JP3304613B2 - Method for removing sulfur oxides from flue gas - Google Patents

Method for removing sulfur oxides from flue gas

Info

Publication number
JP3304613B2
JP3304613B2 JP12830594A JP12830594A JP3304613B2 JP 3304613 B2 JP3304613 B2 JP 3304613B2 JP 12830594 A JP12830594 A JP 12830594A JP 12830594 A JP12830594 A JP 12830594A JP 3304613 B2 JP3304613 B2 JP 3304613B2
Authority
JP
Japan
Prior art keywords
ammonia
air heater
flue
concentration
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12830594A
Other languages
Japanese (ja)
Other versions
JPH07308600A (en
Inventor
美彦 望月
進一 川畑
貞夫 榊原
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP12830594A priority Critical patent/JP3304613B2/en
Publication of JPH07308600A publication Critical patent/JPH07308600A/en
Application granted granted Critical
Publication of JP3304613B2 publication Critical patent/JP3304613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中の硫黄酸化
物の除去方法に係り、特にSO2 を多く含む燃焼排ガス
中の硫黄酸化物の除去方法に関する。
The present invention relates relates to a method for removing sulfur oxides in the combustion exhaust gas, in particular to a method for removing sulfur oxides in the combustion exhaust gas containing a large amount of SO 2.

【0002】[0002]

【従来の技術】油焚ボイラの排煙処理施設では、ボイラ
の後流側に順次、脱硝装置、エアヒータ、電気集塵器、
脱硫装置が設けられており、脱硝装置では、燃焼排ガス
中の窒素酸化物(NOX )を除去し、電気集塵装置では
ダストを除去し、脱硫装置では、燃焼排ガス中の硫黄酸
化物(SOX )を除去するようになっている。
2. Description of the Related Art In a flue gas treatment facility of an oil-fired boiler, a denitration device, an air heater, an electric dust collector,
Desulfurizer is provided, in denitrator removes nitrogen oxides in the combustion exhaust gas of (NO X), electrostatic in dust removes dust, desulfurization apparatus, sulfur oxides in the combustion exhaust gas (SO X ) is to be removed.

【0003】脱硝装置内にはバナジウムを主成分とする
触媒を用いられているが、通ガスによってこの触媒が一
部摩耗して飛散し後流側のエアヒータ等に付着する。脱
硝装置は脱硝反応に適した温度として約400℃で運転
されており、エアヒータの入り口温度も同程度となって
いる。一方、硫酸や発煙硫酸の製造過程に用いられてい
る脱硝方法として、接触法がある。この方法では約40
0℃に保った白金触媒やバナジウム触媒に、SO2 と酸
素の混合ガスを接触させると、SO2 は酸素と容易に反
応しSO3 に酸化されることが知られている。
[0003] A catalyst containing vanadium as a main component is used in the denitration apparatus, but this catalyst partially wears out due to passing gas and scatters and adheres to an air heater or the like on the downstream side. The denitration apparatus is operated at about 400 ° C. as a temperature suitable for the denitration reaction, and the inlet temperature of the air heater is also about the same. On the other hand, as a denitration method used in the production process of sulfuric acid or fuming sulfuric acid, there is a contact method. In this method, about 40
It is known that when a mixed gas of SO 2 and oxygen is brought into contact with a platinum catalyst or a vanadium catalyst kept at 0 ° C., SO 2 easily reacts with oxygen and is oxidized to SO 3 .

【0004】ボイラ内で硫黄を含む燃料を燃焼すると、
燃料中の硫黄分はボイラ内の燃焼によって酸化しSO2
になりボイラから排出される。このSO2 は、脱硝装置
内やエアヒータを通過するときに、脱硝装置内やエアヒ
ータの温度が約400℃であるため、前述したように脱
硝装置内の触媒やエアヒータに付着した触媒によってS
3 に転化される。
When a fuel containing sulfur is burned in a boiler,
The sulfur content in the fuel is oxidized by the combustion in the boiler, resulting in SO 2
And discharged from the boiler. When the SO 2 passes through the denitration device or the air heater, the temperature of the denitration device or the air heater is about 400 ° C., and therefore, as described above, S 2 is generated by the catalyst in the denitration device or the catalyst attached to the air heater.
Converted to O 3 .

【0005】このSO3 は電気集塵器の運転温度である
150℃付近では一部ミストになっているため、電気集
塵器内に入ると放電線肥大や集塵極からのダスト剥離の
不良等のトラブルの原因となる。そこでこれを防止する
ため、エアヒータと電気集塵器の間の煙道にアンモニア
を注入し、硫酸アンモニウムにして電気集塵器で回収す
るようにしている。
[0005] Since this SO 3 is partially mist near 150 ° C., which is the operating temperature of the electric precipitator, when it enters the electric precipitator, the discharge wire is enlarged and dust is not peeled off from the dust collecting electrode. Cause troubles. Therefore, in order to prevent this, ammonia is injected into the flue between the air heater and the electrostatic precipitator, converted into ammonium sulfate, and collected by the electric precipitator.

【0006】アンモニア注入量はSO3 の濃度を基に設
定されているが、SO3 は自動分析ができないため、エ
アヒータ出口でSO3 をミストとして捕集し、これを手
分析した分析値を基にしてアンモニア注入量を決めてい
た。
[0006] ammonia injection amount is set based on the concentration of SO 3 is, SO 3 is because it can not automatically analyze, the SO 3 was collected as a mist in the air heater outlet, based on analysis values of which were manual analysis To determine the amount of ammonia injected.

【0007】[0007]

【発明が解決しようとする課題】しかしながらこの方法
では、SO3 の測定からアンモニアの注入量を求めるの
に数時間を要する。このためボイラ負荷が変わりSO3
の生成量が大きく変動する場合や、通常の定常負荷時の
変動に対してアンモニアの注入量を最適にできない問題
がある。
However, in this method, it takes several hours to determine the injection amount of ammonia from the measurement of SO 3 . As a result, the boiler load changes and SO 3
There is a problem that the injection amount of ammonia cannot be optimized with respect to the case where the generation amount of methane greatly fluctuates or the fluctuation at the time of normal steady load.

【0008】また、アンモニアの注入量が少ない場合に
は硫酸水素アンモニウムが生成し、この硫酸水素アンモ
ニウムは、融点が150℃程度で電気集塵器の運転温度
に近い温度であるため、硫酸水素アンモニウムが多いと
ダストの付着力が大きくなり、電気集塵器内の放電線や
集塵極からのダストの剥離性が悪くなって放電線の肥大
や集塵極からのダスト払い落しの不良等を引き起こす問
題がある。このため、従来はアンモニアの注入量をSO
3 との反応に必要な量よりも過剰にしているのが現状で
ある。
In addition, when the injection amount of ammonia is small, ammonium hydrogen sulfate is generated. Since the melting point of this ammonium hydrogen sulfate is about 150 ° C., which is close to the operating temperature of the electrostatic precipitator, ammonium hydrogen sulfate is produced. If there is too much, the adhesion of dust will increase, and the releasability of the dust from the discharge wire and the collection electrode in the electrostatic precipitator will worsen, resulting in enlargement of the discharge wire and poor dust removal from the collection electrode. There is a problem to cause. For this reason, conventionally, the injection amount of ammonia is set to SO
At present, it is in excess of the amount required for the reaction with 3 .

【0009】本発明の目的は、上記した従来の課題を解
決し、ボイラの負荷変動に迅速に対応してアンモニア注
入量を最適な量として排ガスからの硫黄酸化物を除去す
ることができ、かつ、アンモニアの過剰消費を抑制する
ことができる燃焼排ガス中の硫黄酸化物の除去方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, and to remove sulfur oxides from exhaust gas by quickly responding to load fluctuations of a boiler and adjusting an ammonia injection amount to an optimum amount. Another object of the present invention is to provide a method for removing sulfur oxides in combustion exhaust gas, which can suppress excessive consumption of ammonia.

【0010】[0010]

【課題を解決するための手段】本発明は前記目的を達成
する為に、燃焼排ガス中のSO2 が、脱硝装置の触媒や
エアヒータに付着した触媒によってSO3 に転化するこ
とから、ボイラ出口側とエアヒータ出口側のSO2 濃度
を測定し、その差を知ることで転化したSO3の濃度を
求めることができる点に着目し、ボイラ出口側とエアヒ
ータ出口側で各々SO2 濃度を自動分析計等で測定し、
その差の値を基にアンモニアの注入量を制御することに
よって燃焼排ガス中のSO3 を除去する方法である。
According to the present invention, in order to achieve the above object, SO 2 in flue gas is converted into SO 3 by a catalyst of a denitration device or a catalyst attached to an air heater. air heater was measured SO 2 concentration at the outlet side, focusing on the point that it is possible to determine the concentration of SO 3 which was converted by knowing the difference, autoanalyzer each SO 2 concentration at the boiler outlet and the air heater outlet Etc.,
This is a method of removing SO 3 in combustion exhaust gas by controlling the injection amount of ammonia based on the difference value.

【0011】[0011]

【作用】本発明によれば、ボイラ出口側及びエアヒータ
出口側に設けたSO2 の自動分析装置等による検出値の
差がSO3 濃度に対応し、このSO3 濃度に基づいてエ
アヒータと電気集塵器の間の煙道に注入されるアンモニ
アの量を制御するものであるから、ボイラの負荷変動に
起因するSO3 の変動に対してSO3 とアンモニアの反
応を最適にできる結果、排ガス中からSO3 を効率的に
除去することができる。
According to the present invention, the difference between the values detected by the automatic analyzer such as the SO 2 formed in the boiler outlet and the air heater outlet side corresponds to SO 3 concentration, the air heater and an electric current based on the SO 3 concentration Since it controls the amount of ammonia injected into the flue between the dust collectors, it is possible to optimize the reaction between SO 3 and ammonia against fluctuations in SO 3 due to fluctuations in boiler load. it can be efficiently removed sO 3 from.

【0012】[0012]

【実施例】以下添付図面に従って本発明に係る燃焼排ガ
ス中の硫黄酸化物の除去方法の好ましいい実施例を詳述
する。図1は本発明の燃焼排ガス中の硫黄酸化物の除去
方法の一実施例を示す系統図である。図1に示す排煙処
理システムは、ボイラ10出口から順に脱硝装置12、
エアヒータ14、電気集塵器16、ファン18、脱硫装
置20及び煙突22で構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for removing sulfur oxides from flue gas according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a system diagram showing one embodiment of the method for removing sulfur oxides in combustion exhaust gas of the present invention. The flue gas treatment system shown in FIG.
It comprises an air heater 14, an electric dust collector 16, a fan 18, a desulfurizer 20, and a chimney 22.

【0013】SO2 分析装置24、26はそれぞれボイ
ラ10と脱硝装置12を繋ぐ煙道28に連結され、排ガ
スをサンプリングするサンプリングパイプ30と、エア
ヒータ14と電気集塵器16を繋ぐ煙道32に連結さ
れ、排ガスをサンプリングするサンプリンクパイプ34
に介設されている。エアヒータ14と電気集塵器14を
繋ぐ煙道32のサンプリンクパイプ34との連通部より
煙道後流側には、アンモニアを注入するためのパイプ3
6が連結され、このパイプ36はバルブ38を介してア
ンモニアタンク40と連結している。サンプリンクパイ
プ34とパイプ36のそれぞれの煙道32との連通部間
の距離(図中、Aで示す)は約1m以上離間させること
が望ましい。
The SO 2 analyzers 24 and 26 are respectively connected to a flue 28 connecting the boiler 10 and the denitration device 12, and are connected to a sampling pipe 30 for sampling exhaust gas, and a flue 32 connecting the air heater 14 and the electric dust collector 16. Samplink pipe 34 connected to sample exhaust gas
It is interposed in. A pipe 3 for injecting ammonia is located on the downstream side of the flue from a communication part between the air heater 14 and the sump pipe 34 of the flue 32 connecting the electric precipitator 14.
The pipe 36 is connected to an ammonia tank 40 via a valve 38. It is desirable that the distance (indicated by A in the figure) between the communicating portions of the sump link pipes 34 and the pipes 36 with the flue 32 be separated by about 1 m or more.

【0014】また、SO2 分析装置24、26は出力ケ
ーブル42、44を介して演算器46と電気的に接続し
ている。この演算器46は出力ケーブル48を介してバ
ルブ38と電気的に接続しており、また、ファン18に
その回転数を検出する検出器が設けられており、この検
出器からの信号はケーブル50を介して演算器46に出
力されるようになっている。
The SO 2 analyzers 24 and 26 are electrically connected to a calculator 46 via output cables 42 and 44. The arithmetic unit 46 is electrically connected to the valve 38 via an output cable 48. The fan 18 is provided with a detector for detecting the number of rotations. Is output to the arithmetic unit 46 via the.

【0015】次に前記の如く構成された燃焼排ガス中の
SO3 の除去方法の作用を説明する。ボイラ10から排
出された燃焼排ガスは煙道28及び煙道32からサンプ
リンクパイプ30、34を経て各々SO2 分析装置2
4、26に一部サンプリングされ各々のSO2 濃度が検
出される。SO2 分析装置24、26の検出値(分析
値)はケーブル42、44で演算器46に電送される。
またファン18の回転数の信号がケーブル44で演算器
46に電送される。演算器46ではSO2 分析装置24
で検出されたSO2 濃度とSO2 分析装置26で検出さ
れたSO2 濃度との差が計算され、また、ファン18の
回転数から煙道を通過する排ガスのガス量が算出され、
SO2 濃度の差とガス量からアンモニア注入量を計算さ
れ、アンモニア注入量の計算結果はケーブル48でバル
ブ38に信号を電送し、バルブ38の開閉でアンモニア
の注入量を制御する。
Next, the operation of the method for removing SO 3 in the flue gas configured as described above will be described. The flue gas discharged from the boiler 10 passes from the flue 28 and the flue 32 to the SO 2 analyzer 2 via the sump pipes 30 and 34, respectively.
Samples are partially sampled at 4, 26, and the respective SO 2 concentrations are detected. The detection values (analysis values) of the SO 2 analyzers 24 and 26 are transmitted to a calculator 46 via cables 42 and 44.
Further, a signal of the rotation speed of the fan 18 is transmitted to the arithmetic unit 46 via the cable 44. In the arithmetic unit 46, the SO 2 analyzer 24 is used.
In the difference between the detected SO 2 concentration has been SO 2 concentration detected by the SO 2 analyzer 26 is computed, also gas amount of the exhaust gas passing through the flue from the rotational speed of the fan 18 is calculated,
The injection amount of ammonia is calculated from the difference between the SO 2 concentration and the gas amount. Based on the calculation result of the injection amount of ammonia, a signal is transmitted to the valve 38 via the cable 48, and the injection amount of ammonia is controlled by opening and closing the valve 38.

【0016】前記SO2 濃度の差は、燃焼排ガス中のS
3 濃度に対応するので、SO3 濃度とガス量から燃焼
排ガス中のSO3 量が計算され、このSO3 量に基づい
てアンモニア注入量が計算されることになる。通常、燃
焼排ガス中のSO3 濃度は20〜140ppm程度であ
り、実際のアンモニア注入量は、SO3 に対して当量比
で約2.2程度が望ましい。また、アンモニア注入の際
の圧力はほぼ大気圧が望ましい。
The difference in the SO 2 concentration is determined by the difference between the S
Since it corresponds to the O 3 concentration, the SO 3 amount in the combustion exhaust gas is calculated from the SO 3 concentration and the gas amount, and the ammonia injection amount is calculated based on the SO 3 amount. Usually, the SO 3 concentration in the combustion exhaust gas is about 20 to 140 ppm, and the actual amount of injected ammonia is preferably about 2.2 in equivalent ratio to SO 3 . The pressure at the time of injecting ammonia is desirably substantially atmospheric pressure.

【0017】更にサンプリンクパイプ34とパイプ36
のそれぞれの煙道32との連通部間の距離(図中、Aで
示す)は約1m以上離間しているので、サンプリンクパ
イプ34側にパイプ36からのアンモニアが混入するこ
とがなく、SO2 分析装置26におけるSO2 濃度の検
出精度を低下させることがない。上記した実施例におい
て、アンモニア注入によりSO3 が除去されたことを確
認するためには、捕集ダスト中のNH4 とSO4 成分か
ら判断することができ、具体的には、捕集ダスト中の
(NH4 2 SO4 と(NH4 )HSO4 の比を求め、
判断することができる。すなわち、硫酸水素アンモニウ
ム〔(NH4 )HSO4 〕に対する硫酸アンモニウム
〔(NH4 2 SO4 〕の比が大きい程、SO3 の除去
率が高いことになる。
Further, the sump link pipe 34 and the pipe 36
The distance (indicated by A in the figure) between the communicating portions with the respective flue 32 is separated by about 1 m or more, so that ammonia from the pipe 36 does not enter the sample pipe 34, The detection accuracy of the SO 2 concentration in the two analyzer 26 is not reduced. In the above-described embodiment, in order to confirm that SO 3 has been removed by the injection of ammonia, it can be determined from the NH 4 and SO 4 components in the collected dust. Of (NH 4 ) 2 SO 4 and (NH 4 ) HSO 4
You can judge. That is, the higher the ratio of ammonium sulfate [(NH 4 ) 2 SO 4 ] to ammonium hydrogen sulfate [(NH 4 ) HSO 4 ], the higher the SO 3 removal rate.

【0018】本実施例では、SO2 濃度を自動計測し、
この分析値をもとにアンモニアの注入を自動化してお
り、ボイラの負荷変動に応じてSO3 の発生量が変動し
ても、常に最適なSO3 の除去ができる。
In this embodiment, the SO 2 concentration is automatically measured,
The injection of ammonia is automated on the basis of this analysis value, so that even if the amount of SO 3 generated fluctuates according to the load fluctuation of the boiler, it is possible to always remove SO 3 optimally.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、ボ
イラの負荷変動に迅速に対応してアンモニアの注入量を
SO3 の発生量に応じて常に最適にでき、アンモニア使
用量の低減を図ることができる。
As described above, according to the present invention, the injection amount of ammonia can always be optimized in accordance with the amount of SO 3 generated in response to the load fluctuation of the boiler, and the amount of ammonia used can be reduced. Can be planned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る燃焼排ガス中のSO3 の除去方法
を示す系統図である。
FIG. 1 is a system diagram showing a method for removing SO 3 from combustion exhaust gas according to the present invention.

【符号の説明】[Explanation of symbols]

10…ボイラ 12…脱硝装置 14…エアヒータ 16…電気集塵器 18…ファン 24…SO2 分析装置 26…SO2 分析装置 46…演算器 40…アンモニアタンク10 ... boiler 12 ... denitrator 14 ... air heater 16 ... electrostatic precipitator 18 ... fan 24 ... SO 2 analyzer 26 ... SO 2 analyzer 46 ... operator 40 ... ammonia tank

フロントページの続き (56)参考文献 特開 平2−265618(JP,A) 特開 昭59−160552(JP,A) 特開 昭63−175653(JP,A) 特開 昭63−111953(JP,A) 特開 平7−308601(JP,A) (58)調査した分野(Int.Cl.7,DB名) B03C 3/00 - 3/88 Continuation of the front page (56) References JP-A-2-265618 (JP, A) JP-A-59-160552 (JP, A) JP-A-63-175653 (JP, A) JP-A-63-111953 (JP) , A) JP-A-7-308601 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B03C 3/00-3/88

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ボイラの後流側に順次、脱硝装置、エア
ヒータ、電気集塵器が設けられ、エアヒータと電気集塵
器との間の煙道にアンモニアを注入して、ガス中の硫黄
酸化物をアンモニアと反応させて除去する燃焼排ガス中
の硫黄酸化物の除去方法において、ボイラの出口側及び
エアヒータの出口側における燃焼排ガス中のSO2 濃度
を検出し、各々のSO2 濃度の値の差に基づいてエアヒ
ータと電気集塵器の間の煙道に注入するアンモニア量を
制御することを特徴とする燃焼排ガス中の硫黄酸化物の
除去方法。
1. A denitration device, an air heater, and an electric precipitator are sequentially provided on the downstream side of a boiler. Ammonia is injected into a flue between the air heater and the electric precipitator to oxidize sulfur in the gas. In a method for removing sulfur oxides in flue gas by reacting with ammonia to remove substances, the SO 2 concentration in the flue gas at the outlet side of the boiler and at the outlet side of the air heater is detected, and the value of each SO 2 concentration is determined. A method for removing sulfur oxides from flue gas, comprising controlling an amount of ammonia injected into a flue between an air heater and an electrostatic precipitator based on the difference.
JP12830594A 1994-05-18 1994-05-18 Method for removing sulfur oxides from flue gas Expired - Fee Related JP3304613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12830594A JP3304613B2 (en) 1994-05-18 1994-05-18 Method for removing sulfur oxides from flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12830594A JP3304613B2 (en) 1994-05-18 1994-05-18 Method for removing sulfur oxides from flue gas

Publications (2)

Publication Number Publication Date
JPH07308600A JPH07308600A (en) 1995-11-28
JP3304613B2 true JP3304613B2 (en) 2002-07-22

Family

ID=14981499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12830594A Expired - Fee Related JP3304613B2 (en) 1994-05-18 1994-05-18 Method for removing sulfur oxides from flue gas

Country Status (1)

Country Link
JP (1) JP3304613B2 (en)

Also Published As

Publication number Publication date
JPH07308600A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
US7879134B2 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
CN2869791Y (en) Contamination-source smoke-exhausting continuous monitoring apparatus
CN104215546B (en) A kind of power station boiler air pre-heater stifled ash monitoring system and method for work thereof
JP4317324B2 (en) An apparatus comprising an analyzer for continuously measuring H2S contained in a gas and an analyzer for adjusting a flow rate of air injected into a reactor for oxidizing H2S to sulfur
JP3361994B2 (en) Ammonia analyzer
JP3304613B2 (en) Method for removing sulfur oxides from flue gas
JP3449060B2 (en) Method for removing sulfur oxides from flue gas
CN111540412B (en) SCR reactor inlet flue gas soft measurement method based on least square method
CN112129898A (en) Device and method for on-line monitoring of sulfur trioxide concentration in coal-fired flue gas
IE51906B1 (en) Technique for monitoring so3,h2so4 in exhaust gases containing so2
JP2002162393A (en) Method and device for simultaneously analyzing nox and nh3
CN212134237U (en) Synchronous sampling device of condensable particles and sulfur trioxide in coal-fired flue gas
NL8003875A (en) METHOD AND APPARATUS FOR EXTRACTING ELEMENTAL SULFUR.
JP3515671B2 (en) Gas sampling method
JPH112403A (en) Boiler apparatus
CN110849679A (en) Synchronous sampling device for condensable particles and sulfur trioxide in coal-fired flue gas and working method thereof
CN217156474U (en) Flue gas on-line measuring system that can many flues sample to gather
JP3195728B2 (en) Sulfur component measurement device
CN216525040U (en) Humidity monitor sampling device capable of preventing accumulated water interference
Hjuler et al. Design of a flue gas probe for ammonia measurement
CN218272168U (en) Sulfur dioxide measuring device for industrial waste gas treatment
CN213689300U (en) Gas gel conditioning system capable of regulating temperature and humidity
JPH11295293A (en) Method and device for measuring sulfuric anhydride in exhaust gas and device for neutralizing sulfuric anhydride
Margeson et al. Determination of sulfur dioxide, nitrogen oxides, and carbon dioxide in emissions from electric utility plants by alkaline permanganate sampling and ion chromatography
KR820001256Y1 (en) Continuation analysis device of nitrogen oxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees