JP3307103B2 - Teaching method of shape measurement procedure - Google Patents

Teaching method of shape measurement procedure

Info

Publication number
JP3307103B2
JP3307103B2 JP23185094A JP23185094A JP3307103B2 JP 3307103 B2 JP3307103 B2 JP 3307103B2 JP 23185094 A JP23185094 A JP 23185094A JP 23185094 A JP23185094 A JP 23185094A JP 3307103 B2 JP3307103 B2 JP 3307103B2
Authority
JP
Japan
Prior art keywords
point
measurement
points
shape
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23185094A
Other languages
Japanese (ja)
Other versions
JPH0895627A (en
Inventor
眞成 貴堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23185094A priority Critical patent/JP3307103B2/en
Publication of JPH0895627A publication Critical patent/JPH0895627A/en
Application granted granted Critical
Publication of JP3307103B2 publication Critical patent/JP3307103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、対象物の想定形状を
3次元的に詳細に表す数値モデルを用いて形状計測装置
に前記対象物の形状の計測手順を教示する場合の教示方
法に関し、特には、計測不要の加工残し部位についての
計測点の自動除去を可能にする教示方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a teaching method for teaching a shape measuring procedure of a shape of an object to a shape measuring apparatus using a numerical model representing the assumed shape of the object in three dimensions in detail. In particular, the present invention relates to a teaching method that enables automatic removal of a measurement point from an unprocessed unprocessed portion.

【0002】[0002]

【従来の技術】形状計測装置に計測する対象物の形状の
計測手順を教示する際、その対象物がコンピュータ支援
設計(CAD)により設計したものである場合は、その
CADによる設計過程で得られた、格子状の基準線の交
点(格子点)の点群の座標値によって対象物の想定形状
である設計形状を3次元的に詳細に表す数値モデルを用
いて教示すると、教示に要する手間を大幅に省くことが
できるとともに、計測結果と設計形状との対比を容易に
し得て実際の対象物の形状誤差の把握を容易にすること
ができるという利点があり、かかる数値モデルを用いた
教示方法としては従来、例えば本出願人が先に特開平 3
-12511号にて開示したものがある。
2. Description of the Related Art When teaching a measuring procedure of a shape of an object to be measured to a shape measuring device, if the object is designed by computer-aided design (CAD), the object is obtained in a designing process by the CAD. In addition, when teaching is performed using a numerical model that three-dimensionally details a design shape that is an assumed shape of an object by coordinate values of a point group of intersections (grid points) of a grid-like reference line, the time required for teaching is reduced. The teaching method using such a numerical model has the advantages that it can be largely omitted, and that it is possible to easily compare the measurement result with the design shape and to easily grasp the shape error of the actual object. Conventionally, for example, the applicant of the present application
-12511.

【0003】例えば車体パネル成形用金型の形状計測に
適用した、図8の左側の流れに示す上記従来の方法で
は、CADおよびCAM(コンピュータ支援加工)の機
能を具える比較的能力の高いホストコンピュータと、形
状計測装置としての通常の3次元測定器と、幾つかの端
末装置1を持ち上記ホストコンピュータとの間でデータ
の送受を行いつつその3次元測定器の制御および計測デ
ータの処理を行うミニコンピュータとからなる計測シス
テムを用い、その計測システムの使用者が、先ず図8
(a)に示すように、ホストコンピュータから送った上
記金型の想定形状である設計形状を示す数値モデルをミ
ニコンピュータにその端末装置1によって画面表示させ
て、その数値モデルの形状中から計測したい断面を選択
する。
In the conventional method shown in the flow chart on the left side of FIG. 8 applied to, for example, the shape measurement of a body panel molding die, a relatively high-performance host having CAD and CAM (computer-assisted processing) functions is used. It has a computer, a normal three-dimensional measuring device as a shape measuring device, and several terminal devices 1 for transmitting and receiving data to and from the host computer and controlling the three-dimensional measuring device and processing measured data. A measurement system including a minicomputer to be used is used, and a user of the measurement system first
As shown in (a), a numerical model indicating a design shape which is an assumed shape of the mold sent from a host computer is displayed on a screen by a terminal device 1 of the minicomputer, and it is desired to measure from the shape of the numerical model. Select a section.

【0004】次いでこの方法では、上記使用者が、図8
(b)に示すように、ミニコンピュータに上記選択した
断面での上記金型の設計断面形状を画面表示させて、そ
のミニコンピュータのマウス2やキーボード3の操作に
より、測定範囲の指定と、後述する測定条件(トレラン
ス値およびMAX−DP値)の設定とを行い、次いで図
8(c)に示すように、その指定した測定範囲と設定し
た測定条件をミニコンピュータからホストコンピュータ
へ送って、ホストコンピュータに、上記数値モデルの上
記選択した設計断面形状を点列で表す基準データから上
記測定範囲内での計測点を上記測定条件に基づいて抽出
する計測点抽出処理を行わせる。
[0004] Next, in this method, the above-mentioned user is required to operate as shown in FIG.
As shown in (b), the design section of the mold at the selected section is displayed on the screen of the minicomputer on the screen, and the operation of the mouse 2 and the keyboard 3 of the minicomputer is used to specify the measurement range, and The measurement conditions (tolerance value and MAX-DP value) are set, and then the designated measurement range and the set measurement conditions are sent from the minicomputer to the host computer as shown in FIG. A computer is caused to perform a measurement point extraction process of extracting measurement points within the measurement range from reference data representing the selected design cross-sectional shape of the numerical model as a point sequence based on the measurement conditions.

【0005】この計測点抽出処理は、具体的には図9に
示す手順で行い、ここでは先ずステップ11で、上記測定
範囲内での上記基準データ上の最初の点を計測点とし、
続くステップ12で、その最初の点を比較スタート点と
し、その比較スタート点の一つ先の点を検討点とし、さ
らにその検討点の一つ先の点を対象点とし、次のステッ
プ13で、トレランス・離間距離判定を行い、このトレラ
ンス・離間距離判定では先ず、図10(a)に示すよう
に、上記基準データ上の比較スタート点を点A、検討点
を点B、対象点を点Cとし、図10(b)に示すように、
二点A,C間を直線で結んだ線分ACと検討点Bとの距
離dを調べて、その距離dが上記トレランス値以上(d
≧トレランス値)であるか否かを判定するトレランス判
定を行い、その結果距離dがトレランス値以上であれば
その検討点Bを採用する。この一方、上記トレランス判
定の結果検討点Bを採用しない場合には、次に上記線分
ACの長さLが上記MAX−DP値(最大離間距離)以
上(L≧MAX−DP値)であるか否かを判定する離間
距離判定を行い、その結果長さLがMAX−DP値以上
であればその検討点Bを採用する。
This measurement point extraction processing is specifically performed according to the procedure shown in FIG. 9. First, in step 11, the first point on the reference data within the measurement range is set as a measurement point.
In the following step 12, the first point is set as a comparison start point, a point one point ahead of the comparison start point is set as a study point, and a point one point ahead of the study point is set as a target point, and in the next step 13, In the tolerance / separation distance determination, first, as shown in FIG. 10A, the comparison start point on the reference data is point A, the examination point is point B, and the target point is point B, as shown in FIG. C, and as shown in FIG.
A distance d between a line segment AC connecting the two points A and C with a straight line and the examination point B is checked, and the distance d is equal to or larger than the tolerance value (d
Tolerance determination is performed to determine whether or not ≧ tolerance value. As a result, if the distance d is equal to or greater than the tolerance value, the examination point B is adopted. On the other hand, when the examination point B is not adopted as a result of the tolerance determination, the length L of the line segment AC is equal to or greater than the MAX-DP value (maximum separation distance) (L ≧ MAX-DP value). A separation distance determination is performed to determine whether or not the length L is equal to or greater than the MAX-DP value.

【0006】次のステップ14では、上記検討点が採用さ
れたか否かを判断して、採用された場合には、ステップ
15で、その検討点を計測点とし、続くステップ16で、上
記対象点が上記測定範囲内での上記基準データ上の最後
の点か否かを判断し、上記対象点が最後の点でない場合
には、ステップ17で、上記検討点を新たな比較スタート
点とし、その比較スタート点の一つ先の点を検討点と
し、さらにその検討点の一つ先の点を対象点として、上
記ステップ13へ戻る。この一方、上記ステップ14で上記
検討点が採用されなかった場合には、ステップ18で、ス
テップ16と同様、上記対象点が上記測定範囲内での上記
基準データ上の最後の点か否かを判断し、上記対象点が
最後の点でない場合には、ステップ19で、その対象点の
一つ先の点を新たな対象点とし、上記の一つ先の点を新
たな検討点として、上記ステップ13へ戻る。そして上記
ステップ16あるいはステップ18で、その時点での対象点
が最後の点の場合には、ステップ20で、その最後の点を
計測点として、計測点抽出処理を終了する。かかる計測
点抽出処理によれば、そのトレランス判定により、起伏
の程度がトレランス値よりも小さい部分の計測点を間引
くことができ、またその離間距離判定により、最大離間
距離を越えるような計測点間の離れ過ぎを防止すること
ができる。
In the next step 14, it is determined whether or not the above considerations have been adopted.
In 15, the examination point is set as a measurement point, and in the following step 16, it is determined whether the target point is the last point on the reference data in the measurement range, and if the target point is not the last point In step 17, the above examination point is set as a new comparison start point, the point ahead of the comparison start point is considered as the examination point, and the point ahead of the examination point is set as the target point, and Return to 13. On the other hand, if the above-mentioned examination point is not adopted in the above-mentioned step 14, in step 18, similarly to step 16, it is determined whether or not the target point is the last point on the above-mentioned reference data in the above-mentioned measurement range. If it is determined that the target point is not the last point, in step 19, a point one point ahead of the target point is set as a new target point, and the one point ahead is set as a new examination point, and Return to step 13. If the target point at that time is the last point in step 16 or step 18, the last point is set as a measurement point in step 20, and the measurement point extraction process ends. According to such measurement point extraction processing, by the tolerance determination, it is possible to thin out the measurement points of the portion where the degree of undulation is smaller than the tolerance value, and to determine the distance between the measurement points exceeding the maximum separation distance by the separation distance determination. Can be prevented from being too far apart.

【0007】ところで、一般にCAMによって金型加工
を行う場合には、一定の加工軸方向で種々の向きの面を
加工し得るように、ボールエンドミル等の、加工中に先
端が半球面を画成する工具を用いるので、図11に示すよ
うに、金型4の、設計断面形状をL字状やV字状等の折
れた形状とされた凹部については、使用する工具中の最
小径の工具5でも設計断面形状通りには加工し得ない。
従って、対象物である金型4のそのような凹部の隅部に
は、その両側面の挟む角度がそれ程大きくない場合は、
加工残し量すなわち設計断面形状での折れ点の位置と実
際の加工表面との間の距離が測定公差を越えている加工
残し部位Rが存在しており、かかる加工残し部位Rは測
定公差を越える誤差を持つことが明らかであるゆえ計測
する必要がないことから、図12に示す如き、金型4の断
面形状を表す上記基準データの点列あるいはそこから抽
出した上記計測点の点列中の折れた形状の部分すなわち
コーナー部分(凸形状の場合と凹形状の場合がある)の
うちの凹形状の部分の隅部の、上記加工残し部位Rに対
応する部位は計測不要部位となり、その計測不要部位に
ある点Pxは計測不要点となる。
[0007] By the way, in general, when a die is machined by CAM, a tip of a ball end mill or the like defines a hemispherical surface during machining so that surfaces in various directions can be machined in a fixed machining axis direction. As shown in FIG. 11, a concave portion having a design cross-sectional shape such as an L-shape or a V-shape which is a broken shape such as an L-shape or a V-shape as shown in FIG. Even with No. 5, processing cannot be performed as designed.
Therefore, in the case where the angle between both side surfaces is not so large, the corner of such a concave portion of the mold 4 as the object is
There is an unprocessed portion R in which the unprocessed amount, that is, the distance between the position of the break point in the design cross-sectional shape and the actual processed surface exceeds the measurement tolerance, and the unprocessed portion R exceeds the measurement tolerance. Since there is no need to perform measurement because it is clear that there is an error, as shown in FIG. 12, a point sequence of the reference data representing the cross-sectional shape of the mold 4 or a point sequence of the measurement points extracted therefrom. The portion corresponding to the unprocessed portion R at the corner of the concave portion of the broken portion, that is, the corner portion (may be convex or concave), becomes a measurement unnecessary portion, and its measurement is performed. The point Px at the unnecessary portion is a measurement unnecessary point.

【0008】それゆえこの従来の方法では、上記の如く
して基準データの点列から計測点列を抽出した後、図8
(d)に示すように、計測システムの使用者が、上記抽
出した計測点列をミニコンピュータにその端末装置1に
よって画面表示させ、次いで図8(e)に示すように、
上記計測不要部位にある計測不要点Pxを削除して、計測
に要する時間の短縮を図っているが、測定公差を越える
誤差が発生している加工残し部位Rに対応する計測不要
部位であるか否かの判断は、正確には、空間的に延在す
る上述の如き設計形状の凹部の両側面と上記最小径の工
具の半径に等しい半径の半球面との二接点を通ってその
凹部の延在方向に直交する断面内で、その半球面の断面
である円弧と、その両側面の断面である二本の断面線の
交点との間の距離を調べて、その距離が測定公差を越え
ているか否かで判断するべきである処、上記の教示方法
において基準データを求める断面は、必ずしも凹部の延
在方向に直交する断面とはならない。
Therefore, in this conventional method, after extracting a sequence of measurement points from a sequence of points of reference data as described above, FIG.
As shown in FIG. 8D, the user of the measurement system causes the mini computer to display a screen of the extracted measurement point sequence on the terminal device 1, and then, as shown in FIG.
Although the measurement unnecessary point Px in the above measurement unnecessary part is deleted to shorten the time required for measurement, is the measurement unnecessary part corresponding to the unprocessed part R where an error exceeding the measurement tolerance occurs? To be precise, the determination of the presence or absence of the concave portion is made through two contact points of both sides of the spatially extending concave portion having the design shape as described above and a hemispherical surface having a radius equal to the radius of the minimum diameter tool. In the cross section orthogonal to the extending direction, the distance between the arc that is the cross section of the hemispherical surface and the intersection of the two cross sectional lines that are the cross sections of both sides is checked, and the distance exceeds the measurement tolerance. However, the cross section for obtaining the reference data in the teaching method described above is not necessarily a cross section orthogonal to the extending direction of the concave portion.

【0009】すなわち、基準データを求める断面が、図
8(a)に示すように上方から見て金型側面に直交する
垂直断面である一方、凹部が、その金型側面に沿って水
平方向へ延在しているような場合には、その基準データ
を求める断面は凹部の延在方向に直交するが、基準デー
タを求める断面が金型側面に直交していなかったり凹部
が斜面に沿って傾斜して延在していたする場合には基準
データを求める断面は凹部の延在方向に直交せず斜めに
交差していることがあり、かかる場合には、点列のコー
ナー部分に上記最小径の工具の半径に等しい半径の円弧
を接触させた場合のその円弧とコーナー点との距離が測
定公差を越えていても、実際の誤差となる上述した凹部
の延在方向に直交する断面内での円弧と二本の断面線の
交点との間の距離は測定公差を越えていない場合があり
得る。
That is, the cross section for obtaining the reference data is a vertical cross section orthogonal to the side surface of the mold as viewed from above as shown in FIG. 8 (a), while the recess is formed in the horizontal direction along the side surface of the mold. In such a case, the cross section for obtaining the reference data is orthogonal to the extending direction of the concave portion, but the cross section for obtaining the reference data is not orthogonal to the mold side surface or the concave portion is inclined along the slope. When extending, the cross section for obtaining the reference data may not obliquely intersect with the extending direction of the concave portion but obliquely intersect. Even when the distance between the arc and the corner point when the circular arc having the radius equal to the radius of the tool is in contact with the measuring point exceeds the measurement tolerance, the cross section orthogonal to the extending direction of the above-described concave portion, which is an actual error, is obtained. Distance between the arc of a circle and the intersection of the two section lines There may be a case when it does not exceed the measurement tolerance.

【0010】そこで、この従来の方法では、計測システ
ムの使用者が、図12に示すように画面表示された計測点
列による断面形状中の凹形状のコーナー部分の折れ点で
あるコーナー点の前後の点列の挟む角度から、そのコー
ナー部分に上記最小径の工具の半径に等しい半径の円弧
を接触させた場合のその円弧とコーナー点との距離を推
測し、その距離から、上記基準データを求めた断面が元
の3次元的な数値データにおけるそのコーナー部分に対
応する凹部の延在方向に対しどのような角度で交差して
いるかを考慮して、そのコーナー部分の隅部での誤差が
測定公差を越えそうか否かを目視で判断し、測定公差を
越えそうな場合にはそのコーナー部分の隅部は計測不要
部位であるとみなして、そのようなコーナー部分のコー
ナー点やその直近の点を計測不要点Pxとし、それらの計
測不要点Pxを、上記ミニコンピュータのマウス2の操作
により一点づつヒット(指定)して削除している。
Therefore, in this conventional method, the user of the measurement system can use the measurement point sequence displayed on the screen as shown in FIG. From the angle between the point trains, the distance between the arc and the corner point when an arc having a radius equal to the radius of the tool having the minimum diameter is brought into contact with the corner portion is estimated, and the reference data is obtained from the distance. Considering at what angle the obtained cross section intersects with the extension direction of the concave portion corresponding to the corner in the original three-dimensional numerical data, the error at the corner of the corner is calculated. Visually judge whether or not the measurement tolerance will be exceeded.If the measurement tolerance is likely to be exceeded, the corner of the corner is regarded as a measurement unnecessary part, and the corner of such a corner and the nearest corner To the point the measurement unnecessary points Px, their measurement unnecessary points Px, are removed by one point at a time hit (designated) by the operation of the mouse 2 above minicomputer.

【0011】従来の教示方法では、かかる手順を上記金
型の計測したい断面について繰り返し行うことで、それ
ら計測したい断面の全てについて上記ミニコンピュータ
に計測点を教示しており、このようにして計測点を教示
した後は、そのミニコンピュータに、上記3次元測定器
のセンサのプローブが上記計測点列を順次辿るように3
次元測定器の作動を制御させて計測作業を行わせ、さら
にその計測によって得たデータをそのミニコンピュータ
に、該システムの使用者が見易いように適宜処理させて
端末装置1により画面表示させている。
In the conventional teaching method, the above procedure is repeated for the section to be measured of the mold, and the measuring points are taught to the minicomputer for all of the sections to be measured. Is taught to the minicomputer so that the probe of the sensor of the three-dimensional measuring device sequentially follows the measurement point sequence.
The measurement operation is performed by controlling the operation of the dimension measuring device, and the data obtained by the measurement is appropriately processed by the minicomputer so that a user of the system can easily view the data, and is displayed on the screen by the terminal device 1. .

【0012】[0012]

【発明が解決しようとする課題】しかして本願出願人
は、上述した対象物の想定形状を3次元的に詳細に表す
数値モデルを用いる教示方法について研究を進めるうち
に、教示の最後の段階で計測不要点の削除を人手で行っ
ている点を改善すれば教示に要する工数をさらに削減し
得るということに想到した。そしてその方法につき検討
する間に、上記基準データはその点列の各点についてそ
の点に対応する位置での前記数値モデルの面の法線ベク
トルを持っているということに想到した。
SUMMARY OF THE INVENTION The applicant of the present invention has been studying a teaching method using a numerical model representing the assumed shape of an object in three dimensions in detail, and has been working on the last stage of teaching. It has been conceived that if the point where measurement unnecessary points are deleted manually is improved, the man-hour required for teaching can be further reduced. Then, while studying the method, they came to the conclusion that the reference data has, for each point in the sequence of points, the normal vector of the surface of the numerical model at the position corresponding to that point.

【0013】[0013]

【課題を解決するための手段】この発明は上述の点に鑑
みて上記従来の教示方法をさらに改善した教示方法を提
供するものであり、この発明の形状計測手順の教示方法
は、対象物の想定形状を3次元的に詳細に表す数値モデ
ルから、前記対象物の断面形状を点列で表すとともにそ
の点列の各点についてその点に対応する位置での前記数
値モデルの面の法線ベクトルを持つ基準データを作成
し、その基準データの点列から、所定測定基準に基づき
計測が必要な点を計測点として抽出し、その計測点の点
列を用いて形状計測装置に前記対象物の形状の計測手順
を教示するに際し、前記対象物の加工に用いた工具のう
ち最小径の工具での加工残しによって発生する誤差が測
定公差内に収まるような凹部についての、その凹部の両
側面を各々平面とした場合のそれら両側面の挟む角度の
最小値を基準角度としてあらかじめ求めておき、前記計
測点の抽出時に、前記基準データの点列中の検討対象の
点の前後の点にそれぞれ対応する位置での前記数値モデ
ルの面の挟む角度が前記基準角度未満の場合であって、
前記検討対象の点とその前後の点とが凹形状を形成して
いる場合に、前記検討対象の点を前記計測点として抽出
しないことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and provides a teaching method which is a further improvement of the above-described conventional teaching method. From a numerical model that represents the assumed shape in three dimensions in detail, the cross-sectional shape of the object is represented by a sequence of points, and the normal vector of the surface of the numerical model at a position corresponding to each point in the sequence of points. Create reference data having a reference point, from the point sequence of the reference data, extract points that need to be measured based on a predetermined measurement reference as measurement points, and use the point sequence of the measurement points to a shape measuring device to determine the shape of the object. When teaching the shape measurement procedure, regarding the concave portion such that the error generated by the unprocessed tool with the smallest diameter tool among the tools used for processing the object falls within the measurement tolerance, the both side surfaces of the concave portion are used. Each as a plane In this case, the minimum value of the angle between the both sides is obtained in advance as a reference angle, and at the time of extracting the measurement points, the positions at the positions respectively corresponding to the points before and after the point to be considered in the point sequence of the reference data are extracted. The angle between the surfaces of the numerical model is less than the reference angle,
When the point to be examined and the points before and after it form a concave shape, the point to be examined is not extracted as the measurement point.

【0014】なお、この発明の方法においては、前記基
準データの点列中の検討対象の点の前後の点にそれぞれ
対応する位置での前記数値モデルの面の挟む角度を求め
るに際し、前記検討対象の点の前後の点のそれぞれでの
前記法線ベクトル同士の内積をそれらの法線ベクトルの
絶対値同士の積で除した値に負の符号を付した値が余弦
値となる角度を求めてその角度を前記挟む角度とするこ
とにしても良い。
In the method of the present invention, when the angles between the surfaces of the numerical model at positions respectively corresponding to points before and after the point to be examined in the point sequence of the reference data are obtained, The value obtained by dividing the inner product of the normal vectors at each of the points before and after the point by the product of the absolute values of the normal vectors with a negative sign is obtained as an angle at which a cosine value is obtained. The angle may be set as the sandwiching angle.

【0015】またこの発明の方法においては、前記検討
対象の点とその前後の点とが凹形状を形成しているか否
かの判断に際し、前記基準データを作成した断面内で、
測定進行方向ベクトルとそれに直交して空間のある方へ
向く基準ベクトルとをあらかじめ設定しておき、前記検
討対象の点の前の点からその検討対象の点へ向かうベク
トルとその検討対象の点からその後の点へ向かうベクト
ルとの外積と、前記測定進行方向ベクトルとの外積を求
めてそれを判定ベクトルとし、前記判定ベクトルと前記
基準ベクトルとの内積が正の符号を持つ場合に、前記検
討対象の点とその前後の点とが凹形状を形成していると
判定することにしても良い。
Further, in the method of the present invention, when determining whether or not the point to be examined and points before and after the point form a concave shape, in the cross section in which the reference data is created,
A measurement progress direction vector and a reference vector that is orthogonal to it and point to a certain space are set in advance, and a vector heading from the point before the point to be examined to the point to be examined and the point to be examined from the point to be examined. The cross product of the vector toward the subsequent point and the cross product of the measurement traveling direction vector are obtained and used as a judgment vector, and when the inner product of the judgment vector and the reference vector has a positive sign, It may be determined that the point and points before and after the point form a concave shape.

【0016】さらにこの発明の方法においては、前記数
値モデルの面の挟む角度に基づき、それらの面に直交す
る断面内でそれらの面の断面線と前記最小径の工具の半
径に等しい半径の円との二箇所の接点からそれらの断面
線の交点までの距離を求め、前記基準データの点列中
の、前記計測点として抽出しない検討対象の点から前記
求めた距離未満の距離にある点も、前記計測点として抽
出しないことにしても良い。
Further, in the method of the present invention, a circle having a radius equal to the radius of the tool having the minimum diameter in a cross section orthogonal to the surfaces based on an angle between the surfaces of the numerical model. Find the distance from the two points of contact to the intersection of their cross-sectional lines, and in the point sequence of the reference data, a point at a distance less than the calculated distance from the point of interest not extracted as the measurement point. , May not be extracted as the measurement points.

【0017】[0017]

【作用】かかるこの発明の方法にあっては、対象物の加
工に用いた工具のうち最小径の工具での加工残しによっ
て発生する誤差が測定公差内に収まるような凹部につい
ての、その凹部の両側面を各々平面とした場合のそれら
両側面の挟む角度の最小値を基準角度としてあらかじめ
求めておいて、対象物の想定形状を表す数値モデルから
作成した対象物の断面形状を表す基準データの点列から
所定測定基準に基づき計測が必要な点を計測点として抽
出する時に、前記基準データの点列中の検討対象の点の
前後の点にそれぞれ対応する位置での前記数値モデルの
面の挟む角度をそれらの位置での前記数値モデルの面の
法線ベクトルを用いて求め、その挟む角度が前記基準角
度未満の場合であって、前記検討対象の点とその前後の
点とが凹形状を形成している場合には、前記検討対象の
点を前記計測点として抽出しない。
According to the method of the present invention, a concave portion in which an error generated by unprocessed tool with the smallest diameter tool among the tools used for processing an object falls within the measurement tolerance is set. The minimum value of the angle between both sides when each side is a plane is determined in advance as a reference angle, and the reference data representing the cross-sectional shape of the object created from the numerical model representing the assumed shape of the object is obtained. When extracting points requiring measurement based on a predetermined measurement standard from a point sequence as measurement points, the surface of the numerical model at positions respectively corresponding to points before and after the point to be considered in the point sequence of the reference data. The sandwiching angle is obtained using the normal vector of the surface of the numerical model at those positions, and the sandwiching angle is less than the reference angle, and the point to be examined and the points before and after it are concave. The shape If it is do not extract the points of the consideration as the measurement point.

【0018】すなわち、この発明の方法では、従来計測
不要点であるか否かの判断のためにシステム使用者が画
面上で参照していた基準データの点列中の凹形状のコー
ナー部分のコーナー点の前後の点列の挟む角度を求める
代わりに、基準データの点列中の検討対象の点とともに
凹形状を形成しているその前後の点にそれぞれ対応する
位置での数値モデルの面の挟む角度、つまりそれらの数
値モデルの面が両側面として形成する空間的に延在する
凹部の延在方向に直交する断面内でのその両側面のそれ
ぞれの断面である二本の断面線の挟む角度を求めて、そ
の数値モデルの面の挟む角度を、あらかじめ求めた対象
物の加工に用いた工具のうち最小径の工具での加工残し
によって発生する誤差が測定公差内に収まるような凹部
についての、各々平面とした場合の両側面の挟む角度の
最小値である基準角度と比較しており、上記数値モデル
の面の挟む角度がその基準角度未満の場合には、前記検
討対象の点の前後の点の間では加工残しによって発生す
る実際の誤差が測定公差内に収まらず測定公差を越えて
いることになる。
That is, according to the method of the present invention, the corners of the concave corners in the point sequence of the reference data which the system user has referred to on the screen in order to determine whether or not the measurement is unnecessary. Instead of finding the angle between the point sequence before and after the point, the surface of the numerical model at the position corresponding to each of the points before and after that forms a concave shape together with the point to be considered in the point sequence of the reference data. The angle, that is, the angle between the two cross-sectional lines that are the respective cross-sections of the both sides in a cross-section orthogonal to the extending direction of the spatially extending recess formed by the surfaces of the numerical models as the both sides And the angle between the surfaces of the numerical model is determined by changing the angle of the concave portion such that the error generated by the unprocessed tool with the smallest diameter tool among the tools used for processing the target object determined in advance falls within the measurement tolerance. ,Each When the angle between the sides of the numerical model is smaller than the reference angle, the points before and after the point to be considered are compared. In this case, the actual error caused by the unprocessed portion does not fall within the measurement tolerance but exceeds the measurement tolerance.

【0019】従って上記検討対象の点は、最小径の工具
での加工残しによって発生する誤差が測定公差を越える
加工残し部位に対応する計測不要部位に位置するので、
確実に計測不要点となり、それゆえ、基準データの点列
から計測点を抽出する際にその計測不要点となる検討対
象の点を計測点として抽出せず自動的に排除するこの発
明の方法によれば、その計測点の点列を用いて形状計測
装置に前記対象物の形状の計測手順を教示する際に教示
の最後の段階での人手による計測不要点の削除の工数を
大幅に省き得て、教示に要する工数を従来の方法よりも
さらに削減することができるとともに、確実に計測不要
点のみを除去し得て、必要な計測点まで誤って削除する
おそれをなくすことができる。
Therefore, the point to be considered is located at a measurement-unnecessary portion corresponding to the unprocessed portion where the error caused by the unprocessed portion using the tool having the minimum diameter exceeds the measurement tolerance.
Therefore, the method of the present invention eliminates the points that need to be considered as measurement unnecessary points without automatically extracting them as measurement points when the measurement points are extracted from the reference data. According to this, when teaching the shape measurement procedure of the object to the shape measuring apparatus using the point sequence of the measurement points, the man-hour for manually deleting unnecessary measurement points at the last stage of the teaching can be greatly reduced. Thus, the number of man-hours required for teaching can be further reduced as compared with the conventional method, and only the unnecessary measurement points can be reliably removed, and the possibility of erroneously deleting the necessary measurement points can be eliminated.

【0020】なお、基準データの点列中の検討対象の点
の前後の点にそれぞれ対応する位置での数値モデルの面
の挟む角度を求めるに際し、その検討対象の点の前後の
点のそれぞれでの前記法線ベクトル同士の内積をそれら
の法線ベクトルの絶対値同士の積で除した値に負の符号
を付した値が余弦値となる角度を求めてその角度を上記
挟む角度とすることにすれば、検討対象の点の前後の点
にそれぞれ対応する位置での数値モデルの面の挟む角度
を容易かつ正確に求めることができる。
When calculating the angle between the surfaces of the numerical model at positions corresponding to the points before and after the point to be examined in the point sequence of the reference data, respectively, the points before and after the point to be examined are determined. The value obtained by dividing the inner product of the normal vectors by the product of the absolute values of the normal vectors is obtained as an angle at which a value obtained by adding a negative sign becomes a cosine value, and the angle is defined as the above-described angle. Then, the angle between the surfaces of the numerical model at the positions respectively corresponding to the points before and after the point to be examined can be easily and accurately obtained.

【0021】また検討対象の点とその前後の点とが凹形
状を形成しているか否かの判断に際し、基準データを作
成した断面内で、測定進行方向ベクトルとそれに直交し
て空間のある方へ向く基準ベクトルとをあらかじめ設定
しておき、上記検討対象の点の前の点からその検討対象
の点へ向かうベクトルとその検討対象の点からその後の
点へ向かうベクトルとの外積と、上記測定進行方向ベク
トルとの外積を求めてそれを判定ベクトルとし、その判
定ベクトルと上記基準ベクトルとの内積が正の符号を持
つ場合に、上記検討対象の点とその前後の点とが凹形状
を形成していると判定することにすれば、検討対象の点
とその前後の点とが凹形状を形成している場合には上記
判定ベクトルが空間のある方へ向くことからその判定ベ
クトルと上記基準ベクトルとの内積の符号も正になり、
一方検討対象の点とその前後の点とが凹形状を形成して
いない場合には上記判定ベクトルが空間でなく実体のあ
る方へ向くかゼロベクトルになることからその判定ベク
トルと上記基準ベクトルとの内積の符号も正でなくなる
ので、検討対象の点とその前後の点とが凹形状を形成し
ているか否かを容易かつ正確に判断することができる。
When judging whether or not the point to be examined and the points before and after the point form a concave shape, in the section in which the reference data is created, the measurement progress direction vector and the direction in which the space exists And a reference vector pointing to the point to be examined is set in advance, and an outer product of a vector from the point before the point to be examined to the point to be examined and a vector from the point to be examined to the point after the point to be examined, and the above measurement The outer product of the traveling direction vector is obtained and used as a determination vector.If the inner product of the determination vector and the reference vector has a positive sign, the point to be considered and the points before and after it form a concave shape. If the point under consideration and the points before and after it form a concave shape, the determination vector is directed toward a certain space, so that the determination vector and the reference The sign of the inner product of the vector also become positive,
On the other hand, if the point under consideration and the points before and after it do not form a concave shape, the judgment vector is directed to the direction of the entity instead of space or becomes a zero vector, so that the judgment vector and the reference vector Is not positive, it is possible to easily and accurately determine whether the point under consideration and the points before and after it form a concave shape.

【0022】さらに前記数値モデルの面の挟む角度に基
づき、それらの面に直交する断面内でそれらの面の断面
線と前記最小径の工具の半径に等しい半径の円との二箇
所の接点からそれらの断面線の交点までの距離を求め、
前記基準データの点列中の、前記計測点として抽出しな
い検討対象の点から前記求めた距離未満の距離にある点
すなわち、上記検討対象の点以外の、上記最小径の工具
での加工残し部位に対応する上記基準データにおける計
測不要部位に位置する点も、前記計測点として抽出しな
いことにすれば、基準データの点列から計測点を抽出す
る際に、検討対象の点のみならずさらに多くの計測不要
点となる点を計測点として抽出せず自動的に排除し得
て、その計測点の点列を用いて形状計測装置に前記対象
物の形状の計測手順を教示する際に、教示の最後の段階
での人手による計測不要点の削除の工数をさらに省き、
教示に要する工数をさらに削減することができる。
Further, based on the angle between the surfaces of the numerical model, two points of contact between a cross-sectional line of the surface and a circle having a radius equal to the radius of the tool having the minimum diameter in a cross section orthogonal to the surfaces are provided. Find the distance to the intersection of those section lines,
In the point sequence of the reference data, a point at a distance less than the obtained distance from the point to be examined that is not extracted as the measurement point, that is, a part to be processed by the tool having the minimum diameter other than the point to be examined. If the points located in the measurement-unnecessary part in the reference data corresponding to are not extracted as the measurement points, when extracting the measurement points from the point sequence of the reference data, not only the points to be examined but also more Can be automatically excluded without extracting points that are unnecessary measurement points as measurement points, and using the point sequence of the measurement points to teach the shape measurement device the shape measurement procedure of the object. In the last stage of the process, the man-hour for manually removing unnecessary measurement points is further reduced,
The number of steps required for teaching can be further reduced.

【0023】[0023]

【実施例】以下に、この発明の実施例を図面に基づき詳
細に説明する。図8の右側の流れは、例えば車体パネル
成形用金型の形状計測に適用した、この発明の形状計測
手順の教示方法の一実施例の教示手順を示すものであ
り、この実施例の方法でも、従来の方法と同様、CAD
およびCAMの機能を具える比較的能力の高いホストコ
ンピュータと、形状計測装置としての通常の3次元測定
器と、幾つかの端末装置1を持ち上記ホストコンピュー
タとの間でデータの送受を行いつつその3次元測定器の
制御および計測データの処理を行うミニコンピュータと
からなる計測システムを用い、その計測システムの使用
者が、先ず図8(a)に示すように、ホストコンピュー
タから送った上記金型の想定形状である設計形状を示す
数値モデルをミニコンピュータにその端末装置1によっ
て画面表示させて、その数値モデルの形状中から形状計
測する断面を選択する。
Embodiments of the present invention will be described below in detail with reference to the drawings. The flow on the right side of FIG. 8 shows a teaching procedure of one embodiment of the teaching method of the shape measurement procedure of the present invention applied to, for example, the shape measurement of a body panel molding die. , As in the conventional method,
And a relatively high-capacity host computer having the functions of a CAM and a CAM, an ordinary three-dimensional measuring device as a shape measuring device, and several terminal devices 1 for transmitting and receiving data to and from the host computer. A measurement system including a minicomputer for controlling the three-dimensional measuring device and processing the measurement data is used. First, as shown in FIG. A terminal computer 1 displays a numerical model indicating a design shape that is an assumed shape of a mold on a screen of the terminal device 1, and selects a cross section to be measured from the shape of the numerical model.

【0024】次いでこの実施例の方法でも従来の方法と
同様、上記使用者が、図8(b)に示すように、ミニコ
ンピュータに上記選択した断面での上記金型の設計断面
形状を画面表示させて、そのミニコンピュータのマウス
2やキーボード3の操作により、測定範囲の指定と、測
定条件(トレランス値およびMAX−DP値)の設定と
を行い、次に図8(c)に示すように、その指定した測
定範囲と設定した測定条件をミニコンピュータからホス
トコンピュータへ送って、ホストコンピュータに、上記
数値モデルの上記選択した設計断面形状を点列で表す基
準データから上記測定範囲内での計測点を上記測定条件
に基づいて抽出する計測点抽出処理を行わせる。
Next, in the method of this embodiment, similarly to the conventional method, as shown in FIG. 8B, the user displays on a minicomputer a design cross-sectional shape of the mold at the selected cross-section. Then, by operating the mouse 2 and the keyboard 3 of the minicomputer, the measurement range is specified and the measurement conditions (tolerance value and MAX-DP value) are set. Next, as shown in FIG. Then, the specified measurement range and the set measurement conditions are sent from the minicomputer to the host computer, and the measurement is performed within the measurement range from the reference data representing the selected design cross-sectional shape of the numerical model in a point sequence to the host computer. A measurement point extraction process for extracting points based on the measurement conditions is performed.

【0025】しかしてこの実施例の方法で行う上記計測
点抽出処理は、図1に示す手順に沿うものとし、ここで
は先ずステップ21で、図2に凹部と直交する断面につい
て示すように、半径rの最小径の工具5での加工残し量
が測定公差ds内に収まるような凹部についての、その凹
部の両側面6,7間の挟む角度の最小値θs を、それら
の間の幾何学的関係から、以下の演算式(1) によって算
出する。
The measurement point extraction processing performed by the method of this embodiment is performed in accordance with the procedure shown in FIG. 1. First, in step 21, as shown in FIG. The minimum value θs of the angle between the side surfaces 6 and 7 of the concave portion for the concave portion in which the unprocessed amount of the tool 5 having the minimum diameter r falls within the measurement tolerance ds is defined as the geometrical value between them. From the relationship, it is calculated by the following equation (1).

【数1】 (ds+r)Sin(θs/2)=r 従って、Sin(θs/2)= r/(ds+r) よって、θs =2 Sin -1{ r/(ds+r)}・・・(1) すなわち図2から明らかなように、凹部の両側面6,7
間の挟む角度が上記の式で求めた角度θs の場合には、
その凹部に対応する設計断面形状DFでの折れ点Fの位置
と実際の加工表面との間の距離は測定公差dsとなり、両
側面6,7間の挟む角度がその角度θs より大きい場合
には、折れ点Fの位置と実際の加工表面との間の距離は
測定公差ds内に収まることになる。
(1) (ds + r) Sin (θs / 2) = r Therefore, Sin (θs / 2) = r / (ds + r), therefore, θs = 2 Sin −1 {r / (ds + r)} (1) That is, as is apparent from FIG.
If the angle between them is the angle θs determined by the above equation,
The distance between the position of the break point F in the design cross-sectional shape DF corresponding to the recess and the actual machined surface is a measurement tolerance ds. If the angle between the side surfaces 6 and 7 is larger than the angle θs, , The distance between the position of the break point F and the actual work surface falls within the measurement tolerance ds.

【0026】次いでここではステップ22で、上記測定範
囲内での上記基準データ上の最初の点を計測点とし、続
くステップ23で、その最初の点を比較スタート点とし、
その比較スタート点の一つ先の点を検討点(検討対象の
点)とし、さらにその検討点の一つ先の点を対象点と
し、次のステップ24で、従来の方法において図9のステ
ップ13で行ったと同様にしてトレランス・離間距離判定
を行って、起伏の程度が上記トレランス値よりも小さい
部分の計測点を間引くとともに、上記最大離間距離を越
えるような計測点間の離れ過ぎを防止する。そして次の
ステップ25では、上記検討点が採用されたか否かを判断
し、採用されたと判断した場合には、ステップ26で、そ
の検討点について計測不要部位判定処理を行う。
Next, in step 22, the first point on the reference data within the measurement range is set as a measurement point, and in step 23, the first point is set as a comparison start point.
The point one point ahead of the comparison start point is considered as a point to be considered (point to be considered), and the point one point ahead of the point to be considered is set as a target point. In the next step 24, the step shown in FIG. Perform the tolerance / separation distance determination in the same way as performed in step 13, and thin out the measurement points where the degree of undulation is smaller than the tolerance value, and prevent the measurement points from exceeding the maximum separation distance too much. I do. Then, in the next step 25, it is determined whether or not the above-mentioned study point has been adopted. If it is determined that the study point has been adopted, in step 26, a measurement unnecessary part determination process is performed on the study point.

【0027】この計測不要部位判定処理では、検討点が
採用される度毎に、基準データ上のその検討点の一つ前
の点を点An、その検討点を点Bn、その検討点の一つ後の
点を点Cnとして、図3に示すように、その検討点Bnの前
後の点An,Cnの各々における数値モデルの形状面の挟む
角度θn を求め、その角度θn を求める際に、基準デー
タの点列の各点のデータにはその点を求めた元の数値モ
デルのその点に対応する位置での形状面の法線ベクトル
のデータが備わっている点に鑑みて、以下の演算式(2)
により、基準データからそれぞれ求めた上記点An,Cnの
各々における数値モデルの形状面の法線ベクトルVAn, V
Cn同士の内積をそれらの法線ベクトルの絶対値同士の積
で除した値に負の符号を付した値が余弦値となる角度を
求めて、その角度を上記挟む角度θn とする。
In the measurement unnecessary part determination process, every time a study point is adopted, the point immediately before the study point on the reference data is set to the point An, the study point is the point Bn, and the study point is set to the point Bn. Assuming that the next point is a point Cn, as shown in FIG. 3, an angle θn between the shape surfaces of the numerical model at each of the points An and Cn before and after the examination point Bn is obtained. In consideration of the fact that the data of each point in the point sequence of the reference data has the data of the normal vector of the shape surface at the position corresponding to that point in the original numerical model from which the point was obtained, the following operation Equation (2)
The normal vectors VAn, V of the shape surface of the numerical model at each of the points An, Cn obtained from the reference data, respectively,
An angle at which a value obtained by dividing the inner product of Cn by the product of the absolute values of their normal vectors and giving a negative sign a cosine value is obtained, and the angle is defined as the above-described angle θn.

【数2】 Cos(π−θn)=(VAn・VCn)/(|VAn ||VCn |) また、 Cosθn =−Cos(π−θn) よって、θn = Cos-1{−(VAn・VCn)/(|VAn ||VCn |) }・・・(2) (2) Cos (π−θn) = (VAn · VCn) / (| VAn || VCn |) Also, Cosθn = −Cos (π−θn) Therefore, θn = Cos− 1 {− (VAn · VCn) / (| VAn || VCn |)} ・ ・ ・ (2)

【0028】そしてここでは、図4に示すように、上記
求めた数値モデルの形状面の挟む角度θn を、先にステ
ップ21で求めた最小径の工具5での加工残し量が測定公
差ds内に収まるような凹部の両側面6,7間の挟む角度
の最小値θs と比較し、図4(b)に示すようにθn <
θs の場合には、その挟む角度θn を持つ凹部に対応す
る設計断面形状DFでの折れ点Fの位置と実際の加工表面
との間の距離dnは測定公差dsに対しdn>dsとなって、上
記前後の点An,Cnの近傍は最小径の工具での加工残しに
よって発生する誤差が測定公差を越える加工残し部位に
対応する計測不要部位となり、従って上記検討点Bnは、
その検討点Bnと前後の点An,Cnとが凹形状を形成してい
る場合には計測不要点Pxとなり得る計測不要点候補とな
る。
In this case, as shown in FIG. 4, the angle θn between the shape surfaces of the numerical model obtained above is determined by setting the remaining amount of machining with the tool 5 having the minimum diameter previously obtained in step 21 within the measurement tolerance ds. Compared with the minimum value θs of the angle between both side surfaces 6 and 7 of the concave portion that fits in the range, as shown in FIG.
In the case of θs, the distance dn between the position of the break point F in the design sectional shape DF corresponding to the concave portion having the sandwiching angle θn and the actual processing surface is dn> ds with respect to the measurement tolerance ds. In the vicinity of the points An and Cn before and after the above, the error generated due to the unprocessed portion with the tool having the smallest diameter is a measurement unnecessary portion corresponding to the unprocessed portion exceeding the measurement tolerance.
When the examination point Bn and the preceding and following points An and Cn form a concave shape, it is a measurement unnecessary point candidate that can be the measurement unnecessary point Px.

【0029】上記ステップ26での計測不要部位判定処理
で検討点Bnが計測不要点候補となったと次のステップ27
で判断した場合にはステップ28へ進み、そこで上記検討
点Bnと前後の点An,Cnとが凹形状を形成しているか否か
を判定する凹凸判定を行い、この凹凸判定では、上記基
準データを求めた断面内で、測定進行方向ベクトルβと
それに直交して空間のある方へ向く基準ベクトルαとを
あらかじめ設定しておき、以下の演算式(3) により、上
記検討点Bnの前の点Anからその検討点Bnへ向かうベクト
ルVAB とその検討点Bnからその後の点Cnへ向かうベクト
ルVBC との外積(VAB×VBC)と、上記測定進行方向ベクト
ルβとの外積(VAB×VBC)×βを求めて、それを判定ベク
トルVCとし、その判定ベクトルVCと上記基準ベクトルα
との内積(VC・α) を求める。
If the examination point Bn becomes a measurement unnecessary point candidate in the unnecessary measurement part determination processing in step 26, the next step 27
If the determination is made in step (a), the process proceeds to step 28, where irregularity determination is performed to determine whether or not the study point Bn and the preceding and following points An and Cn form a concave shape. In the cross section obtained, a measurement progress direction vector β and a reference vector α that is orthogonal to the space and are set in advance are set in advance, and the following calculation formula (3) is used to set the measurement progress direction vector β before the examination point Bn. An outer product (VAB × VBC) of a vector VAB from the point An to the examination point Bn and a vector VBC from the examination point Bn to the subsequent point Cn, and an outer product (VAB × VBC) × of the measurement progress direction vector β β is determined and used as a determination vector VC. The determination vector VC and the reference vector α
And the inner product (VC · α).

【数3】VC=(VAB×VBC)×β ・・・(3) そしてその内積 (VC・α) が正の符号を持つ場合には、
上記検討点Bnとその前後の点An, Cnとが凹形状を形成し
ていると判定する。
## EQU3 ## VC = (VAB × VBC) × β (3) And if the inner product (VC · α) has a positive sign,
It is determined that the consideration point Bn and the points An and Cn before and after the point Bn form a concave shape.

【0030】すなわち例えば、上記基準データを求めた
断面が図5に示すように垂直断面の場合に、その垂直断
面内で、例えば図では右方へ向かう水平な測定進行方向
ベクトルβと、それに直交して空間のある方すなわち上
方へ向く基準ベクトルαとをあらかじめ設定しておけ
ば、図5の下部に示すように、検討点Bnが点Bp、前の点
Anが点Ap、後の点Cnが点Cpで、それらの点Ap, Bp, Cpが
凹形状を形成している場合には、前の点Apから検討点Bp
へ向かうベクトルVAB は右向き、検討点Bpから後の点Cp
へ向かうベクトルVBC は上向きとなるから、それらの外
積は図の紙面に対して手前向きとなり、その外積と上記
右向きの水平な測定進行方向ベクトルβとの外積である
上記判定ベクトルVCは空間のある方である上方へ向くこ
とから、その判定ベクトルVCと上記上向きの基準ベクト
ルαとの内積の符号は正になる。
That is, for example, when the cross section from which the above-mentioned reference data is obtained is a vertical cross section as shown in FIG. 5, within the vertical cross section, for example, a horizontal measurement traveling direction vector β going rightward in FIG. By setting in advance the direction of the space, that is, the reference vector α pointing upward, as shown in the lower part of FIG. 5, the examination point Bn is the point Bp and the previous point is the point Bp.
If An is the point Ap, the subsequent point Cn is the point Cp, and those points Ap, Bp, Cp form a concave shape, the consideration point Bp from the previous point Ap
The vector VAB going to the right is the point Cp after the consideration point Bp
Since the vector VBC heading upward is upward, their cross product is directed forward with respect to the plane of the drawing, and the judgment vector VC, which is the cross product of the cross product and the right-handed horizontal measurement progress direction vector β, has space. Is directed upward, the sign of the inner product of the determination vector VC and the upward reference vector α becomes positive.

【0031】この一方、図5の上部に示すように、検討
点Bnが点Bq、前の点Anが点Aq、後の点Cnが点Cqで、それ
らの点Aq, Bq, Cqが凸形状を形成している場合には、前
の点Aqから検討点Bqへ向かうベクトルVAB は上向き、検
討点Bqから後の点Cqへ向かうベクトルVBC は右向きとな
るから、それらの外積は図の紙面に対して向こう向きと
なり、その外積と上記右向きの水平な測定進行方向ベク
トルβとの外積である上記判定ベクトルVCは空間のある
方でなく実体のある方である下方へ向くことから、その
判定ベクトルVCと上記上向きの基準ベクトルαとの内積
の符号は負になる。また、形状が平坦で検討点Bnと前の
点Anと後の点Cnとが直線上にある場合には、ベクトルVA
B とベクトルVBC との外積はゼロベクトルとなり、その
ゼロベクトルと測定進行方向ベクトルβとの外積である
上記判定ベクトルVCもゼロベクトルとなることから、そ
の判定ベクトルVCと上記基準ベクトルαとの内積の符号
も正ではなくなる。
On the other hand, as shown in the upper part of FIG. 5, the study point Bn is a point Bq, the preceding point An is a point Aq, the subsequent point Cn is a point Cq, and the points Aq, Bq, Cq have a convex shape. Is formed, the vector VAB from the previous point Aq to the study point Bq is upward, and the vector VBC from the study point Bq to the later point Cq is rightward. The determination vector VC, which is the cross product of the outer product and the rightward horizontal measurement progress direction vector β, is directed downward, which is not the direction of the space but the direction of the entity. The sign of the inner product of VC and the upward reference vector α is negative. If the shape is flat and the study point Bn, the previous point An and the subsequent point Cn are on a straight line, the vector VA
The outer product of B and the vector VBC is a zero vector, and the above-mentioned determination vector VC, which is the outer product of the zero vector and the measurement traveling direction vector β, is also a zero vector, so that the inner product of the determination vector VC and the above-mentioned reference vector α Is no longer positive.

【0032】従って、上記判定ベクトルVCと基準ベクト
ルαとの内積 (VC・α) が正の符号を持つ場合には、上
記検討点Bnとその前後の点An,Cnとが凹形状を形成して
いると判定することができ、このことは、上記基準デー
タを求めた断面が垂直断面でない場合にも同様にして成
立する。しかして上記ステップ28で検討点Bnとその前後
の点An,Cnとが凹形状を形成していると判定したと次の
ステップ29で判断した場合には、ステップ30へ進み、そ
こで上記計測不要点候補の検討点Bnを計測不要点に決定
するとともに、検討点前後の計測不要点の探索および検
討点を含めた計測不要点の削除処理を行う。
Therefore, when the inner product (VC · α) between the decision vector VC and the reference vector α has a positive sign, the consideration point Bn and the points An and Cn before and after it form a concave shape. Can be determined, and this is similarly established when the section from which the reference data is obtained is not a vertical section. However, if it is determined in step 28 that the consideration point Bn and the points An and Cn before and after it have formed a concave shape in step 29, the process proceeds to step 30, where the measurement is unnecessary. The study point Bn of the point candidate is determined to be a measurement unnecessary point, and a search for a measurement unnecessary point before and after the study point and a process of deleting the measurement unnecessary point including the study point are performed.

【0033】この処理では先ず、図6に凹部と基準デー
タを求めた断面とが直交する場合について例示するよう
に、上記求めた数値モデルの面の挟む角度θn に基づ
き、それらの面に直交する断面内でそれらの面の断面線
と上記最小径の工具5の半径に等しい半径rの円との二
箇所の接点からそれらの断面線の交点までの距離Hを、
以下の演算式(4) により求めて、上記基準データの点列
中の、上記計測不要点とした検討点Bnからその求めた距
離H未満の距離にある点も、計測点として抽出しない計
測不要点とする。
In this process, first, as shown in FIG. 6, a case where the concave portion and the cross section for which the reference data is obtained is orthogonal is illustrated based on the angle θn between the surfaces of the numerical model obtained above. In the cross section, the distance H from the two points of contact between the section line of those surfaces and a circle having a radius r equal to the radius of the tool 5 having the minimum diameter, to the intersection of those section lines,
A point which is obtained by the following arithmetic expression (4) and which is located within a distance less than the obtained distance H from the examination point Bn, which is the measurement unnecessary point, in the point sequence of the reference data is not extracted as a measurement point. Point.

【数4】H={ rCos(θ/2) }/Sin(θ/2) ・・・(4)H = {rCos (θ / 2)} / Sin (θ / 2) (4)

【0034】すなわち、上記計測不要点とした検討点Bn
よりも前の点については図7に示すように、先ずステッ
プ41で、上記演算式(4) により距離Hを求め、次にステ
ップ42で、図6に示す如く検討点Bnの一つ前の点A1をこ
こでの対象点とし、続くステップ43で、上記検討点Bnと
その一つ前の点A1との距離Hnを求め、次のステップ44
で、その距離Hnと上記距離Hを比較して、距離Hnが距離
H未満の場合はステップ45に進み、そこでその対象点A1
の一つ前の点A2を新たな対象点とした後ステップ43へ戻
る。そしてこのようにして距離Hnが距離H以上(Hn≧
H)になると、ステップ44からステップ46へ進み、そこ
で距離Hnが距離H以上となる直前までの対象点を計測不
要点とする。また図6に示す上記計測不要点とした検討
点Bnよりも後の点C1, C2・・についても、逐次対象点と
して上記と同様に検討点Bnとの距離Hnを求め、それを上
記距離Hを比較して、距離Hnが距離H以上となる直前ま
での対象点を計測不要点とする。
That is, the point Bn considered as the above measurement unnecessary point
As shown in FIG. 7, first, at step 41, the distance H is determined by the above equation (4), and then at step 42, as shown in FIG. the point a 1 and point of interest here, in the following step 43, sought distance Hn of the study points Bn and the point a 1 of the previous, the next step 44
The distance Hn is compared with the distance H. If the distance Hn is less than the distance H, the process proceeds to step 45, where the target point A 1
The process returns to step 43 after setting the point A 2 immediately before to a new target point. In this way, the distance Hn is equal to or greater than the distance H (Hn ≧
When H) is reached, the process proceeds from step 44 to step 46, where the target point immediately before the distance Hn becomes equal to or longer than the distance H is set as a measurement unnecessary point. Also, for the points C 1 , C 2, ... After the study point Bn, which is the unnecessary measurement point shown in FIG. The distances H are compared, and the target point immediately before the distance Hn becomes equal to or longer than the distance H is determined as a measurement unnecessary point.

【0035】このようにして検討点Bnの近傍の計測不要
点を探索して求めた後、この処理では次いで、上記計測
不要点とした検討点Bnと、上記探索して求めた計測不要
点とを基準データの点列中から削除し、その後、基準デ
ータの点列中のその削除した点の次の点を計測点とする
とともに比較スタート点とし、その比較スタート点の一
つ先の点を検討点(検討対象の点)とし、さらにその検
討点の一つ先の点を対象点として、上記ステップ24へ戻
る。
After searching and finding the unnecessary measurement points near the examination point Bn in this manner, in this processing, the examination points Bn, which are the above-mentioned unnecessary measurement points, and the measurement unnecessary points obtained by the above-mentioned search, are next obtained. Is deleted from the point sequence of the reference data, and then the point following the deleted point in the point sequence of the reference data is set as the measurement point and the comparison start point, and the point after the comparison start point is set as the next point. The process returns to step 24 with a point to be considered (a point to be considered) and a point ahead of the point to be considered as a target point.

【0036】この一方、上記ステップ26での計測不要部
位判定処理で、上記数値モデルの形状面の挟む角度θn
と先に求めた最小値θs とを比較して、図4(a)およ
び図4(c)に示すようにθn ≧θs の場合には、上記
距離dnは測定公差dsに対しdn≦dsとなって、上記前後の
点An,Cnの近傍は計測不要部位とならず、従って上記検
討点Bnは、その検討点Bnと前後の点An,Cnとが凹形状を
形成すると否とにかかわらず計測不要点Pxとなり得な
い。それゆえ上記ステップ26でθn ≧θs となって検討
点Bnが上記計測不要点候補にはならないと判定したと次
のステップ27で判断した場合には、ステップ31でその検
討点Bnを計測点とし、続くステップ32で、上記対象点が
上記測定範囲内での上記基準データ上の最後の点か否か
を判断し、上記対象点が最後の点でない場合には、ステ
ップ33で、上記検討点を新たな比較スタート点とし、そ
の比較スタート点の一つ先の点を検討点とし、さらにそ
の検討点の一つ先の点を対象点として、上記ステップ24
へ戻る。また、上記ステップ28で検討点Bnとその前後の
点An,Cnとが凹形状を形成していないと判定したと上記
ステップ29で判断した場合にも、上記検討点Bnは計測不
要点Pxとなり得ないので、その後は上記ステップ31へ進
む。
On the other hand, the angle θn between the shape surfaces of the numerical model is determined in the measurement unnecessary portion determination process in the step 26.
Is compared with the previously obtained minimum value θs, and when θn ≧ θs as shown in FIGS. 4A and 4C, the distance dn is equal to dn ≦ ds with respect to the measurement tolerance ds. Therefore, the vicinity of the front and rear points An and Cn does not become a measurement unnecessary part. Therefore, the examination point Bn is determined regardless of whether the examination point Bn and the front and rear points An and Cn form a concave shape. It cannot be a measurement unnecessary point Px. Therefore, when it is determined in step 26 that θn ≧ θs, and it is determined in step 27 that the study point Bn is not a candidate for the unnecessary measurement point, the study point Bn is set as a measurement point in step 31. In a succeeding step 32, it is determined whether or not the target point is the last point on the reference data within the measurement range, and if the target point is not the last point, in a step 33, the consideration point is determined. Is set as a new comparison start point, a point one point ahead of the comparison start point is set as a study point, and a point one point ahead of the study point is set as a target point.
Return to Also, when it is determined in step 29 that the study point Bn and the points An and Cn before and after the study point Bn do not form a concave shape in step 28, the study point Bn becomes a measurement unnecessary point Px. Then, the process proceeds to step 31 described above.

【0037】さらに、先に述べたステップ25で上記検討
点が採用されなかった場合には、ステップ34で、上記ス
テップ32と同様、上記対象点が上記測定範囲内での上記
基準データ上の最後の点か否かを判断し、上記対象点が
最後の点でない場合には、ステップ35で、その対象点の
一つ先の点を新たな対象点とし、上記の一つ先の点を新
たな検討点として、上記ステップ24へ戻る。そして上記
ステップ32あるいはステップ34で、その時点での対象点
が最後の点の場合には、ステップ36で、その最後の点を
計測点として、計測点抽出処理を終了する。
Further, if the above-mentioned examination point is not adopted in step 25 described above, in step 34, as in step 32, the target point is the last point on the reference data within the measurement range. It is determined whether the target point is not the last point.If the target point is not the last point, in step 35, the point one point ahead of the target point is set as a new target point, and the point one point ahead is newly set. As an important consideration, the process returns to step 24. If the target point at that time is the last point in step 32 or step 34, the last point is set as a measurement point in step 36, and the measurement point extraction process ends.

【0038】このようにして基準データの点列から計測
点列を抽出した後、この実施例の方法では、図8(d)
に示すように、計測システムの使用者が、上記抽出した
計測点列をミニコンピュータにその端末装置1によって
画面表示させるが、計測不要点の削除はここでは上記計
測点抽出処理において既に自動的に行ってあるので、そ
の結果を画面上で確認して、特に問題がなければ上記断
面についての教示を終了する。そしてかかる手順を上記
金型の計測したい断面について繰り返し行うことで、そ
れら計測したい断面の全てについて上記ミニコンピュー
タに計測点を教示した後は、そのミニコンピュータに、
上記3次元測定器のセンサのプローブが上記計測点列を
順次辿るように3次元測定器の作動を制御させて計測作
業を行わせ、さらにその計測によって得たデータをその
ミニコンピュータに、該システムの使用者が見易いよう
に適宜処理させて端末装置1により画面表示させる。
After the measurement point sequence is extracted from the reference data point sequence in this way, the method of this embodiment uses FIG.
As shown in (1), the user of the measurement system causes the minicomputer to display a screen of the extracted measurement point sequence on the terminal device 1; however, the unnecessary measurement points are automatically deleted in the measurement point extraction process here. Since the operation has been performed, the result is confirmed on the screen, and if there is no problem, the teaching on the cross section is terminated. And by repeating such a procedure for the section of the mold to be measured, after teaching the measurement points to the minicomputer for all of the sections to be measured, the minicomputer,
The operation of the three-dimensional measuring device is controlled so that the probe of the sensor of the three-dimensional measuring device sequentially follows the sequence of the measuring points, the measuring operation is performed, and data obtained by the measurement is transmitted to the minicomputer to the system. Is appropriately processed so that the user can easily view it, and is displayed on the screen by the terminal device 1.

【0039】上述の如くしてこの実施例の方法によれ
ば、基準データの点列から計測点を抽出する際にその計
測不要点となる検討対象の点を計測点として抽出せず自
動的に排除することができ、それゆえその計測点の点列
を用いて形状計測装置に前記対象物の形状の計測手順を
教示する際に教示の最後の段階での人手による計測不要
点の削除の工数を大幅に省き得るので、教示に要する工
数を従来の方法よりもさらに削減することができ、しか
も、確実に計測不要点のみを除去し得るので、必要な計
測点まで誤って削除するおそれをなくすことができる。
As described above, according to the method of this embodiment, when a measurement point is extracted from the point sequence of the reference data, a point to be examined, which is an unnecessary measurement point, is not automatically extracted as a measurement point. Therefore, when teaching a shape measurement procedure of the shape of the object to the shape measuring device using the point sequence of the measurement points, the number of steps of manually deleting unnecessary measurement points at the last stage of the teaching can be reduced. Can be largely omitted, the number of man-hours required for teaching can be further reduced compared to the conventional method, and only unnecessary measurement points can be reliably removed, so that there is no possibility of erroneously deleting necessary measurement points. be able to.

【0040】またこの実施例の方法によれば、基準デー
タの点列中の検討対象の点の前後の点にそれぞれ対応す
る位置での数値モデルの面の挟む角度を求めるに際し、
その検討対象の点の前後の点のそれぞれでの前記法線ベ
クトル同士の内積をそれらの法線ベクトルの絶対値同士
の積で除した値に負の符号を付した値が余弦値となる角
度を求めてその角度を上記挟む角度とするので、検討対
象の点の前後の点にそれぞれ対応する位置での数値モデ
ルの面の挟む角度を容易かつ正確に求めることができ
る。
Further, according to the method of this embodiment, when obtaining the angle between the surfaces of the numerical model at positions respectively corresponding to points before and after the point to be examined in the point sequence of the reference data,
An angle at which the value obtained by dividing the inner product of the normal vectors at each of the points before and after the point of interest by the product of the absolute values of the normal vectors with a negative sign is the cosine value Is obtained and the angle is defined as the above-described angle, so that the angle of the surface of the numerical model at the position corresponding to each of the points before and after the point to be examined can be easily and accurately obtained.

【0041】さらにこの実施例の方法によれば、検討対
象の点とその前後の点とが凹形状を形成しているか否か
の判断に際し、基準データを作成した断面内で、測定進
行方向ベクトルとそれに直交して空間のある方へ向く基
準ベクトルとをあらかじめ設定しておき、上記検討対象
の点の前の点からその検討対象の点へ向かうベクトルと
その検討対象の点からその後の点へ向かうベクトルとの
外積と、上記測定進行方向ベクトルとの外積を求めてそ
れを判定ベクトルとし、その判定ベクトルと上記基準ベ
クトルとの内積が正の符号を持つ場合に、上記検討対象
の点とその前後の点とが凹形状を形成していると判定す
るので、検討対象の点とその前後の点とが凹形状を形成
しているか否かを容易かつ正確に判断することができ
る。
Further, according to the method of this embodiment, when determining whether or not the point to be examined and the points before and after it form a concave shape, the measurement progress direction vector is determined within the cross section in which the reference data is created. And a reference vector orthogonal to it and directed to a certain space in advance, and a vector from the point before the point to be examined to the point to be examined and the point from the point to be examined to the point after the point to be examined. The cross product of the heading vector and the cross product of the measurement progress direction vector are obtained and used as the judgment vector.If the inner product of the judgment vector and the reference vector has a positive sign, the points to be examined and the Since it is determined that the points before and after form a concave shape, it is possible to easily and accurately determine whether the point to be examined and the points before and after the concave form a concave shape.

【0042】さらにこの実施例の方法によれば、前記数
値モデルの面の挟む角度に基づき、それらの面に直交す
る断面内でそれらの面の断面線と前記最小径の工具の半
径に等しい半径の円との二箇所の接点からそれらの断面
線の交点までの距離を求め、前記基準データの点列中
の、前記計測点として抽出しない検討対象の点から前記
求めた距離未満の距離にある点すなわち、上記検討対象
の点以外の、上記最小径の工具での加工残し部位に対応
する上記基準データにおける計測不要部位に位置する点
も、前記計測点として抽出しないことにしているので、
基準データの点列から計測点を抽出する際に、検討対象
の点のみならずさらに多くの計測不要点となる点を計測
点として抽出せず自動的に排除し得て、その計測点の点
列を用いて形状計測装置に前記対象物の形状の計測手順
を教示する際に、教示の最後の段階での人手による計測
不要点の削除の工数をさらに省き、教示に要する工数を
さらに削減することができる。
Further, according to the method of this embodiment, based on the angle between the surfaces of the numerical model, a cross-section line of those surfaces and a radius equal to the radius of the tool having the minimum diameter in a cross section orthogonal to the surfaces. The distance from the two points of contact with the circle to the intersection of their cross-sectional lines is determined, and in the point sequence of the reference data, the distance is less than the determined distance from the point to be examined that is not extracted as the measurement point. Points, other than the points to be considered, the points located in the measurement-unnecessary parts in the reference data corresponding to the unprocessed parts with the tool having the minimum diameter are also not extracted as the measurement points.
When extracting measurement points from the reference data point sequence, not only the points to be considered but also points that become more unnecessary can be automatically excluded without extracting them as measurement points. When teaching the shape measurement procedure of the object to the shape measuring device using the rows, the man-hour for manually deleting unnecessary measurement points at the last stage of the teaching is further reduced, and the man-hour required for the teaching is further reduced. be able to.

【0043】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば、車体パ
ネル成形用金型以外の対象物の形状計測にも適用し得
て、上記例の場合と同様の作用効果をもたらすことがで
きる。
Although the present invention has been described with reference to the illustrated examples, the present invention is not limited to the above-described example, and may be applied to, for example, shape measurement of an object other than a body panel molding die. The same operation and effect as in the example can be obtained.

【0044】[0044]

【発明の効果】かくしてこの発明の形状計測手順の教示
方法によれば、基準データの点列から計測点を抽出する
際にその計測不要点となる検討対象の点を計測点として
抽出せず自動的に排除することができ、それゆえその計
測点の点列を用いて形状計測装置に前記対象物の形状の
計測手順を教示する際に教示の最後の段階での人手によ
る計測不要点の削除の工数を大幅に省き得るので、教示
に要する工数を従来の方法よりもさらに削減することが
でき、しかも、確実に計測不要点のみを除去し得るの
で、必要な計測点まで誤って削除するおそれをなくすこ
とができる。
As described above, according to the teaching method of the shape measurement procedure of the present invention, when a measurement point is extracted from a point sequence of reference data, a point to be examined, which is an unnecessary measurement point, is not extracted as a measurement point, but is automatically extracted. Therefore, when teaching a shape measuring procedure of the shape of the object to the shape measuring device using the point sequence of the measuring points, it is possible to eliminate unnecessary measurement points manually at the last stage of the teaching. The number of man-hours required for teaching can be greatly reduced, so that the man-hour required for teaching can be further reduced compared to the conventional method. Moreover, since only unnecessary measurement points can be reliably removed, the necessary measurement points may be erroneously deleted. Can be eliminated.

【0045】なお、基準データの点列中の検討対象の点
の前後の点にそれぞれ対応する位置での数値モデルの面
の挟む角度を求めるに際し、その検討対象の点の前後の
点のそれぞれでの前記法線ベクトル同士の内積をそれら
の法線ベクトルの絶対値同士の積で除した値に負の符号
を付した値が余弦値となる角度を求めてその角度を上記
挟む角度とすることにすれば、検討対象の点の前後の点
にそれぞれ対応する位置での数値モデルの面の挟む角度
を容易かつ正確に求めることができる。
When calculating the angle between the surfaces of the numerical model at positions corresponding to the points before and after the point to be examined in the point sequence of the reference data, respectively, the points before and after the point to be examined are determined. The value obtained by dividing the inner product of the normal vectors by the product of the absolute values of the normal vectors is obtained as an angle at which a value obtained by adding a negative sign becomes a cosine value, and the angle is defined as the above-described angle. Then, the angle between the surfaces of the numerical model at the positions respectively corresponding to the points before and after the point to be examined can be easily and accurately obtained.

【0046】また検討対象の点とその前後の点とが凹形
状を形成しているか否かの判断に際し、基準データを作
成した断面内で、測定進行方向ベクトルとそれに直交し
て空間のある方へ向く基準ベクトルとをあらかじめ設定
しておき、上記検討対象の点の前の点からその検討対象
の点へ向かうベクトルとその検討対象の点からその後の
点へ向かうベクトルとの外積と、上記測定進行方向ベク
トルとの外積を求めてそれを判定ベクトルとし、その判
定ベクトルと上記基準ベクトルとの内積が正の符号を持
つ場合に、上記検討対象の点とその前後の点とが凹形状
を形成していると判定することにすれば、検討対象の点
とその前後の点とが凹形状を形成しているか否かを容易
かつ正確に判断することができる。
When judging whether or not the point to be examined and the points before and after the point form a concave shape, in the section in which the reference data is created, the measurement progress direction vector and the direction in which And a reference vector pointing to the point to be examined is set in advance, and an outer product of a vector from the point before the point to be examined to the point to be examined and a vector from the point to be examined to the point after the point to be examined, and the above measurement The outer product of the traveling direction vector is obtained and used as a determination vector.If the inner product of the determination vector and the reference vector has a positive sign, the point to be considered and the points before and after it form a concave shape. If it is determined that the point is examined, it is possible to easily and accurately determine whether the point to be examined and the points before and after the point form a concave shape.

【0047】さらに前記数値モデルの面の挟む角度に基
づき、それらの面に直交する断面内でそれらの面の断面
線と前記最小径の工具の半径に等しい半径の円との二箇
所の接点からそれらの断面線の交点までの距離を求め、
前記基準データの点列中の、前記計測点として抽出しな
い検討対象の点から前記求めた距離未満の距離にある点
すなわち、上記検討対象の点以外の、上記最小径の工具
での加工残し部位に対応する上記基準データにおける計
測不要部位に位置する点も、前記計測点として抽出しな
いことにすれば、基準データの点列から計測点を抽出す
る際に、検討対象の点のみならずさらに多くの計測不要
点となる点を計測点として抽出せず自動的に排除し得
て、その計測点の点列を用いて形状計測装置に前記対象
物の形状の計測手順を教示する際に、教示の最後の段階
での人手による計測不要点の削除の工数をさらに省き、
教示に要する工数をさらに削減することができる。
Further, based on the angle between the surfaces of the numerical model, two points of contact between a sectional line of those surfaces and a circle having a radius equal to the radius of the tool having the minimum diameter in a cross section orthogonal to those surfaces are obtained. Find the distance to the intersection of those section lines,
In the point sequence of the reference data, a point at a distance less than the obtained distance from the point to be examined that is not extracted as the measurement point, that is, a part to be processed by the tool having the minimum diameter other than the point to be examined. If the points located in the measurement-unnecessary part in the reference data corresponding to are not extracted as the measurement points, when extracting the measurement points from the point sequence of the reference data, not only the points to be examined but also more Can be automatically excluded without extracting points that are unnecessary measurement points as measurement points, and teaching the shape measurement procedure of the object to the shape measurement device using the point sequence of the measurement points. In the last stage of the process, the man-hour for manually removing unnecessary measurement points is further
The number of steps required for teaching can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の形状計測手順の教示方法の一実施例
における計測点抽出処理を示すフローチャートである。
FIG. 1 is a flowchart showing a measurement point extraction process in one embodiment of a teaching method of a shape measurement procedure according to the present invention.

【図2】上記実施例の方法において最小径の工具での加
工残し量が測定公差内に収まるような凹部の両側面の挟
む角度の最小値を求める方法を示す説明図である。
FIG. 2 is an explanatory view showing a method of obtaining a minimum value of an angle between both side surfaces of a concave portion so that a residual amount of machining with a tool having a minimum diameter falls within a measurement tolerance in the method of the embodiment.

【図3】上記実施例の方法において検討点の前後の点に
対応する位置での数値データの面の挟む角度を求める方
法を示す説明図である。
FIG. 3 is an explanatory diagram showing a method for obtaining an angle between surfaces of numerical data at positions corresponding to points before and after a study point in the method of the embodiment.

【図4】上記挟む角度の最小値と上記数値データの面の
挟む角度との比較例を示す説明図である。
FIG. 4 is an explanatory diagram showing a comparative example of the minimum value of the sandwiching angle and the sandwiching angle of the surface of the numerical data.

【図5】上記実施例の方法において検討点とその前後の
点とが凹形状を形成しているか否かを判定する方法を示
す説明図である。
FIG. 5 is an explanatory diagram showing a method for determining whether or not a point to be considered and points before and after the method form a concave shape in the method of the embodiment.

【図6】上記実施例の方法において検討点の近傍の計測
不要点を検索する方法を示す説明図である。
FIG. 6 is an explanatory diagram showing a method of searching for a measurement unnecessary point near a study point in the method of the embodiment.

【図7】上記実施例の方法において検討点の近傍の計測
不要点を検索する手順を示すフローチャートである。
FIG. 7 is a flowchart showing a procedure for searching for a measurement unnecessary point near a study point in the method of the embodiment.

【図8】左側の流れは従来の形状計測手順の教示方法の
教示手順を示す説明図であり、右側の流れは上記実施例
の形状計測手順の教示方法の教示手順を示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a teaching procedure of a conventional teaching method of a shape measuring procedure, and a right flowchart is an explanatory diagram showing a teaching procedure of a teaching method of a shape measuring procedure of the embodiment.

【図9】上記従来の方法における計測点抽出処理を示す
フローチャートである。
FIG. 9 is a flowchart showing measurement point extraction processing in the conventional method.

【図10】上記従来の方法における計測点抽出処理の方
法を示す説明図である。
FIG. 10 is an explanatory diagram showing a method of measuring point extraction processing in the conventional method.

【図11】機械加工の際の対象物の凹部の隅部への加工
残し部位の発生状況を示す説明図である。
FIG. 11 is an explanatory diagram showing a state of occurrence of an unprocessed portion at a corner of a concave portion of an object during machining.

【図12】基準データの点列あるいはそこから抽出した
計測点の点列中の凹形状のコーナー部分の隅部の、上記
加工残し部位に対応する計測不要部位にある計測不要点
を示す説明図である。
FIG. 12 is an explanatory diagram showing unnecessary measurement points in a measurement unnecessary portion corresponding to the above-mentioned unprocessed portion at a corner of a concave corner portion in a reference data point sequence or a measurement data point sequence extracted therefrom. It is.

【符号の説明】[Explanation of symbols]

1 端末装置 2 マウス 3 キーボード 4 金型 5 最小径の工具 6,7 凹部の両側面 DESCRIPTION OF SYMBOLS 1 Terminal device 2 Mouse 3 Keyboard 4 Mold 5 Tool with minimum diameter 6, 7 Both sides of recess

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G05B 19/18 - 19/46 B25J 3/00 - 3/04 B25J 9/10 - 9/22 B25J 13/00 - 13/08 B25J 19/02 - 19/06 Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G05B 19/18-19/46 B25J 3/00-3/04 B25J 9/10-9/22 B25J 13/00-13 / 08 B25J 19/02-19/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対象物の想定形状を3次元的に詳細に表
す数値モデルから、前記対象物の断面形状を点列で表す
とともにその点列の各点についてその点に対応する位置
での前記数値モデルの面の法線ベクトルを持つ基準デー
タを作成し、その基準データの点列から、所定測定基準
に基づき計測が必要な点を計測点として抽出し、その計
測点の点列を用いて形状計測装置に前記対象物の形状の
計測手順を教示するに際し、 前記対象物の加工に用いた工具のうち最小径の工具での
加工残しによって発生する誤差が測定公差内に収まるよ
うな凹部についての、その凹部の両側面を各々平面とし
た場合のそれら両側面の挟む角度の最小値を基準角度と
してあらかじめ求めておき、 前記計測点の抽出時に、前記基準データの点列中の検討
対象の点の前後の点にそれぞれ対応する位置での前記数
値モデルの面の挟む角度が前記基準角度未満の場合であ
って、前記検討対象の点とその前後の点とが凹形状を形
成している場合に、前記検討対象の点を前記計測点とし
て抽出しないことを特徴とする、形状計測手順の教示方
法。
1. A numerical model representing an assumed shape of an object in three dimensions in detail from a numerical model representing a cross-sectional shape of the object by a point sequence and for each point in the point sequence at a position corresponding to the point. Create reference data having the normal vector of the surface of the numerical model, extract points that need to be measured based on a predetermined measurement standard from the point sequence of the reference data as measurement points, and use the point sequence of the measurement points. When teaching a shape measurement procedure of the shape of the object to the shape measuring device, regarding the concave portion such that an error generated by unprocessed tool with the smallest diameter tool among the tools used for processing the object falls within the measurement tolerance. The two sides of the recess are flat
In this case, the minimum value of the angle between the two side surfaces is obtained in advance as a reference angle, and at the time of extracting the measurement points, at positions corresponding to points before and after the point to be considered in the point sequence of the reference data, respectively. When the angle between the surfaces of the numerical model is less than the reference angle, and the point to be examined and points before and after it form a concave shape, the point to be examined is measured. A method of teaching a shape measurement procedure, characterized by not extracting a point.
【請求項2】 前記基準データの点列中の検討対象の点
の前後の点にそれぞれ対応する位置での前記数値モデル
の面の挟む角度を求めるに際し、 前記検討対象の点の前後の点のそれぞれでの前記法線ベ
クトル同士の内積をそれらの法線ベクトルの絶対値同士
の積で除した値に負の符号を付した値が余弦値となる角
度を求めてその角度を前記挟む角度とすることを特徴と
する、請求項1記載の形状計測手順の教示方法。
2. When obtaining an angle between surfaces of the numerical model at positions respectively corresponding to points before and after a point to be examined in a point sequence of the reference data, The value obtained by dividing the inner product between the normal vectors in each case by the product of the absolute values of the normal vectors is given as a cosine value, and the angle sandwiching the angle is obtained. 2. The method of teaching a shape measurement procedure according to claim 1, wherein
【請求項3】 前記検討対象の点とその前後の点とが凹
形状を形成しているか否かの判断に際し、 前記基準データを作成した断面内で、測定進行方向ベク
トルとそれに直交して空間のある方へ向く基準ベクトル
とをあらかじめ設定しておき、 前記検討対象の点の前の点からその検討対象の点へ向か
うベクトルとその検討対象の点からその後の点へ向かう
ベクトルとの外積と、前記測定進行方向ベクトルとの外
積を求めてそれを判定ベクトルとし、 前記判定ベクトルと前記基準ベクトルとの内積が正の符
号を持つ場合に、前記検討対象の点とその前後の点とが
凹形状を形成していると判定することを特徴とする、請
求項1または2記載の形状計測手順の教示方法。
3. A method for determining whether or not a point to be considered and points before and after the point form a concave shape, includes: And a reference vector directed toward a certain point is set in advance, and a cross product of a vector directed from the point before the point to be examined to the point to be examined and a vector directed from the point to be examined to the subsequent point is Finding the outer product of the measurement progress direction vector and using it as a determination vector, when the inner product of the determination vector and the reference vector has a positive sign, the point to be considered and the points before and after it are concave. 3. The method according to claim 1, wherein it is determined that a shape is formed.
【請求項4】 前記数値モデルの面の挟む角度に基づ
き、それらの面に直交する断面内でそれらの面の断面線
と前記最小径の工具の半径に等しい半径の円との二箇所
の接点からそれらの断面線の交点までの距離を求め、 前記基準データの点列中の、前記計測点として抽出しな
い検討対象の点から前記求めた距離未満の距離にある点
も、前記計測点として抽出しないことを特徴とする、請
求項1から3までの何れか記載の形状計測手順の教示方
法。
4. A contact point between two points of a cross-section line of the surface and a circle having a radius equal to the radius of the tool having the minimum diameter in a cross section orthogonal to the surface based on an angle between the surfaces of the numerical model. From the points of the reference data, a point less than the obtained distance from the point to be examined, which is not extracted as the measurement point, is also extracted as the measurement point. The method of teaching a shape measurement procedure according to any one of claims 1 to 3, wherein the method is not performed.
JP23185094A 1994-09-27 1994-09-27 Teaching method of shape measurement procedure Expired - Fee Related JP3307103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23185094A JP3307103B2 (en) 1994-09-27 1994-09-27 Teaching method of shape measurement procedure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23185094A JP3307103B2 (en) 1994-09-27 1994-09-27 Teaching method of shape measurement procedure

Publications (2)

Publication Number Publication Date
JPH0895627A JPH0895627A (en) 1996-04-12
JP3307103B2 true JP3307103B2 (en) 2002-07-24

Family

ID=16929996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23185094A Expired - Fee Related JP3307103B2 (en) 1994-09-27 1994-09-27 Teaching method of shape measurement procedure

Country Status (1)

Country Link
JP (1) JP3307103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413984B (en) * 2009-04-28 2014-03-19 三菱电机株式会社 Work measuring method, electric discharging method, and electric discharging apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865847B (en) * 2012-10-10 2015-06-24 北京精雕科技集团有限公司 Spline curve compensation method for measuring profile deviation based on path unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413984B (en) * 2009-04-28 2014-03-19 三菱电机株式会社 Work measuring method, electric discharging method, and electric discharging apparatus

Also Published As

Publication number Publication date
JPH0895627A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JPH0644361A (en) Surface identification device
CN1094158A (en) The method and the device that are used for verifying geometry
JP3307103B2 (en) Teaching method of shape measurement procedure
CN113203420B (en) Industrial robot dynamic path planning method based on variable density search space
US5471569A (en) Retrieval space determination system for three-dimensionally shaped parts in a CAD system
CN116740060B (en) Method for detecting size of prefabricated part based on point cloud geometric feature extraction
US5398307A (en) Mesh generating method and apparatus therefor
CN112872114B (en) Three-dimensional interference detection method in metal plate bending process
CN115131417A (en) Laser point cloud 2D-3D bimodal interaction enhancement irregular wire detection method
CN113744245A (en) Method and system for positioning structural reinforcing rib welding seam in point cloud
CN111862327A (en) Three-dimensional city modeling method for inspection robot
CN111583383A (en) Three-dimensional visual auxiliary method for high-pressure container inspection
JP2003099804A (en) Three-dimensional structure modeled apparatus
JP4032828B2 (en) Graphic front / back setting device and graphic front / back setting method
CN112288849B (en) Virtual restoration method for rotating shaft type broken cultural relics
JP3020081B2 (en) Automatic shape calculation method and device for contour shape measuring machine
JP2822194B2 (en) Method and apparatus for creating a two-dimensional projection diagram of a three-dimensional shape model using a computer
CN117725713A (en) Determination method of complex pipe jacking space path based on Revit platform
US6853376B2 (en) Method of image processing, image processing apparatus, image processing program and recording medium
JP3900839B2 (en) Graphic front / back setting device and graphic front / back setting method
JP2006139713A (en) 3-dimensional object position detecting apparatus and program
CN113822854A (en) Pipeline type identification and structural parameter extraction method based on three-dimensional point cloud
CN116736790A (en) Impeller measuring head track planning method based on visual cone discretization
JP3332626B2 (en) Two ellipse common tangent creation method and figure processing device
JP3296099B2 (en) Corresponding point position measurement method and apparatus for correlation matching

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees