JP3304526B2 - Ceramic separation membrane - Google Patents

Ceramic separation membrane

Info

Publication number
JP3304526B2
JP3304526B2 JP20017893A JP20017893A JP3304526B2 JP 3304526 B2 JP3304526 B2 JP 3304526B2 JP 20017893 A JP20017893 A JP 20017893A JP 20017893 A JP20017893 A JP 20017893A JP 3304526 B2 JP3304526 B2 JP 3304526B2
Authority
JP
Japan
Prior art keywords
ceramic porous
test
zirconia
ceramic
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20017893A
Other languages
Japanese (ja)
Other versions
JPH0739732A (en
Inventor
広典 鳩野
基 安田
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP20017893A priority Critical patent/JP3304526B2/en
Publication of JPH0739732A publication Critical patent/JPH0739732A/en
Application granted granted Critical
Publication of JP3304526B2 publication Critical patent/JP3304526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液体の分離、濃縮等に
使用されるセラミック分離膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic separation membrane used for separating and concentrating a liquid.

【0002】[0002]

【従来の技術】セラミック多孔質支持体の表面に、支持
体の平均細孔径より小さい平均細孔径を有するセラミッ
ク多孔質膜が形成されたセラミック分離膜が知られてい
る。
2. Description of the Related Art There is known a ceramic separation membrane in which a ceramic porous membrane having an average pore diameter smaller than the average pore diameter of the support is formed on the surface of a ceramic porous support.

【0003】[0003]

【発明が解決しようとする課題】セラミック多孔質支持
体に比べて、セラミック多孔質膜を構成する無機質材料
の粒径は遙に小さく、逆に比表面積は遙に大きい。この
ため、分離膜使用時のセラミック多孔質膜からの無機質
材料の濾過液への溶出による濾過液の汚染、及び分離膜
再生工程でのセラミック多孔質膜からの無機質材料の
酸、アルカリ洗浄液への溶出による分離膜の劣化が問題
となる。本発明は上記の問題点に鑑みてなされたもので
あり、1又は複数層のセラミック多孔質支持体の表面
に、支持体の平均細孔径より小さい平均細孔径を有する
セラミック多孔質膜が形成されたセラミック分離膜であ
って、耐食性に優れたセラミック分離膜を提供すること
を目的とする。
The particle size of the inorganic material constituting the ceramic porous membrane is much smaller than that of the ceramic porous support, and the specific surface area is much larger. For this reason, the contamination of the filtrate by the elution of the inorganic material from the ceramic porous membrane into the filtrate when the separation membrane is used, and the conversion of the inorganic material from the ceramic porous membrane to the acid and alkali washing liquid in the separation membrane regeneration step in the separation membrane regeneration step. Degradation of the separation membrane due to elution poses a problem. The present invention has been made in view of the above problems, and a ceramic porous membrane having an average pore diameter smaller than the average pore diameter of a support is formed on the surface of one or more ceramic porous supports. It is an object of the present invention to provide a ceramic separation membrane having excellent corrosion resistance.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、1又は複数層のセラミック多孔
質支持体の表面に、支持体の平均細孔径より小さい平均
細孔径を有するセラミック多孔質膜が形成され、セラミ
ック多孔質膜は、97.0重量%以上のジルコニアを含むこ
とを特徴とするセラミック分離膜を提供する。セラミッ
ク多孔質膜の残余の成分は、ジルコニアの熱的安定性を
高めるために一般的に添加されるイットリウム、カルシ
ウム、マグネシウム等の酸化物、ケイ素、アルミニウム
の酸化物等の無機質材料である。本発明の好ましい態様
においては、セラミック多孔質膜の平均細孔径は0.06μ
m 以上0.2 μm 以下である。
In order to solve the above-mentioned problems, in the present invention, a ceramic having a mean pore size smaller than the mean pore size of the support is provided on the surface of one or more layers of the ceramic porous support. A porous membrane is formed, wherein the ceramic porous membrane comprises 97.0% by weight or more of zirconia to provide a ceramic separation membrane. The remaining components of the ceramic porous membrane are inorganic materials such as oxides of yttrium, calcium, magnesium and the like, and oxides of silicon and aluminum which are generally added to enhance the thermal stability of zirconia. In a preferred embodiment of the present invention, the average pore size of the ceramic porous membrane is 0.06μ
m or more and 0.2 μm or less.

【0005】[0005]

【作用】本発明に係るセラミック分離膜においては、セ
ラミック多孔質膜が97.0重量%以上のジルコニアを含む
ので、耐食性に優れている。分離膜の強度、流体透過抵
抗等を勘案すると、セラミック多孔質膜は、セラミック
多孔質膜の平均細孔径よりも大きな平均細孔径を有する
セラミック多孔質支持体の表面に形成されるのが望まし
い。セラミック多孔質支持体は1層でも良く、複数層で
も良い。セラミック分離膜を無菌濾過用フィルターとし
て使用する場合には、セラミック多孔質膜の平均細孔径
は0.2 μm 以下であることが望ましい。他方、分離膜の
透過流束値として実用的な値を確保するためには、セラ
ミック多孔質膜の平均細孔径は0.06μm 以上であること
が望ましい。
The ceramic separation membrane according to the present invention is excellent in corrosion resistance because the ceramic porous membrane contains 97.0% by weight or more of zirconia. In consideration of the strength of the separation membrane, fluid permeation resistance, and the like, the ceramic porous membrane is desirably formed on the surface of the ceramic porous support having an average pore diameter larger than the average pore diameter of the ceramic porous membrane. The ceramic porous support may have a single layer or a plurality of layers. When a ceramic separation membrane is used as a filter for sterile filtration, the average pore diameter of the ceramic porous membrane is desirably 0.2 μm or less. On the other hand, in order to secure a practical value as the permeation flux value of the separation membrane, it is desirable that the average pore diameter of the ceramic porous membrane is 0.06 μm or more.

【0006】[0006]

【実施例】本発明の実施例を以下に説明する。 (供試材)市販のジルコニア粉末を主原料とし、ジルコ
ニアの熱的安定性を高めるために一般的に添加されるイ
ットリアを主な不純物とする、表1に示す組成の原料粉
末を、3mm×5mm×45mmの直方体にプレス成形し、焼
成温度1000℃、焼成時間2時間で焼成し、ジルコニ
ア含有量の多い順に、供試材Z01〜Z06を得た。セ
ラミック多孔質膜の主原料として一般的に用いられるア
ルミナ及びチタニアを主原料とする、表1に示す組成の
原料粉末を上記と同様に処理して、供試材A01(主原
料アルミナ)と供試材T01、T02(主原料チタニ
ア)を得た。走査型電子顕微鏡を用いた観察による供試
材の平均一次粒子径は、表1に示すように、ジルコニア
を主成分とする供試材では、約 0.1μm であり、アルミ
ナを主原料とする供試材と、チタニアを主原料とする供
試材とでは、約 0.2 乃至約0.4 μm であった。
Embodiments of the present invention will be described below. (Test Material) A raw material powder having a composition shown in Table 1 containing a commercially available zirconia powder as a main raw material and yttria generally added to improve the thermal stability of zirconia as a main impurity was 3 mm × It was press-molded into a 5 mm × 45 mm rectangular parallelepiped and fired at a firing temperature of 1000 ° C. for a firing time of 2 hours to obtain test materials Z01 to Z06 in descending order of zirconia content. A raw material powder having the composition shown in Table 1 containing alumina and titania, which are generally used as the main raw materials of the ceramic porous membrane, is treated in the same manner as described above to provide a test material A01 (main raw alumina). Test materials T01 and T02 (main raw material titania) were obtained. As shown in Table 1, the average primary particle diameter of the test material observed by using a scanning electron microscope is about 0.1 μm for the test material containing zirconia as the main component, and It was about 0.2 to about 0.4 μm between the test material and the test material mainly composed of titania.

【0007】[0007]

【表1】 [Table 1]

【0008】(溶出試験1)ジルコニアの含有量と耐ア
ルカリ性、耐酸性との関係を見るために、供試材Z0
1、Z03、Z04、Z05、Z06を、65℃の2.0 %
NaOH 水溶液又は65℃の3.6 % HCl水溶液中に所定時間
静置した後、ICP発光分析により、不純物をも含む酸
化物の溶出量を測定した。また、ジルコニアを主原料と
する供試材の耐食性とアルミナを主原料とする供試材の
耐食性とを比較すべく、ジルコニアの含有量がほぼ100
%である供試材Z01に対応して、アルミナの含有量が
ほぼ100%である供試材A01についても、同様にして
不純物をも含む酸化物の溶出量を計測した。試験結果を
表2に示す。表中、◎は溶出量が0.010 %未満であるこ
とを示し、○は溶出量が0.010 〜 0.200%であることを
示し、×は溶出量が 0.200%以上であることを示してい
る。表2から、ジルコニアを主原料とする供試材Z0
1、Z03、Z04、Z05、Z06は全て良好な耐ア
ルカリ性を有していることが分かる。また、ジルコニア
の含有量が97%を超える場合には、良好な耐酸性を有す
るが(Z01、Z03)、ジルコニアの含有量が94%未
満の場合には耐酸性が低下する(Z04、Z05、Z0
6)ことが分かる。また、ジルコニアを主原料とする供
試材Z01はアルミナを主原料とする供試材A01に比
べて、耐アルカリ性、耐酸性共に優れていることが分か
る。
(Dissolution test 1) In order to see the relationship between the zirconia content and the alkali resistance and acid resistance, the test material Z0
1, Z03, Z04, Z05, Z06 were converted to 2.0% of 65 ° C.
After leaving still in a NaOH aqueous solution or a 3.6% HCl aqueous solution at 65 ° C. for a predetermined time, the elution amount of oxides including impurities was measured by ICP emission analysis. Further, in order to compare the corrosion resistance of the test material using zirconia as a main raw material and the test material using alumina as a main material, the content of zirconia was almost 100%.
%, The elution amount of oxides including impurities was measured in the same manner as for the test material A01 in which the content of alumina was almost 100%, corresponding to the test material Z01 in which the content was 1.0%. Table 2 shows the test results. In the table, ◎ indicates that the elution amount is less than 0.010%, ○ indicates that the elution amount is 0.010 to 0.200%, and x indicates that the elution amount is 0.200% or more. From Table 2, the test material Z0 containing zirconia as a main raw material was obtained.
It can be seen that 1, Z03, Z04, Z05, and Z06 all have good alkali resistance. When the content of zirconia exceeds 97%, good acid resistance is obtained (Z01, Z03). When the content of zirconia is less than 94%, acid resistance is reduced (Z04, Z05, Z0
6) Further, it can be seen that the test material Z01 using zirconia as a main material is superior in both alkali resistance and acid resistance as compared with the test material A01 using alumina as a main material.

【0009】[0009]

【表2】 [Table 2]

【0010】(溶出試験2)ジルコニアを主原料とする
供試材の耐食性と、アルミナを主原料とする供試材の耐
食性と、チタニアを主原料とする供試材の耐食性とを比
較すべく、ジルコニアの含有量が多い供試材Z01、Z
02と、アルミナの含有量が多い供試材A01と、チタ
ニアの含有量が多いT01、T02とを、60℃の1.0 %
NaOH 水溶液、または60℃の1.0 % HNO3 水溶液、また
は90℃の熱水中に所定時間静置した後、供試材の重量減
少を計測した。試験結果を表3に示す。表中、◎は重量
減少量が0.010 %未満であることを示し、○は重量減少
量が0.010 〜 0.200%であることを示し、×は重量減少
量が 0.200%以上であることを示している。表3から、
ジルコニアを主原料とする供試材Z01、Z02は、ア
ルミナを主原料とする供試材A01、チタニアを主原料
とする供試材T01、T02に比べて耐食性が優れてい
ることが分かる。
(Dissolution test 2) To compare the corrosion resistance of a test material using zirconia as a main material, the corrosion resistance of a test material using alumina as a main material, and the corrosion resistance of a test material using titania as a main material. Materials Z01, Z with high zirconia content
02, the test material A01 having a high alumina content, and T01 and T02 having a high titania content were combined with 1.0% of 60 ° C.
After standing in a NaOH aqueous solution, a 1.0% HNO 3 aqueous solution at 60 ° C., or hot water at 90 ° C. for a predetermined time, the weight loss of the test material was measured. Table 3 shows the test results. In the table, ◎ indicates that the weight loss is less than 0.010%, ○ indicates that the weight loss is 0.010 to 0.200%, and X indicates that the weight loss is 0.200% or more. . From Table 3,
It can be seen that the test materials Z01 and Z02 using zirconia as a main raw material have better corrosion resistance than the test materials A01 and T02 using alumina as a main raw material and the test materials T01 and T02 using titania as a main raw material.

【0011】[0011]

【表3】 [Table 3]

【0012】(溶出試験3)ジルコニアを主原料とする
供試材の耐食性と、アルミナを主原料とする供試材の耐
食性と、チタニアを主原料とする供試材の耐食性とを比
較すべく、ジルコニアの含有量が多い供試材Z01、Z
02と、アルミナの含有量が多い供試材A01と、チタ
ニアの含有量が多い供試材T01、T02とを、60℃の
1.0 % NaOH水溶液、または60℃の1.0 % HNO3 水溶
液、または90℃の熱水中に所定時間静置した後、ICP
発光分析により、不純物をも含む酸化物の溶出量を測定
した。試験結果を表4に示す。表中、◎は溶出量が0.01
0 %未満であることを示し、○は溶出量が0.010 〜 0.2
00%であることを示し、×は溶出量が 0.200%以上であ
ることを示している。表4から、ジルコニアを主原料と
する供試材Z01、Z02は、アルミナを主原料とする
供試材A01、チタニアを主原料とする供試材T01、
T02に比べて耐食性が優れていることが分かる。
(Dissolution test 3) In order to compare the corrosion resistance of a test material using zirconia as a main material, the corrosion resistance of a test material using alumina as a main material, and the corrosion resistance of a test material using titania as a main material. Materials Z01, Z with high zirconia content
02, a test material A01 having a large content of alumina, and test materials T01 and T02 having a large content of titania at 60 ° C.
After leaving it in a 1.0% NaOH aqueous solution, a 1.0% HNO 3 aqueous solution at 60 ° C., or hot water at 90 ° C. for a predetermined time, the ICP
The amount of the oxide including impurities was eluted by emission analysis. Table 4 shows the test results. In the table, ◎ means the elution amount is 0.01
0 means less than 0%.
X indicates that the elution amount is 0.200% or more. From Table 4, the test materials Z01 and Z02 using zirconia as the main raw material are the test materials A01 using alumina as the main material, the test materials T01 using titania as the main material,
It turns out that corrosion resistance is excellent compared with T02.

【0013】[0013]

【表4】 [Table 4]

【0014】以上の実施例から、97.0重量%以上のジル
コニアを含むセラミック多孔質膜をセラミック多孔質支
持体の表面に形成することにより、耐食性に優れたセラ
ミック分離膜が得られることが分かる。
The above examples show that a ceramic separation membrane having excellent corrosion resistance can be obtained by forming a ceramic porous membrane containing 97.0% by weight or more of zirconia on the surface of a ceramic porous support.

【0015】[0015]

【効果】以上説明したごとく、本発明に係るセラミック
分離膜は、セラミック多孔質膜が97.0重量%以上のジル
コニアを含むので、耐食性に優れている。セラミック多
孔質膜の平均細孔径を0.06μm 以上0.2 μm 以下とする
ことにより、耐食性にすぐれ、且つ実用的な透過流束値
を有する無菌濾過膜が得られる。
As described above, the ceramic separation membrane according to the present invention is excellent in corrosion resistance because the ceramic porous membrane contains 97.0% by weight or more of zirconia. By setting the average pore diameter of the ceramic porous membrane to 0.06 μm or more and 0.2 μm or less, a sterile filtration membrane having excellent corrosion resistance and having a practical permeation flux value can be obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−124435(JP,A) 特開 平3−155776(JP,A) 特開 平2−126924(JP,A) 特開 平4−26572(JP,A) 特開 平4−314851(JP,A) 特開 平2−111669(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 71/02 C04B 35/48 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-124435 (JP, A) JP-A-3-155776 (JP, A) JP-A-2-126924 (JP, A) JP-A-4-124 26572 (JP, A) JP-A-4-314851 (JP, A) JP-A-2-111669 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 71/02 C04B 35 / 48

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1又は複数層のセラミック多孔質支持体
の表面に、支持体の平均細孔径より小さい平均細孔径を
有するセラミック多孔質膜が形成され、セラミック多孔
質膜は、97.0重量%以上のジルコニアを含むことを特徴
とするセラミック分離膜。
1. A ceramic porous membrane having an average pore diameter smaller than the average pore diameter of a support is formed on the surface of one or more layers of a ceramic porous support, and the ceramic porous membrane is 97.0% by weight or more. A ceramic separation membrane characterized by containing zirconia.
【請求項2】 セラミック多孔質膜の平均細孔径は0.06
μm 以上0.2 μm 以下であることを特徴とする請求項1
に記載のセラミック分離膜。
2. The ceramic porous membrane has an average pore diameter of 0.06.
2. The method according to claim 1, wherein the thickness is not less than μm and not more than 0.2 μm.
3. The ceramic separation membrane according to 1.).
JP20017893A 1993-07-21 1993-07-21 Ceramic separation membrane Expired - Fee Related JP3304526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20017893A JP3304526B2 (en) 1993-07-21 1993-07-21 Ceramic separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20017893A JP3304526B2 (en) 1993-07-21 1993-07-21 Ceramic separation membrane

Publications (2)

Publication Number Publication Date
JPH0739732A JPH0739732A (en) 1995-02-10
JP3304526B2 true JP3304526B2 (en) 2002-07-22

Family

ID=16420096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20017893A Expired - Fee Related JP3304526B2 (en) 1993-07-21 1993-07-21 Ceramic separation membrane

Country Status (1)

Country Link
JP (1) JP3304526B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759664B2 (en) * 2005-06-17 2011-08-31 独立行政法人産業技術総合研究所 Hydrogen separation membrane and hydrogen separation method
JP2007254222A (en) * 2006-03-24 2007-10-04 Ngk Insulators Ltd Porous ceramic film, ceramic filter and its manufacturing method
CN112044285A (en) * 2020-08-21 2020-12-08 华南理工大学 High-flux ceramic filtering membrane and preparation method thereof

Also Published As

Publication number Publication date
JPH0739732A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
US9714185B2 (en) Refractory object, glass overflow forming block, and process for glass object manufacture
JP3035582B2 (en) Alumina sintered body
WO2010107678A1 (en) Sintering support and methods
JPS638071B2 (en)
JP3304526B2 (en) Ceramic separation membrane
US10494308B2 (en) Melted magnesium aluminate grain rich in magnesium
EP0506475A2 (en) Aluminium titanate structure and process for producing the same
JP2968539B2 (en) Method for manufacturing aluminum nitride structure
JPH0534306B2 (en)
JPS58145659A (en) Sinterable fluorite oxide ceramic
JP3766773B2 (en) Zirconia ceramics and process for producing the same
US20030146151A1 (en) Sintered magnesium oxide filter
JPH08319582A (en) Insulating ceramics film on surface of metal and its formation
JP2003246676A (en) Sialon ceramic porous body and manufacturing method thereof
JP3223267B2 (en) Oxide sintered body of fluorite type or derivative thereof and method for producing the same
JP3057312B2 (en) Ceramic porous body for filtration and separation
JP3057313B2 (en) Ceramic porous membrane and method for producing the same
JPH0521605B2 (en)
JPS61242956A (en) High tenacity ceramic alloy
JPH0469105B2 (en)
JPS59190271A (en) Silicon nitride sintered body and manufacture
JP4255671B2 (en) Electronic component firing jig
JP2579333B2 (en) Ceramic composition
WO2022090975A1 (en) Process of manufacture of non-oxide ceramic filtration membrane
JP3007370B2 (en) Silicon oxynitride based sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees