機構に連結される加振用コイルと、この加振用コイルに接続されるインバータ電源と、前記加振用コイルに対向するように配置される超電導磁石とを具備する。   An electromagnetic vibration fatigue test apparatus using a superconducting magnet magnetic field according to the present invention includes a test piece that is a mold material for a ground coil of a superconducting magnetic levitation railway, and a test piece adding test piece having link mechanisms arranged on both sides of the test piece. A vibration jig, a vibration coil coupled to the link mechanism, an inverter power source connected to the vibration coil, and a superconducting magnet disposed to face the vibration coil To do.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示す超電導磁石磁場を利用した電磁加振疲労試験装置の構成図であり、図1(a)はその駆動部を超電導磁石側から見た図、図1(b)はその全体構成を示す模式図である。
これらの図において、1は試験片、2は試験片1の両側に配置されるリンク機構3を有する試験片加振用治具、4はバネ支持構造、5は鉄芯、6はリンク機構3に連結される加振用コイル、7は加振用コイル6に接続されるインバータ電源、8は超電導磁石である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a configuration diagram of an electromagnetic vibration fatigue test apparatus using a superconducting magnet magnetic field according to an embodiment of the present invention. FIG. 1A is a diagram of the drive unit viewed from the superconducting magnet side, and FIG. ) Is a schematic diagram showing the overall configuration.
In these drawings, 1 is a test piece, 2 is a test piece vibration jig having link mechanisms 3 arranged on both sides of the test piece 1, 4 is a spring support structure, 5 is an iron core, and 6 is a link mechanism 3. , 7 is an inverter power source connected to the exciting coil 6, and 8 is a superconducting magnet.

加振用コイル6は超電導磁石8の作る強力な平行磁場を利用し、外部からの通電により加振されるが、加振用にインバータ電源7を接続するようにしたので、加振周波数を任意に選定することができる。また、鉄芯5を有する加振用コイル6にインバータ電源7から直流電流を通電することで、鉄芯5に対する超電導磁石8による吸引力を補正することができる。   The exciting coil 6 uses a powerful parallel magnetic field created by the superconducting magnet 8 and is vibrated by external energization. However, since the inverter power supply 7 is connected for vibration, the exciting frequency can be arbitrarily set. Can be selected. In addition, by applying a direct current from the inverter power supply 7 to the exciting coil 6 having the iron core 5, the attractive force by the superconducting magnet 8 on the iron core 5 can be corrected.

更に、インバータ電源7によって通電する電流の組み合わせにより、試験片1に対する各種の加振条件を設定することができる。
図2は、その超電導磁石磁場を利用した電磁加振疲労試験装置による試験片の加振条件を示す図であり、Aは完全両振り、Bは完全片振り、Cは部分両振り、Dは部分片振りを示している。
Furthermore, various excitation conditions for the test piece 1 can be set by a combination of currents energized by the inverter power supply 7.
FIG. 2 is a diagram showing the excitation conditions of a test piece by an electromagnetic vibration fatigue test apparatus using the superconducting magnet magnetic field, where A is complete swing, B is complete swing, C is partial swing, and D is Partial swing is shown.

インバータ電源7は交流電流と直流電流の組み合わせが可能であり、その組み合わせにより試験片1に各種の加振条件を設定することができる。
図2にAで示す完全両振りの場合は、加振用コイル6へ交流電流のみを印加することにより、ゼロを中心としてその両側で加振する。
図2にBで示す完全片振りの場合は、直流電流でバイアスをかけて中心を偏倚させ、最大値または最小値がゼロとなるよう片側でのみ加振する。
The inverter power source 7 can be combined with an alternating current and a direct current, and various excitation conditions can be set for the test piece 1 by the combination.
In the case of the complete double swing shown by A in FIG. 2, by applying only an alternating current to the exciting coil 6, excitation is performed on both sides centering on zero.
In the case of the complete swing shown by B in FIG. 2, the center is biased by applying a bias with a direct current, and the vibration is applied only on one side so that the maximum value or the minimum value becomes zero.

図2にCで示す部分両振りの場合は、交流電流による両振りに小さめの直流電流を重畳することにより偏倚させ、かつゼロ点とクロスする条件で加振する。
図2にDで示す部分片振りの場合は、交流電流による両振りに大きめの直流電流を重畳し、ゼロ点とクロスしない条件で加振する。
ただし、上記の加振条件の設定に際しては、加振用コイルの鉄芯と超電導磁石との間の吸引力を補正するために直流でバイアスをかけ、予め同等の反発力を与えておく必要がある。
In the case of the partial swing shown by C in FIG. 2, the vibration is biased by superimposing a small direct current on both the alternating currents and crossing the zero point.
In the case of partial swing shown by D in FIG. 2, a large direct current is superimposed on both swings by alternating current, and excitation is performed under conditions that do not cross the zero point.
However, when setting the above-described excitation conditions, it is necessary to apply a bias with a direct current in order to correct the attractive force between the iron core of the excitation coil and the superconducting magnet, and to give an equivalent repulsive force in advance. is there.

このように、インバータ電源7によって印加される交流電流と直流電流の組み合わせにより、試験片1の各種の加振条件を設定することができる。
図3は本発明の超電導磁石磁場を利用した電磁加振疲労試験装置を示す模式図であり、図3(a)はその全体構成図、図3(b)はその断面構成図である。
これらの図において、加振用コイル取付架台11には試験片加振用治具12を配置し、この試験片加振用治具12に連結された加振用コイル6にはインバータ電源13を接続する。また、試験片加振用治具12に対向するように超電導磁石14を配置する。これにより超電導磁石14の中央部の強力な平行磁場を試験片加振用治具12に印加することができる。なお、試験片加振用治具12と超電導磁石14との間にアルミニウム遮蔽板15を配置するようにしてもよい。
Thus, various excitation conditions of the test piece 1 can be set by a combination of an alternating current and a direct current applied by the inverter power supply 7.
FIG. 3 is a schematic diagram showing an electromagnetic vibration fatigue test apparatus using a superconducting magnet magnetic field according to the present invention. FIG. 3 (a) is an overall configuration diagram, and FIG. 3 (b) is a sectional configuration diagram thereof.
In these drawings, a test piece vibration jig 12 is arranged on the vibration coil mounting base 11, and an inverter power supply 13 is connected to the vibration coil 6 connected to the test piece vibration jig 12. Connecting. Further, the superconducting magnet 14 is arranged so as to face the test piece vibrating jig 12. As a result, a strong parallel magnetic field at the center of the superconducting magnet 14 can be applied to the test piece vibrating jig 12. An aluminum shielding plate 15 may be disposed between the test piece vibrating jig 12 and the superconducting magnet 14.

このように構成された加振用コイル6にインバータ電源13による任意の電流・周波数を印加することにより、疲労試験時の駆動源とする。
因みに、図3では超電導磁石14に対向する加振用コイル取付架台11に3組の試験片加振用治具12を配置し、3体の疲労試験が同時に行えるようにした。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
By applying an arbitrary current / frequency by the inverter power supply 13 to the excitation coil 6 configured in this manner, a drive source for the fatigue test is obtained.
Incidentally, in FIG. 3, three sets of test piece vibration jigs 12 are arranged on the vibration coil mounting base 11 facing the superconducting magnet 14 so that three fatigue tests can be performed simultaneously.
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.

本発明の超電導磁石磁場を利用した電磁加振疲労試験装置は、任意の周波数での加振が可能な疲労試験装置として利用可能である。   The electromagnetic excitation fatigue test apparatus using the superconducting magnet magnetic field of the present invention can be used as a fatigue test apparatus capable of excitation at an arbitrary frequency.

1 試験片
2,12 試験片加振用治具
3 リンク機構
4 バネ支持構造
5 鉄芯
6 加振用コイル
7,13 インバータ電源
8,14 超電導磁石
11 加振用コイル取付架台
15 アルミニウム遮蔽板
DESCRIPTION OF SYMBOLS 1 Test piece 2,12 Test piece vibration jig 3 Link mechanism 4 Spring support structure 5 Iron core 6 Excitation coil 7, 13 Inverter power supply 8, 14 Superconducting magnet 11 Excitation coil mounting base 15 Aluminum shielding plate

Claims (5)

(a)超電導磁気浮上式鉄道の地上コイルのモールド材である試験片と、
(b)該試験片の両側に配置されるリンク機構を有する試験片加振用治具と、
(c)前記リンク機構に連結される加振用コイルと、
(d)該加振用コイルに接続されるインバータ電源と、
(e)前記加振用コイルに対向するように配置される超電導磁石とを具備することを特徴とする超電導磁石磁場を利用した電磁加振疲労試験装置。
(A) a test piece that is a mold material for a ground coil of a superconducting magnetic levitation railway;
(B) a test piece vibration jig having a link mechanism disposed on both sides of the test piece;
(C) a vibration coil coupled to the link mechanism;
(D) an inverter power supply connected to the excitation coil;
(E) An electromagnetic excitation fatigue testing apparatus using a superconducting magnet magnetic field, comprising a superconducting magnet disposed so as to face the excitation coil.
請求項1記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記インバータ電源により前記加振用コイルの加振周波数を任意に選定するようにしたことを特徴とする超電導磁石磁場を利用した電磁加振疲労試験装置。   2. An electromagnetic excitation fatigue testing apparatus using a superconducting magnet magnetic field according to claim 1, wherein an excitation frequency of the excitation coil is arbitrarily selected by the inverter power supply. Electromagnetic vibration fatigue testing equipment. 請求項1記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記インバータ電源では交流電流と直流電流とを組み合わせて、前記試験片の各種の加振条件を設定できるようにしたことを特徴とする超電導磁石磁場を利用した電磁加振疲労試験装置。   The electromagnetic excitation fatigue test apparatus using a superconducting magnet magnetic field according to claim 1, wherein the inverter power supply can set various excitation conditions of the test piece by combining an alternating current and a direct current. Electromagnetic excitation fatigue testing equipment using a superconducting magnet magnetic field. 請求項1記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記加振用コイルに鉄芯を有することを特徴とする超電導磁石磁場を利用した電磁加振疲労試験装置。   The electromagnetic excitation fatigue test apparatus using a superconducting magnet magnetic field according to claim 1, wherein the excitation coil has an iron core. 請求項1記載の超電導磁石磁場を利用した電磁加振疲労試験装置において、前記鉄芯を有する加振用コイルに前記インバータ電源から直流電流を通電し、前記鉄芯に対する前記超電導磁石による吸引力を補正することを特徴とする超電導磁石磁場を利用した電磁加振疲労試験装置。   The electromagnetic excitation fatigue test apparatus using the superconducting magnet magnetic field according to claim 1, wherein a direct current is supplied from the inverter power source to the excitation coil having the iron core, and an attractive force by the superconducting magnet with respect to the iron core is obtained. An electromagnetic vibration fatigue testing apparatus using a superconducting magnet magnetic field characterized by correcting.
JP2009184158A 2009-08-07 2009-08-07 Electromagnetic excitation fatigue testing system using superconducting magnet magnetic field Expired - Fee Related JP5225949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184158A JP5225949B2 (en) 2009-08-07 2009-08-07 Electromagnetic excitation fatigue testing system using superconducting magnet magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009184158A JP5225949B2 (en) 2009-08-07 2009-08-07 Electromagnetic excitation fatigue testing system using superconducting magnet magnetic field

Publications (2)

Publication Number Publication Date
JP2011038816A true JP2011038816A (en) 2011-02-24
JP5225949B2 JP5225949B2 (en) 2013-07-03

Family

ID=43766760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184158A Expired - Fee Related JP5225949B2 (en) 2009-08-07 2009-08-07 Electromagnetic excitation fatigue testing system using superconducting magnet magnetic field

Country Status (1)

Country Link
JP (1) JP5225949B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539991A (en) * 2020-11-11 2021-03-23 贵州天义电器有限责任公司 Simulation reed elasticity fatigue test device
CN113495236A (en) * 2020-04-07 2021-10-12 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Superconducting magnet vibration test system with background magnetic field
KR20230067266A (en) * 2021-11-09 2023-05-16 창원대학교 산학협력단 The cyclic load test apparatus for a superconducting coil of wind power generator and the test method thereof
WO2024050979A1 (en) * 2022-09-05 2024-03-14 中车长春轨道客车股份有限公司 Superconducting magnet testing method and system and processor assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990820B (en) 2015-07-01 2017-07-18 河海大学 Electromagnetic type multiaxle fatigue experimental machine
DE102016214774B4 (en) 2016-08-09 2023-08-03 Stabilus Gmbh Rotary drive device with load-dependent brake

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140413A (en) * 1997-07-22 1999-02-12 Shimadzu Corp Electrokinetic actuator and materials tester
JP2002143771A (en) * 2000-11-14 2002-05-21 Railway Technical Res Inst Ground-coil electromagnetic excitation test apparatus
JP2003247923A (en) * 2002-02-25 2003-09-05 Japan Tobacco Inc Material test machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140413A (en) * 1997-07-22 1999-02-12 Shimadzu Corp Electrokinetic actuator and materials tester
JP2002143771A (en) * 2000-11-14 2002-05-21 Railway Technical Res Inst Ground-coil electromagnetic excitation test apparatus
JP2003247923A (en) * 2002-02-25 2003-09-05 Japan Tobacco Inc Material test machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495236A (en) * 2020-04-07 2021-10-12 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Superconducting magnet vibration test system with background magnetic field
CN112539991A (en) * 2020-11-11 2021-03-23 贵州天义电器有限责任公司 Simulation reed elasticity fatigue test device
KR20230067266A (en) * 2021-11-09 2023-05-16 창원대학교 산학협력단 The cyclic load test apparatus for a superconducting coil of wind power generator and the test method thereof
KR102607822B1 (en) 2021-11-09 2023-11-30 창원대학교 산학협력단 The cyclic load test apparatus for a superconducting coil of wind power generator and the test method thereof
WO2024050979A1 (en) * 2022-09-05 2024-03-14 中车长春轨道客车股份有限公司 Superconducting magnet testing method and system and processor assembly

Also Published As

Publication number Publication date
JP5225949B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5275940B2 (en) Frequency variable fatigue testing equipment using electrodynamic vibration generator
JP5225949B2 (en) Electromagnetic excitation fatigue testing system using superconducting magnet magnetic field
JP5645179B2 (en) Power generation element
JP6329362B2 (en) Electrodynamic mode test impactor system and method
JP5917384B2 (en) Dynamic durability test method for superconducting magnetic levitation railway ground coil
CN106286666B (en) Reluctance type electromagnetism active vibration absorber
ATE376192T1 (en) IMAGE GENERATION THROUGH MAGNETIC RESONANCE
Kimpara et al. On the cross coupling effects in structural response of switched reluctance motor drives
JP5867097B2 (en) Power generator
JP4215049B2 (en) Rotational vibration testing machine
WO2008138278A4 (en) Electromagnetic vibratory generator for low frequencies of vibrations
JP2015177553A (en) power generator
CN204993015U (en) Magnetic suspension motor
KR101085461B1 (en) Apparatus for small sized actuator using different elastic spring
JP2020078175A (en) Power generation device
Bramerdorfer et al. Bearingless segment motor with halbach magnet
CN206246580U (en) Reluctance type electromagnetism active vibration absorber
Hong et al. Development of thrust force 6 kN class transverse flux linear motor with synchronous control for direct drive applications
JP2017022958A (en) Vibration power generation device
CN204993014U (en) Magnetic suspension motor
Wang et al. The analysis of nonlinear system characteristics of vibration-to-electric generator
Ueno et al. Two-DOF micro magnetostrictive bending actuator for wobbling motion
JP2013258820A (en) Vibration power generator
Bruzzese et al. Study of cage torsional resonance failures in inverter-fed fabricated-cage induction motors used in traction drives
US20220085271A1 (en) Power generation element and power generation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

R150 Certificate of patent or registration of utility model

Ref document number: 5225949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees