JP3303606B2 - Method of forming multilayer thin film - Google Patents

Method of forming multilayer thin film

Info

Publication number
JP3303606B2
JP3303606B2 JP14703595A JP14703595A JP3303606B2 JP 3303606 B2 JP3303606 B2 JP 3303606B2 JP 14703595 A JP14703595 A JP 14703595A JP 14703595 A JP14703595 A JP 14703595A JP 3303606 B2 JP3303606 B2 JP 3303606B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
holder
forming
multilayer thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14703595A
Other languages
Japanese (ja)
Other versions
JPH08339964A (en
Inventor
敏明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14703595A priority Critical patent/JP3303606B2/en
Publication of JPH08339964A publication Critical patent/JPH08339964A/en
Application granted granted Critical
Publication of JP3303606B2 publication Critical patent/JP3303606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄膜太陽電池などの製
造のために複数の真空反応室でのプラズマCVD法など
によって行う多層薄膜の成膜方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a multilayer thin film by a plasma CVD method in a plurality of vacuum reaction chambers for manufacturing a thin film solar cell or the like.

【0002】[0002]

【従来の技術】従来の多層薄膜の成膜は、基板を装着し
た導電性サセプタ(保持体)を一つの電極とし、これに
対向させた高電圧電極に高電圧を印加して真空反応室で
放電を起こし、プラズマCVDもしくはスパッタにより
薄膜を基板上に堆積していた。図2は従来のアモルファ
スシリコン(a−Si)太陽電池製造用成膜装置を示
し、搬入室11と搬出室16の間にはさまれた四つの真
空反応室12ないし15で多層薄膜を成膜する。反応室
12は、透明電極を形成したガラス基板1の上にプラズ
マCVDによりp形のアモルファスシリコンオキサイド
あるいはp形のアモルファスシリコンカーバイトを成膜
する室である。反応室13は、プラズマCVDによりi
質a−Siを成膜する室である。反応室14は、プラズ
マCVDによりn形a−Siを成膜する室である。反応
室15はスパッタにより金属電極を成膜する室である。
ガラス基板1は、ステンレス鋼などよりなる導電性のサ
セプタ2の上に絶縁材21を介して装着し、ゲートバル
ブ17を開いて搬入室11の基板台18の上に置き、各
室を真空排気してから各室間のゲートバルブ17を開閉
して各反応室12〜15のヒータ31で加熱される支持
台3上にサセプタ2ごと順次移動させる。プラズマCV
D室12,13,14では、高周波電極4に接続された
高電圧電極5に電圧を印加して室によって異なる反応ガ
ス中にプラズマを発生させる。スパッタ室15では、高
周波電源4に接続されたAgあるいはAlなどのターゲ
ット6に高電圧を印加してスパッタリングさせる。成膜
を終った基板1をサセプタごと搬出室16へ移動し、真
空を破ったのちゲートバルブ17を開いて外部に取出
す。基板1を各反応室12〜15の間を移動させるとき
には真空を破ることがないので、界面の良好な多層薄膜
が成膜できる。
2. Description of the Related Art Conventionally, in forming a multilayer thin film, a conductive susceptor (holding body) on which a substrate is mounted is used as one electrode, and a high voltage is applied to a high-voltage electrode opposed to the electrode to form a multilayer in a vacuum reaction chamber. Discharge occurred, and a thin film was deposited on the substrate by plasma CVD or sputtering. FIG. 2 shows a conventional film forming apparatus for manufacturing an amorphous silicon (a-Si) solar cell, in which a multilayer thin film is formed in four vacuum reaction chambers 12 to 15 sandwiched between a loading chamber 11 and a loading chamber 16. I do. The reaction chamber 12 is a chamber for forming a p-type amorphous silicon oxide or a p-type amorphous silicon carbide on a glass substrate 1 on which a transparent electrode is formed by plasma CVD. The reaction chamber 13 is made i
This is a chamber for depositing quality a-Si. The reaction chamber 14 is a chamber for forming an n-type a-Si film by plasma CVD. The reaction chamber 15 is a chamber for forming a metal electrode by sputtering.
The glass substrate 1 is mounted on a conductive susceptor 2 made of stainless steel or the like via an insulating material 21, a gate valve 17 is opened, and the glass substrate 1 is placed on a substrate table 18 of a loading chamber 11. Then, the gate valve 17 between the chambers is opened and closed to sequentially move the susceptor 2 together with the susceptor 2 onto the support 3 heated by the heater 31 in each of the reaction chambers 12 to 15. Plasma CV
In the D chambers 12, 13, and 14, a voltage is applied to the high-voltage electrode 5 connected to the high-frequency electrode 4 to generate plasma in a different reaction gas depending on the chamber. In the sputtering chamber 15, a high voltage is applied to a target 6 such as Ag or Al connected to the high-frequency power supply 4 to perform sputtering. The substrate 1 on which the film formation has been completed is moved together with the susceptor to the carry-out chamber 16, and after breaking the vacuum, the gate valve 17 is opened and taken out. Since the vacuum is not broken when the substrate 1 is moved between the reaction chambers 12 to 15, a multilayer thin film having a good interface can be formed.

【0003】[0003]

【発明が解決しようとする課題】このようにして成膜さ
れた薄膜の特性は、基板に入射するイオンに影響され
る。しかし、基板に入射するイオンの量やエネルギー
は、電極形状や圧力、反応ガスの種類などで決まり、放
電状態と独立に制御することができなかった。そこで、
一つの真空反応室だけをもつ成膜装置では、導電性基板
に外部から電圧導入端子により、例えば100Vの直流
バイアス電圧を印加して基板に入射するイオンの量やエ
ネルギーを制御することが試みられてきた。しかし、図
2のように複数の真空反応室を導電性基板が移動する多
層薄膜成膜装置では、真空反応室を移動するごとに導電
性端子の基板への取り外し、取付けを真空中で行う必要
があり、基板への直流バイアス電圧の印加が困難であっ
た。また、10-8〜10-11 S/cmの低い導電率をも
つa−Siなどの膜を基板に堆積した後は、基板の露出
面に導電性端子を接触させても電気的接続をとることが
できない問題があった。さらに、基板およびサセプタが
ヒータにより高温になるため、基板への電気的接続が不
安定になる問題があった。
The characteristics of the thin film thus formed are affected by ions incident on the substrate. However, the amount and energy of ions incident on the substrate are determined by the electrode shape and pressure, the type of reaction gas, and the like, and cannot be controlled independently of the discharge state. Therefore,
In a film forming apparatus having only one vacuum reaction chamber, it has been attempted to control the amount and energy of ions incident on the conductive substrate by applying a DC bias voltage of, for example, 100 V to the conductive substrate from the outside through a voltage introducing terminal. Have been. However, in a multilayer thin film forming apparatus in which a conductive substrate moves in a plurality of vacuum reaction chambers as shown in FIG. 2, it is necessary to remove and attach the conductive terminals to and from the substrate every time the vacuum reaction chamber moves. And it was difficult to apply a DC bias voltage to the substrate. After depositing a film of a-Si or the like having a low conductivity of 10 -8 to 10 -11 S / cm on the substrate, electrical connection is established even when a conductive terminal is brought into contact with the exposed surface of the substrate. There was a problem that could not be done. Furthermore, since the substrate and the susceptor are heated by the heater, there has been a problem that the electrical connection to the substrate becomes unstable.

【0004】本発明の目的は、上述の問題を解決し、基
板に安定した直流バイアス電源を印加して基板に入射す
るイオンの量やエネルギーを制御し、所期の特性をもつ
薄膜を積層することのできる多層薄膜の成膜方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, control the amount and energy of ions incident on the substrate by applying a stable DC bias power to the substrate, and stack thin films having desired characteristics. It is an object of the present invention to provide a method for forming a multilayer thin film that can be performed.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、被成膜基板を導電性保持体上に装着し、複数の真
空反応室を通過させ、各反応室で導電性保持体と対向す
る電極との間に高周波電圧を印加し、所定の温度に加熱
された基板上に順次薄膜を堆積する多層薄膜の成膜方法
において、請求項1記載の第一の本発明は、基板を絶縁
体を介して保持体上に装着し、保持体上に耐高温直流電
源を備え、基板と保持体との間に所定の直流バイアス電
圧を印加しながら保持体を各反応室を通過させるものと
する。また、請求項2記載の第二の本発明は、互いに絶
縁された複数の基板を絶縁体を介して保持体上に装着
し、保持体上に耐高温直流電源を備え、基板間に所定の
直流バイアス電圧を印加しながら保持体を各反応室を通
過させるものとする。いずれの場合も、真空反応室内で
基板と対向電極との間に放電を発生させてプラズマCV
Dにより基板上に薄膜を堆積することが有効である。耐
高温直流電源に蓄電池を用いることも良く、特に固体電
解質蓄電池を用いることが良い。耐高温直流電源に太陽
電池を用いることが良く、特にa−Si太陽電池を用い
ることが良い。耐高温直流電源に熱電気発電器を用いる
ことも良く、特にその熱電材料に半導体を用いることが
良い。
In order to achieve the above object, a substrate on which a film is to be formed is mounted on a conductive holder and passed through a plurality of vacuum reaction chambers. In a method for forming a multilayer thin film in which a high-frequency voltage is applied between opposing electrodes and a thin film is sequentially deposited on a substrate heated to a predetermined temperature, the first present invention according to claim 1 includes the steps of: Mounted on a holder via an insulator, equipped with a high temperature resistant DC power supply on the holder, and passing the holder through each reaction chamber while applying a predetermined DC bias voltage between the substrate and the holder. And According to a second aspect of the present invention, a plurality of substrates insulated from each other are mounted on a holder via an insulator, a high-temperature resistant DC power supply is provided on the holder, and a predetermined The holder is passed through each reaction chamber while applying a DC bias voltage. In any case, a discharge is generated between the substrate and the counter electrode in the vacuum reaction chamber to generate the plasma CV.
It is effective to deposit a thin film on the substrate by D. It is also preferable to use a storage battery for the high-temperature resistant DC power supply, and particularly to use a solid electrolyte storage battery. A solar cell is preferably used as the high-temperature resistant DC power supply, and an a-Si solar cell is particularly preferably used. It is also preferable to use a thermoelectric generator as the high-temperature resistant DC power supply, and particularly to use a semiconductor as the thermoelectric material.

【0006】[0006]

【作用】保持体上に耐高温直流電源を備え、その電源を
絶縁体を介して被成膜基板を装着した保持体および対向
電極の間あるいは保持体上に互いに絶縁して装着した複
数の被成膜基板間に基板に入射するイオンを制御する直
流バイアス電圧を印加すれば、保持体および基板をその
状態のまま各真空反応室を通過させながら各真空反応室
において成膜する薄膜の膜質が制御される。入射するイ
オンの制御による膜質の制御は、プラズマCVDによる
成膜の際に有効であることが知られている。耐高温直流
電源には、蓄電池、特に130℃程度までの温度に耐え
る固体電解質蓄電池を用いる。あるいは、太陽電池、特
に製造の際に200℃程度の温度を用いるa−Si太陽
電池、熱電気発電器、特にその熱電材料に半導体を用い
ることにより熱起電力が高く、材料により250℃から
1100℃までの温度に耐える熱電気発電器を用いる。
A high-temperature resistant DC power supply is provided on the holder, and the power supply is provided between the holder on which the film-forming substrate is mounted via the insulator and the counter electrode, or on a plurality of substrates mounted insulated from each other on the holder. When a DC bias voltage for controlling ions incident on the substrate is applied between the film forming substrates, the film quality of the thin film formed in each vacuum reaction chamber while passing the holder and the substrate in each vacuum reaction chamber while maintaining the state is maintained. Controlled. It is known that control of film quality by controlling incident ions is effective in film formation by plasma CVD. A storage battery, particularly a solid electrolyte storage battery that can withstand temperatures up to about 130 ° C., is used as the high-temperature resistant DC power supply. Alternatively, a solar cell, particularly an a-Si solar cell using a temperature of about 200 ° C. during manufacturing, a thermoelectric generator, and particularly a semiconductor having a high thermoelectromotive force by using a semiconductor as its thermoelectric material, has a high thermoelectromotive force from 250 ° C. to 1100 Use a thermoelectric generator that can withstand temperatures up to ° C.

【0007】[0007]

【実施例】以下、図2と共通の部分に同一の符号を付し
た図を引用して本発明の実施例について述べる。図1は
本発明の一実施例のa−Si太陽電池製造用多層薄膜の
成膜方法を示す。図2と同様搬入室11と搬出室16の
間にプラズマCVDを行う真空反応室12、13、14
およびスパッタリングを行う真空反応室15を備える。
絶縁材21を介して基板1を装着した導電性サセプタ2
は、図2と同様に各室11ないし16を通じて移動する
が、サセプタ2上に直流電源7が設置されている。この
直流電源7の一方の端子は接地された支持台3と同電位
のサセプタ2に、他方の端子は基板1にそれぞれバイア
スポート8を介して接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in which parts common to those in FIG. FIG. 1 shows a method for forming a multilayer thin film for manufacturing an a-Si solar cell according to one embodiment of the present invention. Vacuum reaction chambers 12, 13, and 14 for performing plasma CVD between the loading chamber 11 and the unloading chamber 16 as in FIG.
And a vacuum reaction chamber 15 for performing sputtering.
Conductive susceptor 2 on which substrate 1 is mounted via insulating material 21
Moves through the respective chambers 11 to 16 as in FIG. 2, but a DC power supply 7 is installed on the susceptor 2. One terminal of the DC power supply 7 is connected to the susceptor 2 having the same potential as the grounded support 3, and the other terminal is connected to the substrate 1 via the bias port 8.

【0008】そして、直流電源7により、基板に入射す
るイオンの量やエネルギーが最適になるように予め選ん
だ例えば5V程度のバイアス電圧を印加する。例えば、
a−Si系半導体をプラズマCVDで成膜する際、基板
温度を200℃程度に上げるため、サセプタ2は支持台
3のヒータ31により加熱されるので、直流電源7は耐
高温性であることを要する。
Then, a bias voltage of, for example, about 5 V, which is previously selected, is applied by the DC power supply 7 so that the amount and energy of ions incident on the substrate are optimized. For example,
When forming an a-Si based semiconductor by plasma CVD, the susceptor 2 is heated by the heater 31 of the support base 3 to raise the substrate temperature to about 200 ° C., so that the DC power supply 7 has high temperature resistance. It costs.

【0009】図3に示す本発明の別の実施例では、サセ
プタ2の上の絶縁材21を介して2枚の基板を41,5
1を装着し、耐高温直流電源7により両基板間に直流バ
イアス電圧を印加する。これにより、放電を発生させる
高電圧電極5とサセプタ2に対して基板41、51を電
位的に浮かせた状態で、各基板に入射するイオンの制御
を行うことができる。
In another embodiment of the present invention shown in FIG. 3, two substrates 41, 5 are interposed via an insulating material 21 on a susceptor 2.
1 is mounted, and a DC bias voltage is applied between the two substrates by the high temperature resistant DC power supply 7. This makes it possible to control the ions incident on each substrate in a state where the substrates 41 and 51 are floated with respect to the high-voltage electrode 5 and the susceptor 2 that generate electric discharge.

【0010】図4ないし図6には種々の耐高温直流電源
を用いた実施例を示す。図4に示した実施例では、耐高
温直流電源に高温に耐える蓄電池71を用いている。耐
高温蓄電池71としては、85℃以下では塩化チオニー
ル・リチウム電池でよいが、それ以上の高温ではよう化
リチウム固体電界質電池、130℃程度ではポリエチレ
ンオキサイド、LiFCO3 固体電界質電池などの固体
電界質蓄電池を用いる。
FIGS. 4 to 6 show embodiments using various high-temperature resistant DC power supplies. In the embodiment shown in FIG. 4, a storage battery 71 that can withstand high temperatures is used for a high-temperature resistant DC power supply. The high temperature resistant storage battery 71 may be a lithium thionyl chloride battery at a temperature of 85 ° C. or lower, but a solid electric field battery such as a lithium iodide solid electrolyte battery at a higher temperature and a polyethylene oxide or LiFCO 3 solid electrolyte battery at about 130 ° C. Use a quality storage battery.

【0011】図5に示した実施例では、耐高温直流電源
に200℃以上の温度で製造されるa−Si太陽電池7
2を用いている。太陽電池72の裏面は負電極なってお
りサセプタ2と接触している。基板としては、ガラス板
42の上に透明電極43をつけたものを用いている。こ
の透明電極43がバイアスポート8により太陽電池72
の表面の正電極と接続される。この場合、ガラス板42
が絶縁物を兼ねる。プラズマの発光を光源として基板7
を透過した光により太陽電池が発電して耐高温直流電源
として働く。太陽電池72の大きさを基板51と同じも
しくは小さくすれば、太陽電池72の表面に薄膜があま
り形成されることなく、太陽電池72を繰り返し利用す
ることができる。
In the embodiment shown in FIG. 5, an a-Si solar cell 7 manufactured at a temperature of 200.degree.
2 is used. The back surface of the solar cell 72 is a negative electrode and is in contact with the susceptor 2. As the substrate, a substrate having a transparent electrode 43 provided on a glass plate 42 is used. The transparent electrode 43 is connected to the solar cell 72 by the bias port 8.
Is connected to the positive electrode on the surface. In this case, the glass plate 42
Also serves as an insulator. Substrate 7 using plasma emission as light source
The solar cell generates electric power by the light transmitted through it and works as a high-temperature resistant DC power supply. If the size of the solar cell 72 is the same as or smaller than the substrate 51, the solar cell 72 can be repeatedly used without forming a thin film on the surface of the solar cell 72.

【0012】図6に示した実施例では、耐高温直流電源
に熱電気発電器73を用いている。熱電気発電器は、異
種の半導体または導体をその両端で接合し、接合点問に
温度等を与えたときの熱電効果を利用して発電する装置
である。基板1は、p形半導体などの正極用熱電材料7
4に接続され、サセプタ5はn形半導体などの負極用熱
電材料75とバイアスポート8により接続されている。
正極用熱電材料74と負極用熱電材料75の他側の接合
部はヒータ3で加熱されるサセプタ2に接触することに
より高温になるため、基板1とサセプタ2の間に直流バ
イアス電圧が印加される。正極用電熱材料74あるいは
負極用熱電材料75に用いられる熱電能の大きい半導体
としては、Bi2 Te3 、Bi2 (Te・Se)3 、B
i、Ge、Te、Bi88Sb12、Sb2 Te3 、B
3 、Se2 、PbTe、Cu1.97Ag0.03
1.0045、GeTe、Ge3 Si7 、FeSi、α−A
lB12などがあげられ、これらを単独もしくは混合物と
して用いる。従来熱電対の材料によく用いられる物質の
Ptに対する熱電能は、コンスタンタンで−35.0μ
V/K、アルメルで−12.9μV/K、Cuで+7.
7μV/K、クロメルで+28.1μV/K、である。
これに対して、上記半導体のPtに対する熱電能は、例
えば、Bi2 (Te・Se)3 で−184μV/K、n
形Bi2 Te3 で−166μV/K、p形Bi2 Te3
で+243μV/K、Geで339μV/K、Teで+
448μV/Kで、1桁から2桁従来の熱電対材料に対
して大きい。そして例えばBiTe系材料は250℃、
PbTe系材料は600℃、GeSi系材料は1100
℃まで使用可能であり、必要に応じて複数対を直列接続
することにより、耐高温直流電源として使用可能な起電
力を得られる。
In the embodiment shown in FIG. 6, a thermoelectric generator 73 is used as a high-temperature resistant DC power supply. A thermoelectric generator is a device in which different types of semiconductors or conductors are joined at both ends thereof, and power is generated using a thermoelectric effect when a temperature or the like is applied to a junction. The substrate 1 is made of a thermoelectric material 7 for a positive electrode such as a p-type semiconductor.
The susceptor 5 is connected to a thermoelectric material 75 for a negative electrode such as an n-type semiconductor via a bias port 8.
The junction on the other side of the thermoelectric material 74 for the positive electrode and the thermoelectric material 75 for the negative electrode is heated by contacting the susceptor 2 heated by the heater 3, so that a DC bias voltage is applied between the substrate 1 and the susceptor 2. You. Semiconductors having high thermoelectric power used for the positive electrode electrothermal material 74 or the negative electrode thermoelectric material 75 include Bi 2 Te 3 , Bi 2 (Te.Se) 3 ,
i, Ge, Te, Bi 88 Sb 12 , Sb 2 Te 3 , B
i 3 , Se 2 , PbTe, Cu 1.97 Ag 0.03 S
e 1.0045 , GeTe, Ge 3 Si 7 , FeSi, α-A
such lB 12 and the like, using these alone or as a mixture. The thermoelectric power for Pt of a substance often used as a material of a conventional thermocouple is −35.0 μm in constantan.
V / K, -12.9 μV / K for Alumel, +7 for Cu.
7 μV / K and +28.1 μV / K for chromel.
On the other hand, the thermoelectric power for Pt of the semiconductor is, for example, −184 μV / K for Bi 2 (Te · Se) 3 , n
-166μV / K in the form Bi 2 Te 3, p-type Bi 2 Te 3
+243 μV / K for Ge, 339 μV / K for Ge, +
448 μV / K, one to two orders of magnitude higher than conventional thermocouple materials. And, for example, BiTe-based material is 250 ° C.
PbTe-based material is 600 ° C., GeSi-based material is 1100
° C, and an electromotive force usable as a high-temperature resistant DC power supply can be obtained by connecting a plurality of pairs in series as needed.

【0013】[0013]

【発明の効果】被成膜基板の保持体上に耐高温直流電源
を備えたことにより、基板を加熱した状態で、直流バイ
アス印加のための接続を外すことなく、基板を保持体と
共に真空中で各反応室間を移動することが可能となっ
た。これにより、放電を利用した複数の真空反応室を備
えた多層薄膜成膜装置の各室で、基板に直流バイアス電
圧を印加することが可能となり、基板に入射するイオン
の量やエネルギーの制御して薄膜膜質の改善が可能とな
った。
According to the present invention, a high-temperature DC power supply is provided on a holder for a substrate on which a film is to be formed, so that the substrate can be held together with the holder in a vacuum with the substrate heated without disconnecting the connection for applying a DC bias. It became possible to move between each reaction chamber. This makes it possible to apply a DC bias voltage to the substrate in each chamber of the multilayer thin film deposition apparatus having a plurality of vacuum reaction chambers utilizing discharge, thereby controlling the amount and energy of ions incident on the substrate. Thus, the quality of the thin film can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の本発明の多層薄膜の成膜方法を実施でき
るa−Si太陽電池製造装置の断面図
FIG. 1 is a cross-sectional view of an a-Si solar cell manufacturing apparatus capable of performing a method for forming a multilayer thin film according to the first invention.

【図2】従来のa−Si太陽電池製造装置の断面図FIG. 2 is a cross-sectional view of a conventional a-Si solar cell manufacturing apparatus.

【図3】第二の本発明のを実施例の多層薄膜の成膜方法
に用いられるサセプタ部の断面図
FIG. 3 is a sectional view of a susceptor used in a method for forming a multilayer thin film according to a second embodiment of the present invention;

【図4】第一の本発明の実施例の多層薄膜の成膜方法に
用いられるサセプタ部の一例の断面図
FIG. 4 is a sectional view of an example of a susceptor used in the method for forming a multilayer thin film according to the first embodiment of the present invention;

【図5】第一の本発明の実施例の多層薄膜の成膜方法に
用いられるサセプタ部の他の例の断面図
FIG. 5 is a sectional view of another example of the susceptor used in the method for forming a multilayer thin film according to the first embodiment of the present invention;

【図6】第一の本発明の実施例の多層薄膜の成膜方法に
用いられるサセプタ部の他の例の断面図
FIG. 6 is a sectional view of another example of the susceptor used in the method for forming a multilayer thin film according to the first embodiment of the present invention;

【符号の説明】[Explanation of symbols]

1、41、51 基板 2 サセプタ 21 絶縁材 3 支持台 31 ヒータ 4 高周波電源 5 高電圧電源 6 ターゲット 7 耐高温直流電源 8 バイアスポート 11 搬入室 12、13、14 プラズマCVD室 15 スパッタ室 16 搬出室 17 ゲートバルブ 42 ガラス板 43 透明電極 71 耐高温蓄電池 72 太陽電池 73 熱電気発電器 DESCRIPTION OF SYMBOLS 1, 41, 51 Substrate 2 Susceptor 21 Insulating material 3 Support base 31 Heater 4 High frequency power supply 5 High voltage power supply 6 Target 7 High temperature resistant DC power supply 8 Bias port 11 Loading chamber 12, 13, 14 Plasma CVD chamber 15 Sputtering chamber 16 Loading chamber 17 Gate valve 42 Glass plate 43 Transparent electrode 71 High temperature resistant storage battery 72 Solar cell 73 Thermoelectric generator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−65120(JP,A) 特開 平6−267861(JP,A) 特開 昭60−149119(JP,A) 特開 平6−41757(JP,A) 特開 昭63−162874(JP,A) 特開 昭62−229841(JP,A) 特開 平1−103828(JP,A) 特開 平5−63223(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/50 C23C 16/54 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-65120 (JP, A) JP-A-6-267861 (JP, A) JP-A-60-149119 (JP, A) JP-A-6-149119 41757 (JP, A) JP-A-63-162874 (JP, A) JP-A-62-29841 (JP, A) JP-A-1-103828 (JP, A) JP-A-5-63223 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/205 C23C 16/50 C23C 16/54

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被成膜基板を保持体上に装着し、複数の真
空反応室を通過させ、各反応室内で保持体と対向する電
極との間に高周波電圧を印加して所定の温度に加熱され
た基板上に順次薄膜を堆積する多層薄膜の成膜方法にお
いて、基板を絶縁体を介して保持体上に装着し、保持体
上に耐高温直流電源を備え、基板と保持体との間に所定
の直流バイアス電圧を印加しながら保持体を各反応室を
通過させることを特徴とする多層薄膜の成膜方法。
1. A substrate on which a film is to be formed is mounted on a holder, passed through a plurality of vacuum reaction chambers, and a high-frequency voltage is applied between the holder and an opposing electrode in each reaction chamber to reach a predetermined temperature. In a method for forming a multilayer thin film in which thin films are sequentially deposited on a heated substrate, the substrate is mounted on a holder via an insulator, a high-temperature DC power supply is provided on the holder, and the substrate and the holder are connected to each other. A method for forming a multilayer thin film, wherein a holder is passed through each reaction chamber while a predetermined DC bias voltage is applied therebetween.
【請求項2】被成膜基板を保持体上に装着し、複数の真
空反応室を通過させ、各反応室内で保持体と対向する電
極との間に高周波電圧を印加して所定の温度に加熱され
た基板上に順次薄膜を堆積する多層薄膜の成膜方法にお
いて、互いに絶縁された複数の基板を絶縁体を介して保
持体上に装着し、保持体上に耐高温直流電源を備え、基
板間に所定の直流バイアス電圧を印加しながら保持体を
各反応室を通過させることを特徴とする多層薄膜の成膜
方法。
2. A substrate on which a film is to be formed is mounted on a holder, passed through a plurality of vacuum reaction chambers, and a high-frequency voltage is applied between the holder and an opposing electrode in each reaction chamber to reach a predetermined temperature. In a multilayer thin film deposition method of sequentially depositing a thin film on a heated substrate, a plurality of substrates that are insulated from each other are mounted on a holder via an insulator, and a high-temperature resistant DC power supply is provided on the holder, A method for forming a multilayer thin film, comprising: passing a holder through each reaction chamber while applying a predetermined DC bias voltage between substrates.
【請求項3】真空反応室内で基板と対向電極との間に放
電を発生させてプラズマCVDにより基板上に薄膜を堆
積する請求項1あるいは2記載の多層薄膜の成膜方法。
3. The method according to claim 1, wherein a discharge is generated between the substrate and the counter electrode in the vacuum reaction chamber to deposit the thin film on the substrate by plasma CVD.
【請求項4】耐高温直流電源に蓄電池を用いる請求項1
ないし3のいずれかに記載の多層薄膜の成膜方法。
4. A storage battery is used as a high-temperature resistant DC power supply.
4. The method for forming a multilayer thin film according to any one of items 3 to 3.
【請求項5】固体電解質蓄電池を用いる請求項4記載の
多層薄膜の成膜方法。
5. The method for forming a multilayer thin film according to claim 4, wherein a solid electrolyte storage battery is used.
【請求項6】耐高温直流電源に太陽電池を用いる請求項
1ないし3のいずれかに記載の多層薄膜の成膜方法。
6. The method for forming a multilayer thin film according to claim 1, wherein a solar cell is used as a high temperature resistant DC power supply.
【請求項7】アモルファスシリコン太陽電池を用いる請
求項6記載の多層薄膜の成膜方法。
7. The method according to claim 6, wherein an amorphous silicon solar cell is used.
【請求項8】耐高温直流電源に熱電気発電器を用いる請
求項1ないし3のいずれかに記載の多層薄膜の成膜方
法。
8. The method for forming a multilayer thin film according to claim 1, wherein a thermoelectric generator is used as a high-temperature resistant DC power supply.
【請求項9】熱電気発電器の熱電材料に半導体を用いる
請求項8記載の多層薄膜の成膜方法。
9. The method according to claim 8, wherein a semiconductor is used as a thermoelectric material of the thermoelectric generator.
JP14703595A 1995-06-14 1995-06-14 Method of forming multilayer thin film Expired - Fee Related JP3303606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14703595A JP3303606B2 (en) 1995-06-14 1995-06-14 Method of forming multilayer thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14703595A JP3303606B2 (en) 1995-06-14 1995-06-14 Method of forming multilayer thin film

Publications (2)

Publication Number Publication Date
JPH08339964A JPH08339964A (en) 1996-12-24
JP3303606B2 true JP3303606B2 (en) 2002-07-22

Family

ID=15421058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14703595A Expired - Fee Related JP3303606B2 (en) 1995-06-14 1995-06-14 Method of forming multilayer thin film

Country Status (1)

Country Link
JP (1) JP3303606B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325141B1 (en) * 2012-03-02 2013-11-06 최대규 Apparatus and method for processing of material
JP6380158B2 (en) * 2015-02-20 2018-08-29 株式会社島津製作所 manufacturing device
CN107658366A (en) * 2016-07-26 2018-02-02 福建钧石能源有限公司 The film plating process and PVD support plates and coating apparatus of a kind of hetero-junction solar cell
CN110998869B (en) * 2017-08-09 2022-12-27 株式会社钟化 Method for manufacturing photoelectric conversion element

Also Published As

Publication number Publication date
JPH08339964A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
US4226897A (en) Method of forming semiconducting materials and barriers
US6245648B1 (en) Method of forming semiconducting materials and barriers
US7888240B2 (en) Method of forming phase change memory devices in a pulsed DC deposition chamber
US4328258A (en) Method of forming semiconducting materials and barriers
CN103069569A (en) Variable resistance memory element and fabrication methods
JPS6191974A (en) Heat resisting multijunction type semiconductor element
JPH0449789B2 (en)
JP2616760B2 (en) Plasma gas phase reactor
JP3303606B2 (en) Method of forming multilayer thin film
Bailey et al. High rate amorphous and crystalline silicon formation by pulsed DC magnetron sputtering deposition for photovoltaics
US4670334A (en) Transparent electroconductive film
US5049523A (en) Method of forming semiconducting materials and barriers
US3463715A (en) Method of cathodically sputtering a layer of silicon having a reduced resistivity
Jan et al. Field effect and thermoelectric power on arsenic-doped amorphous silicon
JPS5914633A (en) Plasma cvd apparatus
US11410869B1 (en) Electrostatic chuck with differentiated ceramics
JP2756944B2 (en) Ceramic electrostatic chuck
US5073804A (en) Method of forming semiconductor materials and barriers
JPS58103178A (en) Heat resistant thin film solar battery
Kitagawa et al. Preparation of doped hydrogenated amorphous silicon films by microwave electron‐cyclotron‐resonance plasma discharge deposition
JP2890032B2 (en) Silicon thin film deposition method
JP2987531B2 (en) Liquid crystal display
Webb Formation of thin semiconducting films by magnetron sputtering
JPS63121653A (en) Formation of transparent conductive film
JPH0463551B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees