JP3310818B2 - Evaluation method for remaining life of Ni-base heat-resistant alloy - Google Patents

Evaluation method for remaining life of Ni-base heat-resistant alloy

Info

Publication number
JP3310818B2
JP3310818B2 JP12557295A JP12557295A JP3310818B2 JP 3310818 B2 JP3310818 B2 JP 3310818B2 JP 12557295 A JP12557295 A JP 12557295A JP 12557295 A JP12557295 A JP 12557295A JP 3310818 B2 JP3310818 B2 JP 3310818B2
Authority
JP
Japan
Prior art keywords
phase
resistant alloy
stress
ratio
base heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12557295A
Other languages
Japanese (ja)
Other versions
JPH08297079A (en
Inventor
淑郎 佐近
孝博 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12557295A priority Critical patent/JP3310818B2/en
Publication of JPH08297079A publication Critical patent/JPH08297079A/en
Application granted granted Critical
Publication of JP3310818B2 publication Critical patent/JP3310818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン動翼等に
使用されるNi基耐熱合金の余寿命を評価する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the remaining life of a Ni-base heat-resistant alloy used for a gas turbine blade or the like.

【0002】[0002]

【従来の技術】従来のNi基耐熱合金のメタル使用温度
を推定する方法は、予め用意した加熱温度、時間が既知
の材料のγ’相標準写真と、メタル温度を推定しようと
する材料のγ’相写真を対比して、熟練者が金属組織変
化(γ’相の粗大化等)を半定量的に判断するものであ
るが、γ’相からのクリープ破断寿命比の推定法に関し
ては未だ確立していない。
2. Description of the Related Art Conventional methods for estimating the metal use temperature of a Ni-base heat-resistant alloy include a γ ′ phase standard photograph of a material having a known heating temperature and time, and a γ of a material whose metal temperature is to be estimated. 'Compared with a phase photograph, a skilled person semi-quantitatively judges changes in the metal structure (such as coarsening of the γ' phase), but there is still no method for estimating the creep rupture life ratio from the γ 'phase. Not established.

【0003】[0003]

【発明が解決しようとする課題】従来法は、熟練者のみ
が判断できる技術であり、利用範囲が限られていた。ま
た、客観性に乏しく定量的精度の表現が難しいという問
題があった。そこで、本発明は、上記の問題点を解消
し、メタル使用温度又はクリープ破断を未然に防ぐこと
のできるNi基耐熱合金の余寿命評価法を提供しようと
するものである。
The conventional method is a technique which can be judged only by a skilled person, and its use is limited. In addition, there is a problem that it is difficult to express quantitative accuracy due to poor objectivity. Accordingly, the present invention is intended to solve the above-mentioned problems and to provide a method for evaluating the remaining life of a Ni-based heat-resistant alloy that can prevent a metal operating temperature or a creep rupture before it occurs.

【0004】[0004]

【課題を解決するための手段】本発明は、下記構成を採
用することにより、上記の課題の解決を可能にしたもの
である。 (1) Ni基耐熱合金における金属組織のγ’相のラフト
化比率を検知してクリープ破断寿命比を推定することを
特徴とするNi基耐熱合金の余寿命評価法。
The present invention makes it possible to solve the above-mentioned problems by employing the following constitution. (1) A method for evaluating the remaining life of a Ni-base heat-resistant alloy, which comprises estimating a creep rupture life ratio by detecting a rafting ratio of a γ ′ phase of a metal structure in the Ni-base heat-resistant alloy.

【0005】(2) 温度時間履歴が既知のNi基耐熱合金
試料について、γ’相の円相当直径を求め、ラーソン・
ミラー・パラメータ〔LMP=(T+273)(C+l
ogt)〕と円相当直径との間の校正曲線を予め求めて
おき、評価対象のNi基耐熱合金のγ’相の円相当直径
から、メタル温度Tを求めることを特徴とする上記(1)
記載のNi基耐熱合金の余寿命評価法。
(2) For a Ni-base heat-resistant alloy sample whose temperature and time history is known, the equivalent circle diameter of the γ '
Mirror parameter [LMP = (T + 273) (C + 1)
ogt)] and a circle-equivalent diameter are determined in advance, and the metal temperature T is determined from the circle-equivalent diameter of the γ 'phase of the Ni-base heat-resistant alloy to be evaluated.
The remaining life evaluation method of the described Ni-base heat-resistant alloy.

【0006】(3) 評価対象のNi基耐熱合金試料に応力
を負荷し、負荷方向に平行面(応力負荷面)と直角面
(応力負荷無し面)におけるγ’相の長径と短径を測定
し、それぞれの面におけるアスペクト比(長径/短径)
を求め、さらに、ラフト化比率Φ(応力負荷面のアスペ
クト比/応力負荷無し面のアスペクト比)を求めて、ラ
フト化比率Φとラーソンミラーパラメータ(LMP)の
関係図から、クリープ破断寿命比(履歴時間t/クリー
プ破断寿命tr)を求めることを特徴とする上記(2) 記
載のNi基耐熱合金の余寿命評価法。
(3) A stress is applied to the Ni-base heat-resistant alloy sample to be evaluated, and the major axis and minor axis of the γ 'phase are measured on a plane parallel to the loading direction (stress-loaded plane) and a plane perpendicular to the loading direction (stress-free plane). And the aspect ratio of each surface (major axis / minor axis)
And the raft ratio Φ (aspect ratio of the stress-loaded surface / aspect ratio of the surface without stress) is determined, and the creep rupture life ratio ( (2) The method for evaluating the remaining life of a Ni-base heat-resistant alloy according to the above (2), wherein a hysteresis time t / creep rupture life tr) is obtained.

【0007】[0007]

【作用】本発明者等は、Ni基耐熱合金を高温で長時間
使用するときに応力負荷があると、γ’相が細長く変化
(ラフト化)することに着目し、走査型電子顕微鏡(S
EM)を用いて5000倍程度の高倍率でこれを測定
し、ラーソン・ミラー・パラメータ〔LMP=(T+2
73)×(C+logt)〕を用いることにより、クリ
ープ破断寿命比を迅速かつ客観的に定量評価することに
成功した。
The present inventors have noticed that the γ 'phase is elongated (rafted) when a Ni-based heat-resistant alloy is used at a high temperature for a long time at a high temperature under a stress load.
This was measured at a high magnification of about 5000 times using EM), and the Larson-Miller parameter [LMP = (T + 2)
73) × (C + logt)], a rapid and objective quantitative evaluation of the creep rupture life ratio was successfully achieved.

【0008】即ち、温度・時間履歴が既知の材料につい
て、予めγ’相の変化をSEMで測定して円相当直径の
平均値とLMPについての校正曲線を作成しておき、
評価対象のγ’相を当てはめてメタル使用温度を推定す
る。また、γ’相の応力負荷方向に直角面と平行面につ
いても、γ’相の円相当直径の平均値を求め、その変
化をLMP〔=(T+273)×(C+logt)〕で
整理してメタル温度Tを推定する。
That is, for a material having a known temperature / time history, the change of the γ ′ phase is measured by an SEM in advance to prepare a calibration curve for the average value d of the circle equivalent diameter and the LMP,
The metal use temperature is estimated by applying the γ 'phase to be evaluated. The average value d of the circle-equivalent diameter of the γ ′ phase is also determined for the plane parallel to the plane perpendicular to the stress load direction of the γ ′ phase, and the change is arranged by LMP [= (T + 273) × (C + logt)]. Estimate the metal temperature T.

【0009】次に、画像処理装置でγ’相の長径aに対
する短径bの比α(アスペクト比=a/b)を求め、応
力負荷を受ける方向のアスペクト比ασ(a’/b’)
と無負荷のアスペクト比α0 (a/b)の比をラフト化
比率Φとして求めた。 Φ=ασ/α0 =(a’/b’)/(a/b) そして、温度・時間毎のΦとLMPの関係を推定し、Φ
とLMPが合致するtrを、前記Φ−LMPの関係から
推定し、クリープ破断寿命比t/trを推定するもので
ある。
Next, the ratio α (aspect ratio = a / b) of the minor axis b to the major axis a of the γ ′ phase is determined by an image processing apparatus, and the aspect ratio ασ (a ′ / b ′) in the direction of receiving a stress load is obtained.
And the no-load aspect ratio α 0 (a / b) was determined as the raft ratio Φ. Φ = ασ / α 0 = (a ′ / b ′) / (a / b) Then, the relationship between Φ and LMP for each temperature and time is estimated, and Φ
And LMP that agree with each other is estimated from the relationship of Φ-LMP, and the creep rupture life ratio t / tr is estimated.

【0010】[0010]

【実施例】図1〜3は、Ni基耐熱合金のγ’相の変化
の状況を示したもので、図1は素材の角張ったγ’相を
示している。この素材をラーソン・ミラー・パラメータ
(LMP)が29.26×103 の温度・時間履歴を経
ることにより、図2のように、丸みを帯びて粗大化す
る。さらに、前記の温度・時間履歴を付与し、かつ5.
2kgf/mm2 の応力を作用させると、図3のよう
に、γ’相が一層粗大化するとともに、細長く変化する
(ラフト化する)。
1 to 3 show the change in the γ 'phase of a Ni-base heat-resistant alloy. FIG. 1 shows the angular γ' phase of a material. This material undergoes a temperature and time history with a Larson-Miller parameter (LMP) of 29.26 × 10 3 to be rounded and coarse as shown in FIG. Further, the temperature / time history is added, and
When a stress of 2 kgf / mm 2 is applied, the γ ′ phase is further coarsened and elongate (raft) as shown in FIG.

【0011】図4は、γ’相の円相当直径の平均値
変化(粗大化)の校正曲線の例を示した、−LMP線
図である。応力の影響はなく、式(1)で表現すること
ができる。 LMP=8.03・log+29.18 ・・・(1) 式中、LMP=(T+273)(20+logt)×1
-3 T:履歴時の温度(℃) t:履歴時間(hr) :γ’相の円相当直径の平均値(μm) (但し、定数Cは合金毎に変更する場合があるが、上式
では20とした)
FIG. 4 is a d- LMP diagram showing an example of a calibration curve of the change (coarsening) of the average value d of the circle equivalent diameter of the γ ′ phase. There is no influence of stress, and it can be expressed by equation (1). LMP = 8.03 · log d +29.18 (1) where LMP = (T + 273) (20 + logt) × 1
0 -3 T: Temperature during history (° C.) t: History time (hr) d : Average value of equivalent circle diameter of γ ′ phase (μm) (However, constant C may be changed for each alloy, In the above formula, it was 20)

【0012】図5は、γ’相のアスペクト比(長径/短
径)の変化に対する履歴時間tとクリープ破断時間tr
の比のクリープ破断寿命比(t/tr)に対する、下記
Φ(ασ/α0 )の関係を例示したものである。図から
明らかなように、クリープ破断寿命比の増加に伴い、
γ’相のアスペクト比が変化する。応力負荷の場合のア
スペクト比(ασ)は増加(ラフト化)するが、無負荷
の場合のアスペクト比(α0 )は減少する。応力負荷有
のアスペクト比と応力負荷無のアスペクト比との比であ
るクラフト化比率Φ(ασ/α0 )は、図中、黒丸印の
ように、片対数グラフ上で直線となる。
FIG. 5 shows the history time t and the creep rupture time tr with respect to the change in the aspect ratio (major axis / minor axis) of the γ ′ phase.
Is an example of the relationship of the following Φ (ασ / α 0 ) to the creep rupture life ratio (t / tr) of the ratio. As is clear from the figure, as the creep rupture life ratio increases,
The aspect ratio of the γ 'phase changes. The aspect ratio (ασ) in the case of a stress load increases (raft), but the aspect ratio (α 0 ) in the case of no load decreases. The crafting ratio Φ (ασ / α 0 ), which is the ratio between the aspect ratio with stress load and the aspect ratio without stress load, is a straight line on a semilogarithmic graph as indicated by a black circle in the figure.

【0013】この直線は、式(2)で表現することがで
きる。 Pt/tr=Ptr+log(t/tr)(T+273) 及び、Φ=Ct/tr ・・・(2) 式中、Pt/tr:クリープ破断寿命比(t/tr)のとき
のLMP Ptr:t/tr=1のときのLMP LMP=(20+logtr)(T+273)×10-3 T:履歴温度(℃) Φ:γ’相のアスペクト比の(応力負荷有)/(応力負
荷無)の比 C:応力(LMP)に依存するΦの最大値(t/tr=
1のとき)
This straight line can be expressed by equation (2). Pt / tr = Ptr + log (t / tr) (T + 273) and Φ = Ct / tr (2) where Pt / tr : creep rupture life ratio (t / tr) LMP P tr : LMP when t / tr = 1 LMP = (20 + logtr) (T + 273) × 10 −3 T: hysteresis temperature (° C.) Φ: aspect ratio of the γ ′ phase (with stress load) / (stress load) Ratio C: maximum value of Φ depending on stress (LMP) (t / tr =
1)

【0014】以上の実験データを踏まえてγ’相変化に
基づく高温長期使用材のメタル温度Tとクリープ破断寿
命比t/trの推定の手順を図6及び図7により説明す
る。高温長期使用材のメタル温度Tを推定する手順は、
次のとおりである。まず、 走査型電子顕微鏡(SEM)で応力方向に直角面及び
平行面のγ’相を5000倍程度の高倍率で観察して応
力方向に直角(応力負荷無)面のγ’相の長径aと短径
b、及び、応力方向に平行(応力負荷有)面のγ’相の
長径a’と短径b’を測定する。
A procedure for estimating the metal temperature T and the creep rupture life ratio t / tr of a high-temperature long-term material based on the γ 'phase change based on the above experimental data will be described with reference to FIGS. The procedure for estimating the metal temperature T of high-temperature long-term materials is as follows:
It is as follows. First, a scanning electron microscope (SEM) is used to observe the γ 'phase in a plane perpendicular to the stress direction and a plane parallel to the stress direction at a high magnification of about 5000 times, and observe the major axis a of the γ' phase in a plane perpendicular to the stress direction (no stress applied). And the minor axis b, and the major axis a ′ and minor axis b ′ of the γ ′ phase on the plane parallel to the stress direction (with stress applied).

【0015】γ’相の画像処理では、γ’相の円相
当直径の平均値、及び、γ’相のアスペクト比の応
力負荷有/無のラフト化比率Φを求める。γ’相の円
相当直径の平均値は、で測定したγ’相の長径と短
径から円相当直径の平均値を求める。
In the image processing of the γ ′ phase, the average value d of the circle equivalent diameter of the γ ′ phase and the raft ratio Φ with / without the stress load of the aspect ratio of the γ ′ phase are obtained. gamma 'an average value of equivalent-circle diameters of phase d is in the measured gamma' an average value d of the circle equivalent diameter of major axis and minor axis of the phase.

【0016】メタル温度Tの推定は、前記で求めた
γ’相の円相当直径の平均値を用い、評価対象の実験
データである図6の−LMP線図から、図4の試料に
ついては次式を得た。ここで、上記の−LMP線図と
式(1)は、温度・時間履歴の既知試料から予め求めた
校正曲線である。メタル温度Tの推定には、使用時間t
は既知であることが必要となる。なお、γ’相の変化
に応力依存はないので、メタル温度Tの推定には、応力
方向に直角面及び平行面のいずれか一方のSEM観察で
よい。
The metal temperature T is estimated by using the average value d of the equivalent circle diameter of the γ ′ phase obtained as described above, and from the d- LMP diagram of FIG. 6 which is the experimental data to be evaluated, for the sample of FIG. Obtained the following equation. Here, the above d- LMP diagram and equation (1) are calibration curves obtained in advance from known samples of the temperature / time history. To estimate the metal temperature T, use time t
Needs to be known. Since the d change of the γ 'phase does not depend on the stress, the metal temperature T may be estimated by SEM observation of one of a plane perpendicular to and parallel to the stress direction.

【0017】LMP=8.03・log+29.18 一方、LMPは、LMP=(T+273)(20+lo
gt)×10-3 であるから、両式から、次式によりメ
タル温度Tを求めることができる。 T=〔(8.03・logd+29.18)/(20+
logt)×10-3〕−273
LMP = 8.03 · log d +29.18 On the other hand, LMP is LMP = (T + 273) (20 + lo
gt) × 10 −3 , the metal temperature T can be determined from both equations by the following equation. T = [(8.03 · logd + 29.18) / (20+
logt) × 10 -3 ] -273

【0018】γ’相のアスペクト比の応力負荷有/無
のラフト化比率Φは、γ’相の応力負荷のアスペクト比
σα(a’/b’)と、応力負荷無のアスペクト比σ0
(a/b)から両者の比率Φ(=σα/σ0 )として求
める。 温度・時間毎のΦ−LMP関係の推定では、で求め
たγ’相の円相当直径の平均値と、で求めたメタル
温度Tと、で求めたγ’相のΦから予め求め、Φ−L
MPの関係を式(2)より求め、図6のΦ−LMP線図
のように作図してΦとLMPの交点を求める。
The raft ratio Φ with / without a stress load of the aspect ratio of the γ ′ phase is represented by an aspect ratio σα (a ′ / b ′) of a γ ′ phase stress load and an aspect ratio σ 0 without a stress load.
From (a / b), the ratio Φ (= σα / σ 0 ) is obtained. In the estimation of the Φ-LMP relationship for each temperature and time, the average value d of the equivalent circle diameter of the γ ′ phase obtained in the above, the metal temperature T obtained in the above, and the Φ of the γ ′ phase obtained in the above are obtained in advance. -L
The relationship between MPs is obtained from equation (2), and the intersection of Φ and LMP is obtained by plotting as shown in the Φ-LMP diagram of FIG.

【0019】クリープ破断寿命比t/trは、このよ
うにして求めた、Φ−LMP関係の推定値のうち、t/
tr=1のΦがその最大値となり、これから Φ=C
t/trの関係を示す図6のΦ−t/tr線図を作図し、こ
れに再びγ’相観察からのΦを当てはめて、クリープ破
断寿命比t/trを推定することができる。
The creep rupture life ratio t / tr is t / tr of the estimated value of the Φ-LMP relation thus obtained.
Φ at tr = 1 becomes its maximum value, from which Φ = C
Draw the Φ-t / tr diagram of Figure 6 showing the relationship of t / tr, by applying the [Phi from this re-gamma 'phase observation, it is possible to estimate the creep rupture life ratio t / tr.

【0020】別法として、メタル温度毎のΦ−LMP
関係、t/tr=1において、図7のΦ−LMP線図の
ように、次式を求め、t/tr<1を推定することも可
能である。 Φ1 =1+4.14×10-13 ・100.4412P1 P =P1 +log(t/tr)・〔(T+273)/
1000〕 Φ =1+(Φ1 −1)(t/tr)
Alternatively, Φ-LMP for each metal temperature
In the relation, t / tr = 1, it is also possible to obtain the following equation and estimate t / tr <1 as shown in the Φ-LMP diagram of FIG. Φ 1 = 1 + 4.14 × 10 −13 · 10 0.4412 P1 P = P 1 + log (t / tr) · [(T + 273) /
1000] Φ = 1 + (Φ 1 −1) (t / tr)

【0021】[0021]

【発明の効果】本発明は、上記の構成を採用することに
より、高温長時間使用によるγ’相の変化を画像処理装
置を用いて予め作成した校正曲線を用い、Ni基耐熱合
金のメタル使用温度推定とクリープ破断寿命比を迅速に
かつ定量的に推定することができるようになった。その
結果、例えば、ガスタービン動翼のメタル使用温度やク
リープ破断を未然に防止するための対策を講ずることに
より、製品の信頼性を確保できるようになった。
According to the present invention, by adopting the above-described structure, the change of the γ ′ phase due to long-time use at high temperature can be measured by using a calibration curve prepared in advance using an image processing apparatus and using a metal of a Ni-base heat-resistant alloy. Temperature estimation and creep rupture life ratio can be quickly and quantitatively estimated. As a result, for example, the reliability of the product can be ensured by taking measures to prevent the metal operating temperature and creep rupture of the gas turbine blade beforehand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いたNi基耐熱合金が、高温使用前
の角張ったγ’相を示した顕微鏡写真である。
FIG. 1 is a photomicrograph showing that the Ni-base heat-resistant alloy used in Examples shows a sharp γ ′ phase before use at a high temperature.

【図2】図1のγ’相にLMP=29.26×103
温度・時間履歴を付与したことにより、丸みを帯びて粗
大化したγ’相の状態を示した顕微鏡写真である。
FIG. 2 is a photomicrograph showing a rounded and coarse γ ′ phase obtained by adding a temperature / time history of LMP = 29.26 × 10 3 to the γ ′ phase of FIG. 1;

【図3】図1のγ’相がLMP=29.26×103
温度・時間履歴を付与し、かつ、5.2kgf/mm2
の応力が作用したときのγ’相の状態を示した顕微鏡写
真である。
FIG. 3 shows that the γ ′ phase of FIG. 1 gives a temperature / time history of LMP = 29.26 × 10 3 and 5.2 kgf / mm 2
5 is a photomicrograph showing the state of the γ ′ phase when the stress of FIG.

【図4】γ’相の円相当直径の平均値とLMPの関係
を示した図である。
FIG. 4 is a diagram showing the relationship between the average value d of the equivalent circle diameter of the γ ′ phase and LMP.

【図5】アクセプト比α及びラフト化比率Φ(=ασ/
α0 )とクリープ破断寿命比(t/tr)の関係を示し
た図である。
FIG. 5 shows an accept ratio α and a raft ratio Φ (= ασ /
FIG. 3 is a diagram showing a relationship between α 0 ) and a creep rupture life ratio (t / tr).

【図6】γ’相変化からメタル温度及びクリープ破断寿
命比を推定する手順を説明するための図であり、γ’相
SEM観察のデータに基づいてγ’相画像処理を行うま
での手順を説明するための図である。
FIG. 6 is a diagram for explaining a procedure for estimating a metal temperature and a creep rupture life ratio from a γ ′ phase change, and illustrates a procedure until γ ′ phase image processing is performed based on γ ′ phase SEM observation data. It is a figure for explaining.

【図7】γ’相変化からメタル温度及びクリープ破断寿
命比を推定する手順を説明するための図であり、図6に
続いて、メタル温度T及びクリープ破断寿命比t/tr
を推定する手順を説明するための図である。
FIG. 7 is a diagram for explaining a procedure for estimating a metal temperature and a creep rupture life ratio from a γ ′ phase change. FIG.
FIG. 6 is a diagram for explaining a procedure for estimating.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 17/00 G01M 19/00 G01N 3/32 G01N 33/20 JICSTファイル(JOIS)Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01N 17/00 G01M 19/00 G01N 3/32 G01N 33/20 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ni基耐熱合金における金属組織のγ’
相のラフト化比率を検知してクリープ破断寿命比を推定
することを特徴とするNi基耐熱合金の余寿命評価法。
1. The γ ′ of the metal structure in a Ni-base heat-resistant alloy
A method for evaluating a remaining life of a Ni-based heat-resistant alloy, comprising estimating a creep rupture life ratio by detecting a raft ratio of a phase.
【請求項2】 温度・時間履歴が既知のNi基耐熱合金
試料に応力を負荷し、γ’相の長径と短径を測定して円
相当直径を求め、ラーソン・ミラー・パラメータ〔LM
P=(T+273)(C+logt)〕と前記円相当直
径との間の校正曲線を予め求めておき、評価対象のNi
基耐熱合金のγ’相の円相当直径から、メタル温度Tを
求めることを特徴とする請求項1記載のNi基耐熱合金
の余寿命評価法。
2. A stress is applied to a Ni-base heat-resistant alloy sample whose temperature and time history is known, and the major axis and minor axis of the γ ′ phase are measured to obtain a circle-equivalent diameter, and the Larson-Miller parameter [LM]
A calibration curve between P = (T + 273) (C + logt)] and the circle equivalent diameter is obtained in advance, and the Ni to be evaluated is evaluated.
2. The method for evaluating the remaining life of a Ni-base heat-resistant alloy according to claim 1, wherein the metal temperature T is determined from the equivalent circle diameter of the γ 'phase of the base heat-resistant alloy.
【請求項3】 評価対象のNi基耐熱合金試料に応力を
負荷し、負荷方向に平行面(応力負荷面)と直角面(応
力負荷無し面)におけるγ’相の長径と短径を測定し、
それぞれの面におけるアスペクト比(長径/短径)を求
め、さらに、ラフト化比率Φ(応力負荷面のアスペクト
比/応力負荷無し面のアスペクト比)を求めて、ラフト
化比率Φとラーソン・ミラー・パラメータ(LMP)の
関係図から、クリープ破断寿命比(履歴時間t/クリー
プ破断寿命tr)を求めることを特徴とする請求項2記
載のNi基耐熱合金の余寿命評価法。
3. A stress is applied to the Ni-base heat-resistant alloy sample to be evaluated, and the major axis and minor axis of the γ ′ phase are measured on a plane parallel to the load direction (stress-loaded plane) and a plane perpendicular to the loading direction (stress-free plane). ,
The aspect ratio (major axis / minor axis) of each surface is determined, and the raft ratio Φ (aspect ratio of the stress-loaded surface / aspect ratio of the surface without stress) is determined. 3. The method for evaluating the remaining life of a Ni-base heat-resistant alloy according to claim 2, wherein a creep rupture life ratio (history time t / creep rupture life tr) is determined from a relationship diagram of the parameter (LMP).
JP12557295A 1995-04-27 1995-04-27 Evaluation method for remaining life of Ni-base heat-resistant alloy Expired - Lifetime JP3310818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12557295A JP3310818B2 (en) 1995-04-27 1995-04-27 Evaluation method for remaining life of Ni-base heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12557295A JP3310818B2 (en) 1995-04-27 1995-04-27 Evaluation method for remaining life of Ni-base heat-resistant alloy

Publications (2)

Publication Number Publication Date
JPH08297079A JPH08297079A (en) 1996-11-12
JP3310818B2 true JP3310818B2 (en) 2002-08-05

Family

ID=14913512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12557295A Expired - Lifetime JP3310818B2 (en) 1995-04-27 1995-04-27 Evaluation method for remaining life of Ni-base heat-resistant alloy

Country Status (1)

Country Link
JP (1) JP3310818B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448724B1 (en) * 2017-08-10 2019-01-09 九州電力株式会社 Remaining life evaluation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799146B (en) * 2018-12-21 2021-07-02 中国石油天然气集团有限公司 Casing evaluation method for fireflooding heavy oil well

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448724B1 (en) * 2017-08-10 2019-01-09 九州電力株式会社 Remaining life evaluation method
JP2019035597A (en) * 2017-08-10 2019-03-07 九州電力株式会社 Residual lifetime evaluation method

Also Published As

Publication number Publication date
JPH08297079A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
Manson Fatigue-a complex subject-some simple approximations
Northwood et al. Characterization of neutron irradiation damage in zirconium alloys—an international “round-robin” experiment
Noecker et al. Metallurgical investigation into ductility dip cracking in Ni-based alloys: Part II
Paul et al. Shear band microtexture formation in twinned face centred cubic single crystals
Mueller et al. In-situ strength of individual silicon particles within an aluminium casting alloy
US6512982B2 (en) Methods and systems for evaluating defects in metals
JP3310818B2 (en) Evaluation method for remaining life of Ni-base heat-resistant alloy
US4953973A (en) Detection of compressive residual stresses using the method of caustics
CN112415029A (en) Method for directly testing volume fraction of precipitated phase in alloy
US8691105B2 (en) Method of detecting contamination of titanium alloys of two-phase type having an alpha and a beta phase
Doig et al. The use of stretch zone width measurements in the determination of fracture toughness of low strength steels
JP3064107B2 (en) High-temperature damage evaluation method for austenitic heat-resistant steel
Kruml et al. Dislocation density in ni3 (al, hf)
JP2007057240A (en) Estimation apparatus of destruction cause and estimation method of destruction cause
JP3794943B2 (en) Method for estimating metal temperature and material properties of Ni-based alloy parts
JPH05223809A (en) Remaining service life estimating method for gamma&#39; phase precipitation reinforcement type alloy
Venkatraman et al. Stiffness based technique to probe cyclic damage accumulation in micro-structurally graded bond coats via micro-beam bending tests
Kraemer et al. Toward a Better Understanding of Crack Growth in Nickel-Cast Alloys Under Creep-Fatigue and Thermo-Mechanical Fatigue Conditions
Schwalbe et al. Validation of the fracture mechanics test method egf p1–87d (esis p1–90/esis p1–92): analysis of an experimental round robin
JPH10197515A (en) Estimating method of working temperature of cobalt group heat resistant alloy
JP3224053B2 (en) Non-destructive test method and apparatus for heat-resistant metal
JP3519703B2 (en) Temperature estimation method for high temperature parts
JP2020159850A (en) Method, device and system for diagnosing degradation of nickel-based superalloy
JP2009074868A (en) Lifetime estimation method of nickel-based alloy component
Varvani Farahani Biaxial fatigue crack growth and crack closure under constant amplitude and periodic compressive overload histories in 1045 steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

EXPY Cancellation because of completion of term