JP3315734B2 - Plasma carburizing and quenching method - Google Patents

Plasma carburizing and quenching method

Info

Publication number
JP3315734B2
JP3315734B2 JP28555592A JP28555592A JP3315734B2 JP 3315734 B2 JP3315734 B2 JP 3315734B2 JP 28555592 A JP28555592 A JP 28555592A JP 28555592 A JP28555592 A JP 28555592A JP 3315734 B2 JP3315734 B2 JP 3315734B2
Authority
JP
Japan
Prior art keywords
slow cooling
metal material
temperature
plasma carburizing
predetermined temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28555592A
Other languages
Japanese (ja)
Other versions
JPH06108139A (en
Inventor
和浩 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP28555592A priority Critical patent/JP3315734B2/en
Publication of JPH06108139A publication Critical patent/JPH06108139A/en
Application granted granted Critical
Publication of JP3315734B2 publication Critical patent/JP3315734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プラズマ浸炭焼入方法
に関する。
The present invention relates to a method for plasma carburizing and quenching.

【0002】[0002]

【従来技術】プラズマ浸炭焼入方法は、特開平2−12
5857号公報に示すように既に知られており、この方
法を用いれば、真空中で浸炭を行うため、ガス浸炭の場
合のように、ガス中の酸素によって金属材料中のクロ
ム、マンガン、シリコン等の炭化物生成元素が内部酸化
されることはなくなり、金属材料に表面異常層が形成さ
れることが防止できることになる。
2. Description of the Related Art A plasma carburizing and quenching method is disclosed in
As disclosed in Japanese Patent No. 5857, this method is already known, and if this method is used, carburization is performed in a vacuum, so that chromium, manganese, silicon, etc. Is no longer internally oxidized, and the formation of an abnormal surface layer on the metal material can be prevented.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記プラズマ
浸炭焼入方法においては、プラズマ浸炭処理後、急冷処
理を行うことになっており、この急冷処理により金属材
料全体が熱処理歪を生ずることになっている。このた
め、精度を要求される材料、例えば歯車素材において
は、素材ボディの歪が歯部にまで影響を及ぼすことにな
り、高精度なものを得ることができない。本発明は上記
実情を鑑みてなされたもので、その目的は、高い強度と
高い精度とを有する製品を得ることができるプラズマ浸
炭焼入方法を提供することにある。
However, in the above-mentioned plasma carburizing and quenching method, a quenching treatment is performed after the plasma carburizing treatment, and this quenching treatment causes heat treatment distortion of the entire metal material. ing. For this reason, in a material that requires accuracy, for example, a gear material, the distortion of the material body affects even the tooth portion, and a highly accurate material cannot be obtained. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma carburizing and quenching method capable of obtaining a product having high strength and high accuracy.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明にあっては、金属材料に対して、第1所定温度
の下で、該金属材料の表面炭素濃度が少なくとも飽和濃
度に達するように第1プラズマ浸炭処理を行った後、該
第1所定温度を維持しつつ拡散処理を行い、次に、前記
拡散処理した金属材料に対して、前記第1所定温度か
ら、該第1所定温度よりも低い温度であって変態点より
も高く且つ該変態点近傍の温度とされる第2所定温度に
なるまで第1徐冷処理を行い、次に、前記第1徐冷処理
を行った金属材料に対して、前記第2所定温度の下で、
該金属材料の表面炭素濃度が少なくとも飽和濃度に達す
るように第2プラズマ浸炭処理を行い、次に、前記第2
プラズマ浸炭処理を行った金属材料に対して、前記第2
所定温度から該第2所定温度よりも低い第3所定温度に
なるまで第2徐冷処理を行い、その後、前記第2徐冷処
理を行った金属材料に対して、局部焼入れを行う、こと
を特徴とするプラズマ浸炭焼入方法とした構成としてあ
る。
According to the present invention, in order to achieve the above object, the surface carbon concentration of a metal material reaches at least a saturation concentration at a first predetermined temperature. After performing the first plasma carburizing process as described above, the diffusion process is performed while maintaining the first predetermined temperature. Then, the metal material subjected to the diffusion process is subjected to the first predetermined temperature from the first predetermined temperature. The first slow cooling process was performed until the temperature reached a second predetermined temperature that was lower than the temperature, higher than the transformation point and near the transformation point, and then the first slow cooling process was performed. For a metal material, under the second predetermined temperature,
The second plasma carburizing treatment is performed so that the surface carbon concentration of the metal material reaches at least the saturation concentration.
For the metal material subjected to the plasma carburizing treatment, the second
Performing a second slow cooling process from a predetermined temperature to a third predetermined temperature lower than the second predetermined temperature, and then performing local quenching on the metal material that has been subjected to the second slow cooling process. The plasma carburizing and quenching method is a feature.

【0005】[0005]

【発明の効果】本発明によれば、急冷処理ではなく徐冷
処理(第1、第2徐冷処理)が行われるため、金属材料
全体が熱処理歪を生ずることはなくなる。その一方、上
記徐冷処理後に、局部焼入れが行われることから、強度
が必要な個所の強度を的確に確保することができること
になる。このため、製品において、必要な個所に強度を
確保できると共に高い精度を得ることができるプラズマ
浸炭焼入方法を提供できる。また、金属材料に対して、
第1所定温度の下で、表面炭素濃度が少なくとも飽和濃
度に達するように第1プラズマ浸炭処理を行った後、該
第1所定温度を維持しつつ拡散処理を行うことから、拡
散処理後の位置(温度、表面炭素濃度)を明確に把握し
つつ決定できることになり、その明確な拡散処理後の位
置を開始点(基準点)として、徐冷時間が短縮された第
1徐冷処理を第2所定温度まで行うことにより、その間
の徐冷時間のばらつきを抑制して、表面炭素濃度を、所
定の第2プラズマ浸炭処理領域に的確に移行させること
ができることになる。一方、この後において、第1徐冷
処理を行った金属材料に対して、第2所定温度の下で、
該金属材料の表面炭素濃度が少なくとも飽和濃度に達す
るように第2プラズマ浸炭処理を行って、その第2プラ
ズマ浸炭処理後の位置を明確にし、その明確な位置を開
始点(基準点)として、徐冷時間が短縮された第2徐冷
処理を第3所定温度まで行い、その間の徐冷時間のばら
つきが抑制されることになり、第3所定温度における表
面炭素濃度を、第2プラズマ浸炭処理条件、第2徐冷処
理条件に応じた所望のものとすることができることにな
る。このため、当該方法によれば、第2プラズマ浸炭処
理条件、第2徐冷処理条件を所望の表面炭素濃度となる
ように予め設定しておくことにより、第1プラズマ浸炭
処理、拡散処理、第1徐冷処理、第2プラズマ浸炭処
理、第2徐冷処理を経て、徐冷処理の終了点における表
面炭素濃度を、高い再現性をもって所望の濃度とするこ
とができることになる。
According to the present invention, since the gradual cooling process (first and second gradual cooling processes) is performed instead of the quenching process, heat treatment distortion does not occur in the entire metal material. On the other hand, since the local quenching is performed after the above-described slow cooling process, it is possible to accurately secure the strength of the place where the strength is required. Therefore, it is possible to provide a plasma carburizing and quenching method capable of securing strength at a necessary portion in a product and obtaining high accuracy. Also, for metal materials,
After performing the first plasma carburizing process at the first predetermined temperature so that the surface carbon concentration reaches at least the saturation concentration, the diffusion process is performed while maintaining the first predetermined temperature. (Temperature, surface carbon concentration) can be determined while clearly grasping, and the first slow cooling process in which the slow cooling time is shortened is defined as the second slow cooling time using the position after the clear diffusion process as a starting point (reference point). By performing the process up to the predetermined temperature, it is possible to suppress the variation in the slow cooling time during that period, and to accurately shift the surface carbon concentration to the predetermined second plasma carburizing region. On the other hand, after this, the metal material subjected to the first slow cooling process is subjected to a second predetermined temperature at a second predetermined temperature.
The second plasma carburizing treatment is performed so that the surface carbon concentration of the metal material reaches at least the saturation concentration, the position after the second plasma carburizing treatment is clarified, and the clear position is defined as a starting point (reference point). The second slow cooling process in which the slow cooling time is shortened is performed up to the third predetermined temperature, and the variation of the slow cooling time during the second cooling process is suppressed, and the surface carbon concentration at the third predetermined temperature is reduced by the second plasma carburizing process. It can be set as desired according to the conditions and the second slow cooling processing conditions. For this reason, according to the method, the first plasma carburizing treatment, the diffusion treatment, and the second plasma carburizing treatment condition and the second slow cooling treatment condition are set in advance so as to have a desired surface carbon concentration. After the first slow cooling process, the second plasma carburizing process, and the second slow cooling process, the surface carbon concentration at the end point of the slow cooling process can be set to a desired concentration with high reproducibility.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。前提として、金属材料として0.2%C鋼に対し
て本実施例に係る方法を適用し、徐冷終了後の表面炭素
濃度を0.8±0.02(wt%)とするものとする。 (1)先ず、図1、図2に示すように、金属材料を10
00℃(第1所定温度)まで昇温させる(工程:終了
点P1 )。この工程は、オ−ステナイトとするために行
われるもので、次のプラズマ浸炭処理の前工程として既
知のものである。上記「1000℃まで昇温させる」こ
ととしたのは、同一温度の下で次のプラズマ浸炭処理を
連続して行わせるためである。このため、この昇温工程
は、プラズマ浸炭処理を行う炉内において、真空雰囲気
中で加熱される。
Embodiments of the present invention will be described below with reference to the drawings. As a premise, the method according to the present embodiment is applied to 0.2% C steel as a metal material, and the surface carbon concentration after the completion of the slow cooling is set to 0.8 ± 0.02 (wt%). . (1) First, as shown in FIG. 1 and FIG.
The temperature is raised to 00 ° C. (first predetermined temperature) (step: end point P1). This step is performed to make austenite, and is a known step prior to the next plasma carburizing treatment. The reason why the temperature is raised to 1000 ° C. is to continuously perform the next plasma carburizing process at the same temperature. For this reason, this heating process is performed in a vacuum atmosphere in a furnace for performing the plasma carburizing process.

【0007】(2)次に、プラズマ浸炭処理(第1プラ
ズマ浸炭処理)を1000℃の下で行う(工程:開始
点P1 、終了点P2 )。この工程は、他の浸炭処理同
様、金属材料に対して浸炭を行うものであるが、前述し
たように、金属材料に表面異常層を形成させないために
行われる。プラズマ浸炭処理が真空雰囲気中で行われる
ことに着目したのである。
(2) Next, plasma carburizing treatment (first plasma carburizing treatment) is performed at 1000 ° C. (step: start point P 1, end point P 2). This step is for carburizing the metal material as in the other carburizing treatments. However, as described above, this step is performed to prevent the metal material from forming an abnormal surface layer. They focused on the fact that the plasma carburizing process was performed in a vacuum atmosphere.

【0008】このプラズマ浸炭処理は、具体的には、図
3に示す装置により行われる。すなわち、図3におい
て、炉1内の陰極2上に金属材料(被処理物)3を載置
した状態で、炉1内を真空ポンプ4により真空雰囲気と
し、その真空雰囲気中で、高圧及び加熱電源5により
(加熱制御系11を介して)印加されるヒ−タ6により
金属材料3を一定温度まで加熱した後(以上工程)、
放電用電極(陽極)を兼ねる前記ヒ−タ6と陰極2との
間に炭化水素系ガス(C3 H8 )8をガス供給手段9か
ら供給し、その後、高圧及び加熱電源5により前記両極
2、6に直流高電圧を加えてグロ−放電を生じさせる。
これにより、活性化炭素イオン10が発生し、この活性
化炭素イオン10が金属材料3表面に衝突して鉄と結び
つくことになる。尚、図3中、実線の矢印はイオン流、
破線の矢印は炭素の拡散を示す。また、12は温度測定
子、13は温度調整系、14は真空シールである。上記
「1000℃の下で行う」こととしたのは、浸炭速度を
速めて、所定の浸炭有効深さを得るための浸炭時間を短
縮するためである。但し、上記1000℃による処理で
は結晶粒の粗大化を招くことになるが、後述の高周波に
よる再加熱により、結晶粒の微細化を図ることができ
る。
[0008] Specifically, the plasma carburizing treatment is performed by an apparatus shown in FIG. That is, in FIG. 3, in a state where the metal material (object to be processed) 3 is placed on the cathode 2 in the furnace 1, the inside of the furnace 1 is evacuated by the vacuum pump 4, After the metal material 3 is heated to a certain temperature by the heater 6 applied through the power supply 5 (via the heating control system 11) (the above steps),
A hydrocarbon gas (C3 H8) 8 is supplied from a gas supply means 9 between the heater 6 serving also as a discharge electrode (anode) and the cathode 2, and thereafter, the two electrodes 2, A glow discharge is generated by applying a high DC voltage to 6.
As a result, activated carbon ions 10 are generated, and the activated carbon ions 10 collide with the surface of the metal material 3 and bind to iron. In FIG. 3, the solid arrow indicates the ion current,
Dashed arrows indicate carbon diffusion. Reference numeral 12 denotes a temperature measuring element, 13 denotes a temperature adjustment system, and 14 denotes a vacuum seal. The reason why the above-mentioned operation is performed at 1000 ° C. is to increase the carburizing speed and to shorten the carburizing time for obtaining a predetermined effective carburizing depth. However, the treatment at 1000 ° C. leads to coarsening of the crystal grains, but the re-heating by high frequency described below can make the crystal grains finer.

【0009】本実施例においては、1000℃の下で、
金属材料の表面炭素濃度が少なくともAcm線に到達す
るように浸炭処理が行われる。これは、浸炭処理の終了
点P2 (表面炭素濃度(1.55wt%)、温度)を明
確にして、それを次の工程のための基準点として用いる
ために行われる。この場合、この浸炭処理の終了点P2
の明確化のために、一定温度(1000℃)の下で、A
cm線にまで到達すると、それ以上、浸炭処理を続けて
も、表面炭素濃度が飽和濃度以上には変化しないことが
利用されている。
In this embodiment, at 1000 ° C.,
Carburizing is performed so that the surface carbon concentration of the metal material reaches at least the Acm line. This is done to clarify the end point P2 (surface carbon concentration (1.55 wt%), temperature) of the carburizing process and use it as a reference point for the next step. In this case, the end point P2 of the carburizing process
In order to clarify, under a constant temperature (1000 ° C.), A
It is utilized that when the carbon line reaches the cm line, the surface carbon concentration does not change beyond the saturation concentration even if the carburizing treatment is continued.

【0010】(3)次に、本実施例においては、後述の
徐冷処理に先立ち、1000℃の下で、拡散処理を行う
(工程:開始点P2 、終了点P3 )。これは、後述の
徐冷処理開始点(拡散処理終了点)P3 の表面炭素濃度
を調整するために行われる。この場合、前述のP2 点の
表面炭素濃度を明確な状態に決め、しかも、拡散処理を
一定温度の下で行って炭素の拡散速度を一定とすること
としていることから、一定温度の下、拡散処理時間さえ
管理すれば、P3 点の表面炭素濃度は自ずと決まること
になっている。このため、P3 点を明確な状態に決める
ことができることになり、このP3 点を次工程の基準点
として用いることができることになる。
(3) Next, in this embodiment, prior to the slow cooling process described later, a diffusion process is performed at 1000 ° C. (step: start point P2, end point P3). This is performed to adjust the surface carbon concentration at the later-described slow-cooling processing start point (diffusion processing end point) P3. In this case, the surface carbon concentration at the point P2 is determined in a clear state, and the diffusion process is performed at a constant temperature to keep the diffusion rate of carbon constant. If only the treatment time is controlled, the surface carbon concentration at point P3 will be determined by itself. Therefore, the point P3 can be determined in a clear state, and the point P3 can be used as a reference point in the next process.

【0011】(4)次に、徐冷処理として、第1徐冷処
理が行われる(工程:開始点P3、終了点P4 )。こ
れは、急冷処理の場合のように、金属材料全体が熱処理
歪を生じることがないようにするために行われる。
(4) Next, a first slow cooling process is performed as a slow cooling process (step: start point P3, end point P4). This is performed in order to prevent heat treatment distortion of the entire metal material as in the case of the rapid cooling process.

【0012】(5)次に、上記第1徐冷処理によって金
属材料が750℃(第2所定温度)になると、再び、新
たなプラズマ浸炭処理(第2プラズマ浸炭処理)が行わ
れ、そのプラズマ浸炭処理は、その750℃の下でAc
m線に達するように行われる(工程:開始点P4 、終
了点P5 )。これは、2つの理由のために行われる。そ
の1は、徐冷処理中に、新たなプラズマ浸炭処理を介在
させることにより、徐冷処理を分け、1回の徐冷処理に
よって降下させるべき温度差を狭めて、1回の徐冷処理
に要する徐冷時間を短縮させるためである。その2は、
一定温度の下でAcm線に達するようにプラズマ浸炭処
理を行うと、表面炭素濃度がその一定温度の下での飽和
濃度以上には上がらないことを利用することにより、前
記第1徐冷処理の開始時の温度(1000℃)よりも低
い温度の下で、新たなプラズマ浸炭処理の終了点(表面
炭素濃度、温度)を、明確な状態で得ることができるよ
うにするためである。この2つの理由により、金属材料
の充填度合等によって徐冷時間(後述の第2徐冷処理の
徐冷時間)がばらつくことを弱めることができ、徐冷処
理(後述の第2徐冷処理)終了後の所望の表面炭素濃度
を得るために、新たなプラズマ浸炭処理の終了点を正確
かつ容易に決めることができることになる。本実施例に
おいては、新たなプラズマ浸炭処理時の温度を750℃
としているが、これは、徐冷処理終了後の所望の表面炭
素濃度を0.8±0.02(wt%)とすることに鑑
み、新たなプラズマ浸炭処理終了点P5 の表面炭素濃度
を上記表面炭素濃度の許容範囲に入るものとし(0.8
2wt%)、後述の第2徐冷処理により、より所望の表
面炭素濃度にしようとしているのである。
(5) Next, when the metal material reaches 750 ° C. (second predetermined temperature) by the first slow cooling process, a new plasma carburizing process (second plasma carburizing process) is performed again, and the plasma Carburizing treatment is performed under the condition of Ac
The process is performed so as to reach the m-line (step: start point P4, end point P5). This is done for two reasons. The first is that, by interposing a new plasma carburizing process during the slow cooling process, the slow cooling process is divided, and the temperature difference to be lowered by one slow cooling process is narrowed to one slow cooling process. This is for shortening the required slow cooling time. Part 2
When the plasma carburizing treatment is performed so as to reach the Acm line at a certain temperature, the fact that the surface carbon concentration does not rise above the saturation concentration at the certain temperature is utilized, and thus the first slow cooling treatment is performed. This is because a new end point (surface carbon concentration, temperature) of the new plasma carburizing treatment can be obtained in a clear state at a temperature lower than the temperature at the start (1000 ° C.). For these two reasons, it is possible to reduce the variation of the slow cooling time (the slow cooling time of the second slow cooling process described later) due to the degree of filling of the metal material and the like, and the slow cooling process (the second slow cooling process described later) In order to obtain a desired surface carbon concentration after completion, the end point of a new plasma carburizing process can be accurately and easily determined. In this embodiment, the temperature at the time of new plasma carburizing treatment is set to 750 ° C.
However, considering that the desired surface carbon concentration after the completion of the slow cooling treatment is 0.8 ± 0.02 (wt%), the surface carbon concentration at the new plasma carburizing treatment end point P5 is set to the above value. It shall be within the allowable range of the surface carbon concentration (0.8
2 wt%), and the second slow cooling process described later attempts to achieve a more desired surface carbon concentration.

【0013】(6)次に、徐冷処理として、第2徐冷処
理が行われる(工程:開始点P5、終了点は図2にお
いては図外)。これは、熱処理歪を生じさせることなく
第3所定温度(本実施例においては、650℃に決めら
れている)にまで下げることを目的として行われる。
(6) Next, as a slow cooling process, a second slow cooling process is performed (step: start point P5, end point is not shown in FIG. 2). This is performed for the purpose of lowering the temperature to a third predetermined temperature (650 ° C. in this embodiment) without causing heat treatment distortion.

【0014】この場合、この第2徐冷処理の終了点にお
いて表面炭素濃度が所望のもの(本実施例においては
0.8±0.02wt%)となる必要があるが、この第
2徐冷処理の前工程に新たなプラズマ浸炭処理を設け、
前述したように、金属材料の充填度合等によって第2徐
冷処理の徐冷時間がばらつくことを弱め、第2徐冷処理
終了後の所望の表面炭素濃度を得るために、新たなプラ
ズマ浸炭処理の終了点を正確かつ容易に決めることがで
きるようにしたことから、所望の表面炭素濃度は確実に
得られることになる。
In this case, at the end point of the second slow cooling process, the surface carbon concentration needs to be a desired value (0.8 ± 0.02 wt% in the present embodiment). A new plasma carburizing process is provided before the process,
As described above, a new plasma carburizing process is performed in order to reduce the variation in the slow cooling time of the second slow cooling process depending on the degree of filling of the metal material and to obtain a desired surface carbon concentration after the second slow cooling process. Can be determined accurately and easily, so that the desired surface carbon concentration can be reliably obtained.

【0015】(7)次に、ガス冷却を経て、金属材料に
対して、局部焼入れとしての高周波焼入れが行われる。
この高周波焼入れは、金属材料が強度を必要としている
個所に、強度を的確に確保するために行われる。したが
って、必要な個所に強度を確保できる一方、前工程で
は、急冷処理ではなく徐冷処理を行って、金属材料全体
に熱処理歪が生じさせないようにしていることから、高
い精度を得ることができることになる。
(7) Next, the metal material is subjected to induction hardening as local hardening after gas cooling.
This induction hardening is performed in order to properly secure the strength where metal material requires strength. Therefore, strength can be secured at necessary places, but high accuracy can be obtained because, in the preceding step, annealing is performed instead of quenching to prevent heat treatment distortion from occurring in the entire metal material. become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る工程を説明する説明図。FIG. 1 is an explanatory diagram illustrating a process according to an example.

【図2】実施例に係る方法を説明する図。FIG. 2 is a diagram illustrating a method according to an embodiment.

【図3】プラズマ浸炭処理装置を概念的に示す図。FIG. 3 is a diagram conceptually showing a plasma carburizing apparatus.

【符号の説明】[Explanation of symbols]

1 炉 3 金属材料 1 furnace 3 metal material

フロントページの続き (56)参考文献 特開 昭58−96865(JP,A) 特開 平4−52265(JP,A) 特開 平2−232354(JP,A) 特開 平2−145759(JP,A) 特開 平4−76878(JP,A) 特開 平5−148535(JP,A) 特許2890422(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 1/06 C23C 8/38 C23C 8/80 Continuation of front page (56) References JP-A-58-96865 (JP, A) JP-A-4-52265 (JP, A) JP-A-2-232354 (JP, A) JP-A-2-145759 (JP) JP-A-4-76878 (JP, A) JP-A-5-148535 (JP, A) Patent 2890422 (JP, B2) (58) Fields studied (Int. Cl. 7 , DB name) C21D 1 / 06 C23C 8/38 C23C 8/80

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属材料に対して、第1所定温度の下
で、該金属材料の表面炭素濃度が少なくとも飽和濃度に
達するように第1プラズマ浸炭処理を行った後、該第1
所定温度を維持しつつ拡散処理を行い、 次に、前記拡散処理した金属材料に対して、前記第1所
定温度から、該第1所定温度よりも低い温度であって変
態点よりも高く且つ該変態点近傍の温度とされる第2所
定温度になるまで第1徐冷処理を行い、 次に、前記第1徐冷処理を行った金属材料に対して、前
記第2所定温度の下で、該金属材料の表面炭素濃度が少
なくとも飽和濃度に達するように第2プラズマ浸炭処理
を行い、 次に、前記第2プラズマ浸炭処理を行った金属材料に対
して、前記第2所定温度から該第2所定温度よりも低い
第3所定温度になるまで第2徐冷処理を行い、 その後、前記第2徐冷処理を行った金属材料に対して、
局部焼入れを行う、ことを特徴とするプラズマ浸炭焼入
方法。
1. A method according to claim 1, wherein the metal material is under a first predetermined temperature.
In this way, the surface carbon concentration of the metal material is at least a saturated concentration.
After performing the first plasma carburizing treatment so as to reach the first
Performs spreading processing while maintaining a predetermined temperature, then, to the diffusion process metallic material, the first plant
From the constant temperature to a temperature lower than the first predetermined temperature and
A second place where the temperature is higher than the transformation point and near the transformation point
The first slow cooling process is performed until a constant temperature is reached, and then the first slow cooling process is performed on the metal material.
Under the second predetermined temperature, the surface carbon concentration of the metallic material is low.
2nd plasma carburizing treatment to reach saturation concentration at least
Was carried out, then, against the metal material was subjected to the second plasma carburizing
The second predetermined temperature is lower than the second predetermined temperature.
The second slow cooling process is performed until the temperature reaches the third predetermined temperature, and thereafter, the metal material subjected to the second slow cooling process is
A plasma carburizing and quenching method characterized by performing local quenching.
JP28555592A 1992-09-30 1992-09-30 Plasma carburizing and quenching method Expired - Fee Related JP3315734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28555592A JP3315734B2 (en) 1992-09-30 1992-09-30 Plasma carburizing and quenching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28555592A JP3315734B2 (en) 1992-09-30 1992-09-30 Plasma carburizing and quenching method

Publications (2)

Publication Number Publication Date
JPH06108139A JPH06108139A (en) 1994-04-19
JP3315734B2 true JP3315734B2 (en) 2002-08-19

Family

ID=17693064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28555592A Expired - Fee Related JP3315734B2 (en) 1992-09-30 1992-09-30 Plasma carburizing and quenching method

Country Status (1)

Country Link
JP (1) JP3315734B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909361B2 (en) * 1993-09-21 1999-06-23 大阪府 Surface treatment method for titanium metal
EP1889929B1 (en) * 2005-09-26 2013-01-02 Aisin Aw Co., Ltd. Method for the manufacture of carburized steel members .
CN113390533B (en) * 2021-06-15 2023-07-25 中国兵器工业第五九研究所 Method for detecting surface temperature of workpiece in heat treatment process

Also Published As

Publication number Publication date
JPH06108139A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
JP4041602B2 (en) Vacuum carburizing method for steel parts
JP3315734B2 (en) Plasma carburizing and quenching method
US4808779A (en) Single cycle, single frequency induction contour hardening process
US6019857A (en) Carburized hardening process and carburized hardened power transmission members
JP5944797B2 (en) Iron-based alloy material and method for producing the same
KR20150108385A (en) Apparatus and method for nitriding grain-oriented electrical steel sheet
JPS61117268A (en) Vacuum carburization method of steel material parts
EP1598440B1 (en) Method of gas carburizing
JP3301857B2 (en) Carburizing method
JP6812948B2 (en) Carburizing method
US7416614B2 (en) Method of gas carburizing
JPS6372820A (en) Heating method in vacuum heat treating furnace
JPH01234553A (en) Rapid carburizing treatment for steel
US3167460A (en) Method of surface-hardening steel workpieces in the form of bodies of revolution
JP2981384B2 (en) Steel strip carburizing method
JPS5925931A (en) Production of electric welded steel pipe for automobile
JP2596047B2 (en) Steel carburizing method
JPS59153841A (en) Production of high-tension electric welded steel pipe having uniform strength
KR890001031B1 (en) Metal surface treatment method by glow discharge
JPS60149716A (en) Method for relieving heat treatment strain
JPS63203771A (en) Semiconductor substrate heater
JPH0874027A (en) Carburization treatment
SU931809A1 (en) Method for nitriding products in glowg discharge
JP2020050938A (en) Hardening method
JPS57141958A (en) Manufacture of lateral type transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees