JP3303370B2 - Depolymerization method of aromatic polyester - Google Patents
Depolymerization method of aromatic polyesterInfo
- Publication number
- JP3303370B2 JP3303370B2 JP32176192A JP32176192A JP3303370B2 JP 3303370 B2 JP3303370 B2 JP 3303370B2 JP 32176192 A JP32176192 A JP 32176192A JP 32176192 A JP32176192 A JP 32176192A JP 3303370 B2 JP3303370 B2 JP 3303370B2
- Authority
- JP
- Japan
- Prior art keywords
- depolymerization
- bht
- pet
- reaction
- aromatic polyester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は芳香族ポリエステルの解
重合方法に関するものである。さらに詳しくは芳香族ポ
リエステル屑をアルキレングリコールで短時間で解重合
反応を行った後、再度高品位な芳香族ポリエステルとし
て再生するための、芳香族ポリエステル屑の解重合方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for depolymerizing an aromatic polyester. More specifically, the present invention relates to a method for depolymerizing aromatic polyester waste for performing a depolymerization reaction of aromatic polyester waste with an alkylene glycol in a short time and then regenerating the aromatic polyester waste again as a high-quality aromatic polyester.
【0002】[0002]
【従来の技術】ポリエチレンテレフタレ−ト(PET)
や、ポリエチレンナフタレ−ト(PEN)などで代表さ
れる芳香族ポリエステル(以下単にポリエステルとい
う)は、優れた力学特性、耐候性、電気絶縁性、耐薬品
性を有しているため、ボトル、フイルム、繊維、その他
の成型品として広く使用されている。2. Description of the Related Art Polyethylene terephthalate (PET)
Aromatic polyesters (hereinafter simply referred to as polyester) represented by polyethylene naphthalate (PEN) and the like have excellent mechanical properties, weather resistance, electrical insulation properties, and chemical resistance. Widely used as film, fiber and other molded products.
【0003】しかしながら、これらのポリエステルは樹
脂の製造段階や成型加工段階で屑が発生したり、製品化
した後においても使用後に廃棄されてしまう場合が多
い。[0003] However, these polyesters often generate debris during the resin production and molding stages, and are often discarded after use even after commercialization.
【0004】そこで従来から、これら屑を回収する方法
が種々検討されている。例えば、PETにメタノ−ルを
添加してジメチルテレフタレ−ト(DMT)とエチレン
グリコール(EG)に分解する方法(特公昭32−80
69号公報、特公昭42−8855号公報など)、PE
TにEGを添加して解重合した後、メタノ−ルを添加し
てDMTを回収する方法(特開昭48−62732号公
報)が開示されている。これらの方法では比較的高品位
の再生PETが得られるものの、回収装置が複雑である
ため経済的に好ましくないなどという問題点があった。
また、PETをEGで解重合する際の解重合時間を短縮
する目的で、PETを特定の条件で解重合する方法(特
開昭60−248646号公報)が開示されているが、
この方法によっても解重合反応時間の改良が不十分など
という問題点があった。Therefore, various methods for collecting these wastes have been conventionally studied. For example, a method in which methanol is added to PET to decompose it into dimethyl terephthalate (DMT) and ethylene glycol (EG) (Japanese Patent Publication No. 32-80)
No. 69, Japanese Patent Publication No. 42-8855, etc.), PE
A method of adding EG to T to depolymerize and then adding methanol to recover DMT (JP-A-48-62732) is disclosed. Although relatively high-quality recycled PET can be obtained by these methods, there is a problem in that it is not economically preferable because the recovery device is complicated.
Further, for the purpose of shortening the depolymerization time when depolymerizing PET with EG, a method of depolymerizing PET under specific conditions (JP-A-60-248646) is disclosed.
This method also has a problem that the depolymerization reaction time is not sufficiently improved.
【0005】[0005]
【発明が解決しようとする課題】本発明の課題は、芳香
族ポリエステル屑の解重合における上記従来技術の問題
点を解消し、特にその解重合のより短時間化によって経
済性を向上させ、しかも再生された芳香族ポリエステル
の軟化点低下を抑制することになる。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art in the depolymerization of aromatic polyester waste, and in particular to improve the economic efficiency by shortening the depolymerization, and This will suppress the lowering of the softening point of the regenerated aromatic polyester.
【0006】[0006]
【課題を解決するための手段】本発明の上記課題は、芳
香族ポリエステルをアルキレングリコールで解重合する
に際して、芳香族ジカルボキシレートおよびその低重合
体を溶融状態で存在させた反応系に、まず芳香族ポリエ
ステルを添加して200〜250℃で解重合反応を行
い、ついでアルキレングリコールを、添加した芳香族ポ
リエステルを構成する酸成分に対して0.5〜5.0倍
モル添加し、さらに200〜250℃で解重合反応を行
うことによって得られた芳香族ジカルボキシレートおよ
びその低重合体の一部を重合反応系に供給することを特
徴とする芳香族ポリエステルの解重合方法によって解決
することができる。The object of the present invention is to provide a reaction system in which an aromatic dicarboxylate and a low polymer thereof are present in a molten state when an aromatic polyester is depolymerized with an alkylene glycol. was added to the aromatic polyesters perform depolymerization reaction at 200 to 250 ° C., then the alkylene glycol, 0.5 to 5.0-fold molar added to acids Ingredients constituting the added aromatic polyesters, further The problem is solved by a method for depolymerizing an aromatic polyester, which comprises supplying a part of an aromatic dicarboxylate and a low polymer obtained by performing a depolymerization reaction at 200 to 250 ° C. to a polymerization reaction system. be able to.
【0007】本発明における芳香族ポリエステル(以下
単にポリエステルという)とは、酸成分として、テレフ
タル酸、2,6−ナフタレンジカルボン酸、ジフェニル
ジカルボン酸、イソフタル酸などの芳香族ジカルボン酸
およびその低級アルキルエステルなどおよび、グリコー
ル成分として、EG、ジエチレングリコール、ブタンジ
オ−ル、シクロヘキサンジメタノ−ルなどからなるポリ
エステルである。The aromatic polyester (hereinafter simply referred to as "polyester") in the present invention is an aromatic dicarboxylic acid such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, isophthalic acid, or a lower alkyl ester thereof as an acid component. And a polyester comprising, as a glycol component, EG, diethylene glycol, butanediol, cyclohexanedimethanol, and the like.
【0008】具体的には、PET、2,6−PEN、ポ
リブチレンテレフタレ−トなどを挙げることができる。
これらのポリエステルはホモポリマであっても共重合ポ
リマであってもよいが、ホモポリマと共重合ポリマを混
入させないことは最終的に得られるポリエステルの品質
管理上好ましい。また、共重合ポリマの場合は、共重合
成分を構成するポリエステルごとに分別することが、ポ
リエステルの品質管理上好ましい。また目的によって
は、上記したジカルボン酸成分およびグリコール成分を
2種類以上使用することもでき、さらにはポリエチレン
グリコール、ポリブチレングリコールなどのポリアルキ
レングリコールや、アジピン酸、セバシン酸などの脂肪
族カルボン酸や5−ナトルムスルホイソフタル酸、ヒド
ロキ安息香酸などを使用することもできる。[0008] Specifically, PET, 2,6-PEN, polybutylene terephthalate and the like can be mentioned.
These polyesters may be homopolymers or copolymers, but it is preferable not to mix homopolymers and copolymers in quality control of the finally obtained polyester. In the case of a copolymer, it is preferable from the viewpoint of quality control of the polyester to separate each polyester constituting the copolymer component. Depending on the purpose, two or more of the above-mentioned dicarboxylic acid components and glycol components can be used. Further, polyalkylene glycols such as polyethylene glycol and polybutylene glycol, and aliphatic carboxylic acids such as adipic acid and sebacic acid can be used. 5-Natrium sulfoisophthalic acid, hydroxybenzoic acid and the like can also be used.
【0009】本発明で使用するポリエステル屑の形状は
特に規制はない。例えば、フイルム屑やボトルを裁断し
たフレ−ク状屑、繊維状屑、ブロック状屑などが挙げら
れるが、フレ−ク状屑は圧縮固化しペレット状にすれば
見掛け比重が大きくなるため好ましく、ブロック状屑は
1cm3 以下とすればポリエステルの溶解時間が短縮で
きるため好ましい。The shape of the polyester waste used in the present invention is not particularly limited. For example, film waste, flake waste obtained by cutting bottles, fibrous waste, block waste, and the like can be mentioned. However, if the flake waste is compressed and solidified into pellets, the apparent specific gravity becomes large, so it is preferable. It is preferable that the amount of the block-like waste is 1 cm 3 or less because the dissolution time of the polyester can be shortened.
【0010】本発明の特徴は、芳香族ポリエステルをア
ルキレングリコールで解重合するに際して、芳香族ポリ
エステルの前駆化合物である芳香族ジカルボキシレ−ト
およびその低重合体(以下低重合体という)を溶融貯留
した反応系に、まず芳香族ポリエステルを添加して解重
合反応を行い、次いでアルキレングリコールを添加して
さらに解重合反応を行うことにより低重合体を製造し、
その低重合体の一部を重縮合反応系に供給することにあ
る。A feature of the present invention is that, when an aromatic polyester is depolymerized with an alkylene glycol, an aromatic dicarboxylate which is a precursor compound of the aromatic polyester and a low polymer thereof (hereinafter referred to as a low polymer) are melted and stored. To the reaction system, a low polymer is first produced by adding an aromatic polyester to perform a depolymerization reaction, and then adding an alkylene glycol to further perform a depolymerization reaction,
It is to supply a part of the low polymer to the polycondensation reaction system.
【0011】本発明の好ましい解重合方法について、P
ET屑を例に説明する。本発明においてPET屑を解重
合するに際し、まず,反応系にビス(2−ヒドロキシエ
チル)テレフタレ−トおよびその低重合体(以下BHT
という)を溶融貯留しておくことが必須である。BHT
を貯留しておかない場合、換言すると空の解重合缶にP
ET屑とEGを供給すると、反応系の温度がEGの沸点
で保持されてしまい解重合時間が遅延するばかりでな
く、再生されるPETの軟化点が低下する。Regarding the preferred depolymerization method of the present invention,
A description will be given of ET waste as an example. In depolymerizing PET waste in the present invention, first, bis (2-hydroxyethyl) terephthalate and its low polymer (hereinafter referred to as BHT) are added to the reaction system.
It is indispensable to store them in a molten state. BHT
Is not stored, in other words, P
When ET scrap and EG are supplied, the temperature of the reaction system is maintained at the boiling point of EG, so that not only the depolymerization time is delayed, but also the softening point of the recycled PET decreases.
【0012】貯留BHTとしては、DMTとEGから得
られるBHT、テレフタル酸とEGから得られるBH
T、あるいはPET屑とEGから得られるBHTを使用
することができるが、PET屑を連続的に再生するため
には、PET屑とEGから得られるBHTを貯留BHT
とすることが好ましい。The stored BHT includes BHT obtained from DMT and EG, and BH obtained from terephthalic acid and EG.
B or BHT obtained from PET waste and EG can be used. However, in order to continuously regenerate PET waste, BHT obtained from PET waste and EG is stored in BHT.
It is preferable that
【0013】溶融貯留するBHT量は、添加するPET
屑の酸成分1モルに対して貯槽BHT成分のモル比で1
/4〜2/1の範囲であると解重合時間が短縮でき、し
かも軟化点の低下が十分抑制できるので望ましい。The amount of BHT to be melted and stored depends on the PET to be added.
The molar ratio of the storage tank BHT component to 1 mole of the scrap acid component is 1
The range of / 4 to 2/1 is desirable because the depolymerization time can be shortened and the decrease in the softening point can be sufficiently suppressed.
【0014】また本発明では溶融貯留したBHTにまず
PET屑が添加される。PET屑を添加した後の解重合
反応温度は、溶融貯留したBHTの温度より高くするこ
とができるため解重合反応速度が著しく改良される。通
常、PET屑を添加した後の反応温度は、PET屑を添
加する以前の貯留BHTの温度よりも5〜30℃高くす
ることが好ましい。[0014] In the present invention, PET waste is first added to the molten and stored BHT. Since the temperature of the depolymerization reaction after adding the PET waste can be made higher than the temperature of the melt-stored BHT, the rate of the depolymerization reaction is significantly improved. Usually, it is preferable that the reaction temperature after adding the PET waste be 5 to 30 ° C. higher than the temperature of the stored BHT before adding the PET waste.
【0015】このようにして得られた比較的高分子量の
BHTにEGを添加して、再度解重合反応を行う。この
とき添加するEGの量は、貯留BHTへ添加したPET
屑の酸成分に対してのモル比(以下単にモル比という)
が0.5〜5.0にする必要がある。より好ましくは
1.0〜3.0である。EG is added to the relatively high molecular weight BHT thus obtained, and the depolymerization reaction is performed again. The amount of EG added at this time depends on the PET added to the stored BHT.
Molar ratio of scrap to acid component (hereinafter simply referred to as molar ratio)
Must be set to 0.5 to 5.0. More preferably, it is 1.0 to 3.0.
【0016】一般に、PET屑には異物の混入はある程
度避けられない。このような異物はなんらかの手段で除
去する必要があり、その方法としてはBHTの段階でフ
ィルタで除去したり、特願平4−94481号公報で提
案した遠心分離機などで除去する方法が挙げられ、遠心
分離する方法が異物を高精度に除去できるため、さらに
好ましい。いずれの方法であってもBHTの融点、比重
および溶融粘度などは低いほど異物分離効果が大きくな
る。In general, foreign matters cannot be avoided to some extent in PET waste. It is necessary to remove such foreign matter by some means, such as a method of removing with a filter at the stage of BHT or a method of removing with a centrifuge proposed in Japanese Patent Application No. 4-94481. The method of centrifugation is more preferable because foreign substances can be removed with high accuracy. Regardless of the method, the lower the melting point, specific gravity and melt viscosity of BHT, the greater the foreign matter separating effect.
【0017】しかしながら、上記モル比が0.5倍モル
未満の場合は、得られたBHTの融点、比重および溶融
粘度などが高いため、BHTに含有している異物を上記
の方法によって除去することが困難にある。本発明の方
法によれば、融点200℃以下、比重1.2以下および
溶融粘度10cp以下とすることができるため、BHT
中の異物を効率よく除去することができる。なお、ここ
での比重および溶融粘度は180℃での測定値である。However, if the above molar ratio is less than 0.5 mole, the obtained BHT has a high melting point, specific gravity, melt viscosity, and the like. Therefore, it is necessary to remove foreign matter contained in the BHT by the above method. Is difficult. According to the method of the present invention, the melting point can be set to 200 ° C. or less, the specific gravity to 1.2 or less, and the melt viscosity to 10 cp or less.
Foreign substances in the inside can be efficiently removed. Here, the specific gravity and the melt viscosity are measured values at 180 ° C.
【0018】一方、モル比が5.0を越えると、EGの
原単位や重縮合反応時のEG除去に要するエネルギ−原
単位が上昇するのみならず、該BHTを貯留BHTとし
たとき、反応系のモル比が高くなるため、BHTの平衡
沸点は低くなり解重合反応時間が遅くなるばかりでな
く、次工程の重縮合反応時間も遅延することになる。さ
らには再生されるPETの軟化点も低下するため好まし
くない。On the other hand, if the molar ratio exceeds 5.0, not only does the basic unit of EG and the energy unit required for removing EG during the polycondensation reaction increase, but also when the BHT is used as the stored BHT, Since the molar ratio of the system becomes high, the equilibrium boiling point of BHT becomes low, so that not only the depolymerization reaction time is delayed, but also the polycondensation reaction time of the next step is delayed. Further, the softening point of the recycled PET also decreases, which is not preferable.
【0019】このようにして得られた解重合後のBHT
はその一部を重縮合缶へ供給し、重合触媒の存在下で2
80〜300℃、減圧度1mmHg以下で重合反応を行
う。このとき、解重合缶に残しておくBHT量は、前述
したように次のバッチの貯留用BHTとして用いる際の
所要量(PET屑の酸成分に対するモル比;1/4〜2
/1)としておくのが望ましい。この解重合反応系にB
HTの一部を残す理由は、次のバッチの貯留用BHTと
して用いる他に、次に示す理由からBHT中の異物除去
に効果を奏するからである。The thus obtained BHT after depolymerization
Feeds a part of it to a polycondensation vessel,
The polymerization reaction is carried out at 80 to 300 ° C. and at a reduced pressure of 1 mmHg or less. At this time, as described above, the amount of BHT to be left in the depolymerization tank is the required amount (molar ratio to the acid component of PET waste; 1/4 to 2) when used as BHT for storage of the next batch.
/ 1). In this depolymerization reaction system, B
The reason why a part of the HT is left is that it is effective for removing foreign substances in the BHT for the following reason, in addition to being used as the BHT for storage of the next batch.
【0020】一般に、解重合反応の完了後のBHTを重
縮合反応缶へ供給する場合、解重合缶と重縮合反応缶と
のヘッド差を用いる方法や、解重合反応缶から不活性ガ
スやポンプで重縮合缶へ供給する方法が用いられてい
る。解重合缶のBHT全量を重縮合缶へ供給すると、不
活性ガスが解重合缶と重縮合缶の間に設置されているフ
イルタまたは遠心分離機に供給されてしまうため、フイ
ルタまたは遠心分離機で一旦分離されたた異物が再び清
澄BHTに混入するようになる。また解重合反応系に供
給されるPET屑に含まれている水分は、解重合缶に設
置している精留塔を用いて分離することが好ましい。In general, when BHT after the completion of the depolymerization reaction is supplied to the polycondensation reactor, a method using a head difference between the depolymerization reactor and the polycondensation reactor or an inert gas or pump from the depolymerization reactor is used. And a method of supplying to a polycondensation can. When the entire amount of BHT in the depolymerization can is supplied to the polycondensation can, the inert gas is supplied to the filter or centrifuge installed between the depolymerization can and the polycondensation can. The foreign matter once separated comes into the clarified BHT again. Further, it is preferable that the water contained in the PET waste supplied to the depolymerization reaction system be separated using a rectification tower installed in the depolymerization can.
【0021】上記の解重合反応時の反応系は常圧下また
は加圧下のいずれでもよいが、実質的に常圧とするのが
設備のメンテナンス上から好ましい。また本発明の方法
はバッチプロセスまたは連続プロセスのいずれであって
もよい。The reaction system at the time of the above depolymerization reaction may be either under normal pressure or under pressure, but it is preferable that the pressure be substantially at normal pressure from the viewpoint of equipment maintenance. Further, the method of the present invention may be either a batch process or a continuous process.
【0022】このようにして得られたBHTは、重縮合
反応触媒の存在下で再生PETとする。この際の重縮合
反応触媒にはグリコール可溶性のアンチモン化合物、ゲ
ルマニウム化合物、チタン化合物などを用いることがで
きる。またPET屑中に重縮合反応触媒の所要量が含有
されている場合には、改めて添加する必要はない。The BHT thus obtained is converted into regenerated PET in the presence of a polycondensation reaction catalyst. As the polycondensation reaction catalyst at this time, a glycol-soluble antimony compound, germanium compound, titanium compound or the like can be used. When the required amount of the polycondensation reaction catalyst is contained in the PET waste, it is not necessary to add it again.
【0023】さらに得られる再生PETの熱安定性を改
良するため、公知の熱安定剤や酸化劣化防止剤などを添
加することもできる。さらにまた、この再生PETの目
的に応じて炭酸カルシウム、酸化チタン、二酸化ケイ
素、タルク、カオリンおよびアルミナなどの不活性粒子
を添加することもできる。Further, in order to improve the thermal stability of the obtained recycled PET, a known thermal stabilizer or an antioxidant may be added. Furthermore, inert particles such as calcium carbonate, titanium oxide, silicon dioxide, talc, kaolin, and alumina can be added according to the purpose of the recycled PET.
【0024】[0024]
【実施例】以下、実施例を挙げて本発明を具体的に説明
する。なお、本例中の部とは重量部を示し、また各ポリ
マー特性の測定値は次の方法に従った。 A.ポリマの固有粘度 o−クロロフェノ−ルを溶媒として、25℃で測定し
た。 B.軟化点 ペネトロメ−タで測定し、SP(℃)で示した。 C.色調b値 直読式色差計(スガ試験機社)を用い、チップ状で測定
しb値で示した。The present invention will be specifically described below with reference to examples. The parts in this example are parts by weight, and the measured values of the properties of each polymer were in accordance with the following methods. A. Intrinsic viscosity of polymer Measured at 25 ° C. using o-chlorophenol as a solvent. B. Softening point Measured with a penetrometer and expressed in SP (° C). C. Color tone b value Using a direct-reading color difference meter (Suga Test Instruments Co., Ltd.), it was measured in the form of a chip and indicated by b value.
【0025】D.ポリマ中の異物数 チップ50g中に存在している、異物を肉眼で数えた。D. Number of Foreign Substances in Polymer Foreign substances present in 50 g of the chip were counted with the naked eye.
【0026】実施例1 撹拌機、加熱コイル、および精留塔を備えた解重合缶に
PET屑100部、EG64.6部(EG/PETを構
成する酸成分のモル比(以下、この比をEG/PETモ
ル比、または単にモル比という)は2.0)からなるB
HT164.6部を220℃で溶融貯留した反応系に、
PET屑を100部添加した。PET屑の添加と同時に
昇温を開始し、15分後に235℃に到達した時点でE
Gを64.6部(モル比2.0)添加した。EG添加終
了時の缶内温度は215℃であった。その後さらに加熱
を続け30分後に220℃に到達した。ポリマは全量溶
解していた。さらに220℃で15分反応を継続し解重
合反応を終了させた。全解重合時間は、1.0時間であ
った。加熱開始直後から精留塔頂が水の沸点を示した時
以外は、留出するEGの全量が解重合缶に還流するよう
にした。[0026] Example 1 stirrer, heating coils, and PET chips 100 parts of a solution polymerization reactor equipped with a fractionating column, EG64.6 parts (EG / PET structure
Molar ratio of the acid component to be formed (hereinafter, this ratio is referred to as the EG / PET model).
Ratio, or simply the molar ratio) is 2.0)
HT164.6 parts melted and stored at 220 ° C
100 parts of PET waste was added. The heating was started at the same time as the addition of the PET waste.
G was added in an amount of 64.6 parts (molar ratio: 2.0). The temperature in the can at the end of the EG addition was 215 ° C. Thereafter, heating was further continued, and the temperature reached 220 ° C. after 30 minutes. All of the polymer was dissolved. The reaction was further continued at 220 ° C. for 15 minutes to terminate the depolymerization reaction. The total depolymerization time was 1.0 hour. Except when the top of the rectification column showed the boiling point of water immediately after the start of heating, the entire amount of the distilled EG was refluxed to the depolymerization reactor.
【0027】次いで解重合缶を0.2fkg/cm 2 に
窒素で加圧して、BHT164.6部(PET100部
相当)をディスク型遠心分離機に供給して異物を分離し
た後、重縮合反応缶に移行し、常法に従って重縮合反応
を終了させた(実験No.1)。 再生PETポリマ特
性は固有粘度0.623、軟化点259.7℃、色調b
値5.4、異物数0であった。 さらに実験No.1と全
く同様な操作でバッチ数を重ね、再生PETを得た(実
験No.2〜4)。ポリマ特性を表1に示した。 いずれ
も再現性がよく、良好な品のポリマである。 Next, the depolymerization can was adjusted to 0.2 fkg / cm 2 .
164.6 parts of BHT (100 parts of PET)
Equivalent) to a disk-type centrifuge to separate foreign matter.
After that, it is transferred to the polycondensation reactor, where the polycondensation
(Experiment No. 1). Recycled PET polymer
Properties: intrinsic viscosity 0.623, softening point 259.7 ° C, color tone b
The value was 5.4 and the number of foreign substances was 0. Experiment No. The number of batches was repeated by the same operation as in Example 1 to obtain a recycled PET (actual
Experiment No. 2-4). Table 1 shows the polymer characteristics. Either
Is also a good polymer with good reproducibility.
【0028】比較例1実施例1の解重合缶にPET屑100部、EG64.6
部(EG/PETモル比2.0)を 仕込んで加熱を開始
した。加熱開始直後から精留塔頂が水の沸点を示したと
き以外は、留出するEGの全量を解重合缶へ還流するよ
うにした。昇温を開始した後しばらくは、反応系にはP
ET屑と未反応のEGが多量に存在しているため、EG
の沸点である197℃から200℃まで昇温するのに
2.0時間を要した。その後さらに加熱し、加熱を開始
してから4時間後に220℃に到達した。ポリマは全量
溶解していた。さらに220℃で15分反応を継続し解
重合反応を終了させた。全解重合時間は、4時間15分
を要した。次いでBHT164部(0.6部を残した)
を実施例1と同様にして異物を分離した後、重縮合反応
缶に移行し重縮合反応を終了させた(実験No.5)。
PETとEGを添加する時にBHTを存在させない本例
においては解重合時間が長く、固有粘度が0.625、
軟化点が259.3℃、色調b値が6.2と再生PET
のポリマ特性も好ましくなかった。Comparative Example 1 100 parts of PET waste and EG64.6 were added to the depolymerization can of Example 1.
And heating was started. Except when the top of the rectification column showed the boiling point of water immediately after the start of heating, the entire amount of the distilled EG was refluxed to the depolymerization reactor. For a while after starting the temperature rise, P
Since a large amount of ET debris and unreacted EG are present,
It took 2.0 hours to raise the temperature from the boiling point of 197 ° C. to 200 ° C. Thereafter, the mixture was further heated, and reached 220 ° C. 4 hours after the start of heating. All of the polymer was dissolved. The reaction was further continued at 220 ° C. for 15 minutes to terminate the depolymerization reaction. The total depolymerization time required 4 hours and 15 minutes. Next, 164 parts of BHT (0.6 parts remained)
Is separated in the same manner as in Example 1, and then a polycondensation reaction is performed.
The mixture was transferred to a can to terminate the polycondensation reaction (Experiment No. 5).
In this example in which BHT is not present when adding PET and EG, the depolymerization time is long, the intrinsic viscosity is 0.625,
Recycled PET with a softening point of 259.3 ° C and a color tone b value of 6.2
Was also unfavorable in polymer properties.
【0029】比較例2 実施例1で、解重合缶に残した220℃のBHT16
4.6部を貯留BHTとした反応系にPET屑100部
とEG64.5部を同時に添加し、昇温を開始した。添
加終了時の缶内温度は205℃であった。さらに実施例
2と同様に缶内の加熱を継続し、1時間45分後220
℃に到達した。屑ポリマは全量溶解していた。さらに2
20℃で15分反応を継続し解重合反応を終了させた
(実験No.6)。全解重合時間は2時間であり、解重
合時間が長かった。上記(実験No.6)の解重合条
件、解重合時間および再生PETのポリマ特性を表2に
まとめた。Comparative Example 2 In Example 1, BHT 16 at 220 ° C. was left in the depolymerization vessel.
To a reaction system in which 4.6 parts were stored BHT, 100 parts of PET waste and 64.5 parts of EG were simultaneously added, and the temperature was raised. The temperature in the can at the end of the addition was 205 ° C. Further, the inside of the can was continued in the same manner as in Example 2, and after 1 hour and 45 minutes 220
° C was reached. The waste polymer was completely dissolved. 2 more
The reaction was continued at 20 ° C. for 15 minutes to terminate the depolymerization reaction (Experiment No. 6). The total depolymerization time was 2 hours, and the depolymerization time was long. Table 2 summarizes the depolymerization conditions, the depolymerization time, and the polymer characteristics of the recycled PET in the above (Experiment No. 6).
【0030】実施例2〜4、比較例3〜4 EGとPETの添加量を変更し、解重合反応時のモル比
を変えた以外は、実施例1の実験No.1と同様にして
解重合反応を行ったBHTを、ディスク型遠心分離機へ
供給した後、重縮合反応を完結させた(実験No.7〜
11)。Examples 2 to 4 and Comparative Examples 3 to 4 Experiment No. 1 of Example 1 was conducted except that the amounts of EG and PET were changed and the molar ratio during the depolymerization reaction was changed. After supplying the BHT having undergone the depolymerization reaction in the same manner as in Example 1 to a disk-type centrifugal separator, the polycondensation reaction was completed (Experiment Nos. 7 to 7).
11).
【0031】モル比が本発明の範囲に満たない場合に
は、異物の分離が不十分であった(比較例3、実験N
o.10)。またモル比が本発明の範囲を越えた場合に
は、解重合時間が長くしかも重縮合反応性が悪く(固有
粘度の上昇が遅い)、軟化点の低いポリマであった(比
較例4、実験No.11)。When the molar ratio was less than the range of the present invention, the separation of foreign matters was insufficient (Comparative Example 3, Experiment N
o. 10). When the molar ratio exceeds the range of the present invention, a polymer having a long depolymerization time, poor polycondensation reactivity (slow rise in intrinsic viscosity), and a low softening point was obtained (Comparative Example 4, experiment). No. 11).
【0032】上記(実験No.7〜11)の解重合条
件、解重合時間および再生PETのポリマ特性を表2,
3にまとめた。Table 2 shows the depolymerization conditions, the depolymerization time and the polymer characteristics of the recycled PET in the above (Experiments Nos. 7 to 11).
3
【0033】実施例5〜6、比較例5〜8 PET屑添加時の貯留BHTの温度とPET屑添加後の
解重合温度およびEG添加後の解重合温度を表3,4で
示した条件で解重合反応を行った(実験No.12〜1
7)。Examples 5 to 6 and Comparative Examples 5 to 8 The temperature of the stored BHT at the time of addition of PET waste, the depolymerization temperature after addition of PET waste, and the depolymerization temperature after addition of EG under the conditions shown in Tables 3 and 4. A depolymerization reaction was performed (Experiment Nos. 12 to 1).
7).
【0034】PET屑添加時の貯留BHT温度が、本発
明の範囲に満たない温度にPET屑を添加すると系内の
BHTが固まってしまい撹拌ムラがおこり解重合時間も
遅く(比較例5、実験No.14)、PET屑添加時の
貯留BHT温度が、本発明の範囲を越えた場合には、軟
化点が低く、色調の好ましくないポリマしか得られなか
った(比較例6、実験No.15)。When PET waste is added to a temperature where the stored BHT temperature at the time of addition of PET waste does not fall within the range of the present invention, BHT in the system is solidified, uneven stirring occurs, and the depolymerization time is delayed (Comparative Example 5, experiment). No. 14), when the stored BHT temperature at the time of addition of PET scrap exceeded the range of the present invention, only a polymer having a low softening point and an undesirable color tone was obtained (Comparative Example 6, Experiment No. 15). ).
【0035】一方、EG添加後の解重合温度が、本発明
の範囲に満たない場合には、解重合温度が著しく遅延
し、軟化点や色調も好ましいポリマが得られず(比較例
7、実験No.16)、本発明の範囲を越えた場合も、
軟化点が低く、色調の好ましくないポリマしか得られな
かった(比較例8、実験No.17)。上記(実験N
o.12〜17)の解重合条件、解重合時間および再生
PETのポリマ特性を表3,4にまとめた。On the other hand, when the depolymerization temperature after the addition of EG is less than the range of the present invention, the depolymerization temperature is remarkably delayed, and a polymer having a favorable softening point and color tone cannot be obtained (Comparative Example 7, experiment No. 16), even when it exceeds the scope of the present invention,
Only a polymer having a low softening point and an undesirable color tone was obtained (Comparative Example 8, Experiment No. 17). Above (Experiment N
o. Tables 3 and 4 summarize the depolymerization conditions, depolymerization times and polymer properties of the recycled PET described in 12 to 17).
【0036】比較例9 実験No.4のBHTを重縮合缶へ移行した後の残留B
HT164.6部の全量を、実験No.4と同様に解重
合反応缶を0.2fkg/cm2 に窒素で加圧して、遠
心分離機を経由し重縮合缶へ移行した。移行終了後に窒
素圧を遠心分離機を経由で重縮合缶から放圧した。その
後実験No.4と同様にしてポリマを得た(実験No.
18)。Comparative Example 9 B remaining after transferring the BHT of No. 4 to the polycondensation can
HT164.6 parts of the total amount of Experiment No. 4 similarly to the depolymerization reactor pressurized with nitrogen to 0.2fkg / cm 2 was shifted to Juchijimi if the can through the centrifuge. After the transfer was completed, the nitrogen pressure was released from the polycondensation vessel via a centrifuge. Then, in Experiment No. A polymer was obtained in the same manner as in Example 4 (Experiment No. 4).
18).
【0037】本例では、BHT移行終了時にBHTの一
部を解重合缶に残さなかったため、解重合缶と重縮合缶
との間に設置した遠心分離機に直接窒素ガスが供給され
てしまい、遠心分離機で一旦分離された異物が再び清澄
BHTに混入し、再生ポリマ中の異物が35個と著しく
増大した。In this example, since a part of the BHT was not left in the depolymerization vessel at the end of the BHT transfer, nitrogen gas was supplied directly to the centrifugal separator installed between the depolymerization vessel and the polycondensation vessel.
As a result, the foreign matter once separated by the centrifugal separator was mixed into the clarified BHT again, and the foreign matter in the regenerated polymer was remarkably increased to 35.
【0038】[0038]
【表1】 [Table 1]
【表2】 [Table 2]
【表3】 [Table 3]
【表4】 [Table 4]
【0039】[0039]
【発明の効果】本発明の解重合方法によれば、解重合用
ポリエステルとグリコールとを特定の条件で、溶融BH
Tが存在する解重合反応系に添加するため、解重合反応
時間が短縮され、しかもこのようにして得られた再生B
HT、即ち,芳香族ジカルボキシレ−トおよびその低重
合体を再重合することによって、高品位の芳香族ポリエ
ステルが製造でき、繊維、フイルムなどとして再生でき
る。特に、 .再生ポリエステルの製造において、解重合反応時間
が大巾に短縮されるため経済性ないし生産性が著しく向
上する。 .再生ポリマ中の異物数が大巾に減少する。 .再生ポリマの軟化点が高く、色調も優れている。 などの優れた効果を奏する。According to the depolymerization method of the present invention, the polyester for depolymerization and the glycol are melted under specific conditions to obtain a molten BH.
Since T is added to the existing depolymerization reaction system, the depolymerization reaction time is shortened, and the thus obtained regenerated B
By repolymerizing HT, that is, the aromatic dicarboxylate and its low polymer, a high-grade aromatic polyester can be produced and can be regenerated as a fiber or a film. In particular, . In the production of recycled polyester, the depolymerization reaction time is greatly reduced, so that the economic efficiency and productivity are significantly improved. . The number of foreign substances in the recycled polymer is greatly reduced. . The regenerated polymer has a high softening point and excellent color tone. It has excellent effects such as.
Claims (1)
ルで解重合するに際して、芳香族ジカルボキシレートお
よびその低重合体を溶融状態で存在させた反応系に、ま
ず芳香族ポリエステルを添加して200〜250℃で解
重合反応を行い、次いでアルキレングリコールを添加し
た芳香族ポリエステルを構成する酸成分に対して0.5
〜5.0倍モル添加し、さらに200〜250℃で解重
合反応を行うことによって得られた芳香族ジカルボキシ
レートおよびその低重合体の一部を重合反応系に供給す
ることを特徴とする芳香族ポリエステルの解重合方法。When depolymerizing an aromatic polyester with an alkylene glycol, an aromatic polyester is first added to a reaction system in which an aromatic dicarboxylate and a low polymer thereof are present in a molten state, and the aromatic polyester is added at 200 to 250 ° C. 0.5 in performed depolymerization reaction, then to an acid Ingredients constituting the aromatic polyester with the addition of alkylene glycol
It is characterized in that the aromatic dicarboxylate and a part of its low polymer obtained by adding a depolymerization reaction at 200 to 250 ° C. are added to the polymerization reaction system by adding the compound to the polymerization reaction system at 200 to 250 ° C. A method for depolymerizing an aromatic polyester.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32176192A JP3303370B2 (en) | 1992-12-01 | 1992-12-01 | Depolymerization method of aromatic polyester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32176192A JP3303370B2 (en) | 1992-12-01 | 1992-12-01 | Depolymerization method of aromatic polyester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06166747A JPH06166747A (en) | 1994-06-14 |
JP3303370B2 true JP3303370B2 (en) | 2002-07-22 |
Family
ID=18136153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32176192A Expired - Lifetime JP3303370B2 (en) | 1992-12-01 | 1992-12-01 | Depolymerization method of aromatic polyester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3303370B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2318761A1 (en) * | 1999-08-04 | 2001-02-04 | Aies Co., Ltd. | Bis-beta-hydroxyethyl terephthalate production process and purification process |
-
1992
- 1992-12-01 JP JP32176192A patent/JP3303370B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06166747A (en) | 1994-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5559159A (en) | Process including depolymerization in polyester reactor for recycling polyester materials | |
US6191177B1 (en) | Depolymerization apparatus for recycling polyesters | |
JP2894543B2 (en) | Method for increasing the rate of direct esterification of diacids with glycols | |
JPH0331190B2 (en) | ||
US20130041053A1 (en) | Process for the Preparation of Polyesters with High Recycle Content | |
JP2002536519A5 (en) | ||
JP2002536519A (en) | Glycolysis for PET recycling after use | |
WO2000047658A1 (en) | Process for recycling polyesters | |
JP2008088096A (en) | Method for producing bis-(2-hydroxyethyl) terephthalate and method for producing polyethylene terephthalate | |
WO2013025186A1 (en) | Process for the preparation of polyesters with high recycle content | |
CN110590551A (en) | Method for producing bis (2-hydroxyethyl) terephthalate and method for producing polyethylene terephthalate | |
JP3303370B2 (en) | Depolymerization method of aromatic polyester | |
JP2004189898A (en) | Method of manufacturing polyethylene terephthalate | |
JP4330918B2 (en) | How to recycle polyester waste | |
JP2003119316A (en) | Pet plastic bottle recycling method | |
JP3803198B2 (en) | Polyester production method | |
JP2002317041A (en) | Method for producing cyclic polyester oligomer, and method for producing polyester | |
JP2513744B2 (en) | Method for producing polyester | |
JP2004224940A (en) | Method for recovering effective component from polyester waste | |
JP3720858B2 (en) | Method for producing high molecular weight polyester resin from 2,6-naphthalenedicarboxylic acid | |
JP2006016548A (en) | Method for producing polyester | |
JP2002060542A (en) | Method for recovering useful component from polyester waste | |
JP2005097521A (en) | Method for depolymerizing polyester | |
JP3357477B2 (en) | Polyester production method | |
JPH05230199A (en) | Production of aromatic polyester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080510 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |