JP3303129B2 - Surfactant size separation method for nanoparticles - Google Patents

Surfactant size separation method for nanoparticles

Info

Publication number
JP3303129B2
JP3303129B2 JP29391298A JP29391298A JP3303129B2 JP 3303129 B2 JP3303129 B2 JP 3303129B2 JP 29391298 A JP29391298 A JP 29391298A JP 29391298 A JP29391298 A JP 29391298A JP 3303129 B2 JP3303129 B2 JP 3303129B2
Authority
JP
Japan
Prior art keywords
surfactant
nanoparticles
organic solvent
sol
separation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29391298A
Other languages
Japanese (ja)
Other versions
JP2000117094A (en
Inventor
信 恒川
厚生 粕谷
Original Assignee
東北大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北大学長 filed Critical 東北大学長
Priority to JP29391298A priority Critical patent/JP3303129B2/en
Publication of JP2000117094A publication Critical patent/JP2000117094A/en
Application granted granted Critical
Publication of JP3303129B2 publication Critical patent/JP3303129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、界面活性剤によ
るナノ粒子のサイズ分別法に関し、特にミセル化された
微粒子を含むゾルを処理して単分散に近いナノ粒子を得
る場合に、ゾル液やミセル物質の如何にかかわらず、効
果的にナノ粒子をサイズ毎に分別しようとするものであ
る。この発明は、ナノテクノロジーに関わるナノ粒子を
含む製品全てに適用が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for size separation of nanoparticles using a surfactant, and more particularly to a method for treating a sol containing micelle-formed fine particles to obtain a nanoparticle close to monodisperse. Regardless of the micellar material, it is intended to effectively separate nanoparticles by size. The present invention is applicable to all products including nanoparticles related to nanotechnology.

【0002】[0002]

【従来の技術】10nm以下のミセル化された微粒子を含む
ゾルを処理して単分散に近いナノ粒子を得るには、従来
液体クロマトグラフ法が有力とされてきた。しかしなが
ら、この方法は、ゾル液の種類や、ミセル物質の種類に
応じて、個別に最適カラムを見出す必要があり、膨大な
時間や労力を必要としていた。しかも、この方法では、
しばしば適合カラムなしという場合が生じるところにも
問題を残していた。
2. Description of the Related Art Liquid chromatographic methods have been considered to be effective in obtaining nanoparticles close to monodisperse by treating a sol containing micelle-formed fine particles of 10 nm or less. However, in this method, it is necessary to individually find an optimum column according to the type of the sol liquid and the type of the micelle substance, and it has required enormous time and labor. Moreover, with this method,
The problem also remains where the case without a compatible column often occurs.

【0003】[0003]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、ゾル液やミセル物質の如何
にかかわらず、ナノ粒子をサイズ毎に効果的に分別する
ことができる界面活性剤を利用したナノ粒子のサイズ分
別法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and provides an interface capable of effectively separating nanoparticles by size regardless of a sol solution or a micelle substance. An object of the present invention is to propose a method for size separation of nanoparticles using an activator.

【0004】[0004]

【課題を解決するための手段】すなわち、この発明は、
ミセル化されたナノサイズの微粒子を含むゾルに、界面
活性剤と有機溶媒を加えて均一に混合したのち、しばら
く放置して有機溶媒乳化相と水相とに分離し、ついで分
離した水相に対して上記と同様の操作を順次に行うこと
により、各有機溶媒乳化相中にそれぞれ単分散状態のナ
ノサイズ微粒子を捕捉することを特徴とする、界面活性
剤によるナノ粒子のサイズ分別法である。
That is, the present invention provides:
A surfactant and an organic solvent are added to the sol containing micellized nano-sized fine particles, and the mixture is uniformly mixed.Then, the mixture is left for a while to be separated into an organic solvent emulsified phase and an aqueous phase. On the other hand, by sequentially performing the same operation as described above, the nano-sized fine particles in a monodispersed state are trapped in each organic solvent emulsified phase, and is a method for size separation of nanoparticles by a surfactant. .

【0005】この発明において、界面活性剤としてはア
ニオン系界面活性剤が、また有機溶媒としてはトルエン
がとりわけ有利に適合する。
In the present invention, anionic surfactants are particularly suitable as the surfactant, and toluene is particularly suitable as the organic solvent.

【0006】[0006]

【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果について説明する。この実験では、ゾルとし
て粒径が1〜6nmのセリア(CeO2-X)を多分散させた強
酸性ゾル(pH≒1.5)を、また界面活性剤としてアニオン
系界面活性剤(SDBS,SOS)を、さらに有機溶媒としてト
ルエンを用いた。ここに、SDBSとはCH3(CH2)9(C6H4)SO3
Na(sodium dodecylbenzene sulfonate)、またSOS とは
CH3(CH2)7SO3Na(sodium octyl sulfonate)のことであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results which led to the present invention will be described. In this experiment, a strongly acidic sol (pH ≒ 1.5) in which ceria (CeO 2-X ) having a particle size of 1 to 6 nm was polydispersed as a sol, and an anionic surfactant (SDBS, SOS) was used as a surfactant. And toluene as an organic solvent. Here, SDBS is CH 3 (CH 2 ) 9 (C 6 H 4 ) SO 3
About Na (sodium dodecylbenzene sulfonate) and SOS
CH 3 (CH 2 ) 7 SO 3 Na (sodium octyl sulfonate).

【0007】さて、上記したセリアゾルと界面活性剤
(SDBSまたはSOS)とトルエン液とを一緒にして超音波を
数分間かけたのち、ホモジナイザーにより均一に混合し
た。この混合液は、しばらく放置しておくと乳化状態の
トルエン相と水相とに分離するので、分液ロートを使っ
て水相を別の容器に移した。ついで、この水相に対し、
上記と同様の操作を行ったのち、得られた水相を別容器
に移した。さらに、もう一回同様の操作を行った。上記
の処理により、1回目のトルエン相には粒径が 4.9±0.
8 nm、また2回目のそれには粒径が 3.8±0.5 nm、さら
に3回目のそれには粒径が 2.1±0.3 nmの単分散に近い
セリアゾルがそれぞれ捕捉されていた。そして、上記の
各ゾルについて、有機溶媒であるトルエンを蒸発させた
ところ、保護コロイド化された安定で均質な超微分末を
得ることができた。
[0007] The ceria sol, the surfactant (SDBS or SOS) and the toluene solution were combined together, subjected to ultrasonic waves for several minutes, and then uniformly mixed with a homogenizer. Since this mixed solution was separated into an emulsified toluene phase and an aqueous phase when left for a while, the aqueous phase was transferred to another container using a separating funnel. Then, for this aqueous phase,
After performing the same operation as above, the obtained aqueous phase was transferred to another container. The same operation was performed once more. By the above treatment, the particle size of the first toluene phase was 4.9 ± 0.
At the second time, ceria sol having a particle size of 3.8 ± 0.5 nm was captured in the second time, and the monodisperse ceria sol having the particle size of 2.1 ± 0.3 nm was captured in the third time. Then, when toluene, which is an organic solvent, was evaporated from each of the above sols, a stable and uniform superdifferentiated powder converted into a protective colloid could be obtained.

【0008】[0008]

【作用】この発明に従い、界面活性剤を活用することに
よってナノ粒子をサイズ毎に分別できるメカニズムは、
次のとおりと考えられる。図1に示すとおり、小さい粒
子(a) と大きい粒子(b) では、界面活性剤の疎水基末端
の開き角が大きく異なるが、特に(a) に示すように開き
角が大きくなると、余剰の界面活性剤の入り込み(イン
ターディジット)が起こり、さらに親水性が増すと考え
られる。このように、界面活性剤の吸着する粒子表面で
の密度が同じであっても、粒径が小さいと曲率の増大に
より、疎水基末端の開き角が大きくなるため、本来は疎
水性であった界面活性剤の効力が、数ナノメーター以下
の粒子に吸着した場合には親水性に傾き、粒子が水相へ
残留する確率が高くなる。その結果より大きい粒子はト
ルエン相へ、より小さい粒子は水相へ分離するものと考
えられる。なお、このメカニズムによると、疎水基の長
さLが長い程この効果が大きくなると予想され、実際、
SOS(L=1.2 nm)よりもSDBS(L=2.0 nm)の方が分
離効果が大きいことが確認されている。
According to the present invention, a mechanism capable of separating nanoparticles by size by utilizing a surfactant is as follows.
It is considered as follows. As shown in FIG. 1, the small particles (a) and the large particles (b) differ greatly in the opening angle of the hydrophobic group terminal of the surfactant. In particular, when the opening angle increases as shown in FIG. It is considered that penetration (interdigit) of the surfactant occurs, and the hydrophilicity further increases. In this way, even if the density on the surface of the particles to which the surfactant is adsorbed is the same, if the particle size is small, the curvature angle increases, and the opening angle of the hydrophobic group terminal increases, so that the particles were originally hydrophobic. When the surfactant is adsorbed on particles having a size of several nanometers or less, the surfactant tends to become hydrophilic, and the probability of the particles remaining in the aqueous phase increases. It is believed that the larger particles separate into the toluene phase and the smaller particles separate into the aqueous phase. According to this mechanism, this effect is expected to increase as the length L of the hydrophobic group increases, and in fact,
It has been confirmed that SDBS (L = 2.0 nm) has a larger separation effect than SOS (L = 1.2 nm).

【0009】この発明の分別法は、ミセル化できる微粒
子であれば、どのような物質にも適用することができ
る。また、この発明において、対象とするゾルが上記し
たような酸性ゾルの場合には、界面活性剤としては、ア
ニオン系の界面活性剤を用いる必要があるが、逆に対象
とするゾルがアルカリ性ゾルの場合には、界面活性剤と
してはカチオン系の界面活性剤を用いる必要がある。さ
らに、この発明において、有機溶媒としては、上記した
トルエンが特に有利に適合するが、その他、粘性が小さ
くかつ揮発性が良いものであれば、従来周知の疎水性有
機溶媒いずれもが適合する。
[0009] The separation method of the present invention can be applied to any substance as long as it is a fine particle capable of forming micelles. In the present invention, when the target sol is an acidic sol as described above, it is necessary to use an anionic surfactant as the surfactant. On the contrary, the target sol is an alkaline sol. In this case, it is necessary to use a cationic surfactant as the surfactant. Further, in the present invention, as the organic solvent, the above-mentioned toluene is particularly advantageously suitable, and any other conventionally known hydrophobic organic solvents are suitable as long as they have low viscosity and good volatility.

【0010】[0010]

【発明の効果】かくして、この発明によれば、ゾル液や
ミセル物質の如何にかかわらず、ミセル化された微粒子
を含むゾルから、容易かつ簡便に単分散に近いナノ粒子
を安定して分別することができる。
Thus, according to the present invention, nanoparticles close to monodispersion can be easily and easily separated from sols containing micellar microparticles irrespective of the sol liquid or micelle substance. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒子の大きさによって、界面活性剤の疎水基末
端の開き角が異なる様子を示す模式図である。
FIG. 1 is a schematic diagram showing that the opening angle of a hydrophobic group terminal of a surfactant varies depending on the size of a particle.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ミセル化されたナノサイズの微粒子を含
むゾルに、界面活性剤と有機溶媒を加えて均一に混合し
たのち、しばらく放置して有機溶媒乳化相と水相とに分
離し、ついで分離した水相に対して上記と同様の操作を
順次に行うことにより、各有機溶媒乳化相中にそれぞれ
単分散状態のナノサイズ微粒子を捕捉することを特徴と
する、界面活性剤によるナノ粒子のサイズ分別法。
1. A surfactant and an organic solvent are added to a sol containing nano-sized fine particles formed into micelles, mixed uniformly, and then left for a while to be separated into an organic solvent emulsified phase and an aqueous phase. By sequentially performing the same operation as described above on the separated aqueous phase, the nano-sized fine particles in a monodispersed state are captured in each organic solvent emulsified phase, and the nanoparticles of the surfactant are used. Size separation method.
【請求項2】 請求項1において、界面活性剤としてア
ニオン系界面活性剤、また有機溶媒としてトルエンを用
いることを特徴とする、界面活性剤によるナノ粒子のサ
イズ分別法。
2. The method according to claim 1, wherein an anionic surfactant is used as a surfactant and toluene is used as an organic solvent.
JP29391298A 1998-10-15 1998-10-15 Surfactant size separation method for nanoparticles Expired - Lifetime JP3303129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29391298A JP3303129B2 (en) 1998-10-15 1998-10-15 Surfactant size separation method for nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29391298A JP3303129B2 (en) 1998-10-15 1998-10-15 Surfactant size separation method for nanoparticles

Publications (2)

Publication Number Publication Date
JP2000117094A JP2000117094A (en) 2000-04-25
JP3303129B2 true JP3303129B2 (en) 2002-07-15

Family

ID=17800770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29391298A Expired - Lifetime JP3303129B2 (en) 1998-10-15 1998-10-15 Surfactant size separation method for nanoparticles

Country Status (1)

Country Link
JP (1) JP3303129B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216067A (en) * 2004-02-19 2007-08-30 Univ Waseda Separation/recovery apparatus and separation/recovery method
WO2006030642A1 (en) * 2004-09-17 2006-03-23 National Institute Of Advanced Industrial Science And Technology Nanocapsule-type structure

Also Published As

Publication number Publication date
JP2000117094A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
Matter et al. From colloidal dispersions to aerogels: How to master nanoparticle gelation
Bibette Depletion interactions and fractionated crystallization for polydisperse emulsion purification
Binks et al. Interfacial structure of solid-stabilised emulsions studied by scanning electron microscopy
Midmore Effect of aqueous phase composition on the properties of a silica-stabilized W/O emulsion
US20040261574A1 (en) Method of producing gold nanoparticle
Binks et al. Influence of surfactant structure on the double inversion of emulsions in the presence of nanoparticles
Pal et al. Silver hydrosol, organosol, and reverse micelle-stabilized sol—a comparative study
Erler et al. Liquid–liquid phase transfer of magnetite nanoparticles—evaluation of surfactants
JP3303129B2 (en) Surfactant size separation method for nanoparticles
Eslamian et al. Recent advances in nanoparticle preparation by spray and microemulsion methods
Binks et al. Inversion of ‘dry water’to aqueous foam on addition of surfactant
CN111233083B (en) Method for accelerating adsorption and separation of oil-soluble substances by using magnetic Janus emulsion
CN108686575B (en) Composite emulsifier with magnetic response performance
US8551916B2 (en) Method for preparation of aqueous emulsion using interfacially active organic compound as emulsifying agent
CN109929635A (en) A kind of overstable Pickering diesel emulsion and preparation method thereof
Simovic et al. Hybrid lipid–silica microcapsules engineered by phase coacervation of Pickering emulsions to enhance lipid hydrolysis
Flach et al. Grinding media wear induced agglomeration of electrosteric stabilized particles
JP2001189290A (en) Chemical and machanical polishing (cmp) slurry
Yang et al. Controlled self-assembly of hydrophobic quantum dots through silanization
KR100837859B1 (en) Preparation method of colloidal clusters from emulsions using droplets comprising binary or bi-disperse colloidal dispersions
Periasamy et al. Fabrication of capillary-force-induced DNA-templated Ag wires assisted by enzymatic etching
EP3548098B1 (en) Magnetic organic core-inorganic shell material, production method thereof and uses of same for the magnetically stimulated delivery of substances of interest
Lebdioua et al. Aggregation behavior of one-patch inverse patchy particles: an experimental and numerical study
JP2002317201A (en) Water based nickel slurry, production method therefor and electrically coductive paste
Tanaka et al. Packing of submicrometer-sized polystyrene particles within the micrometer-sized recessed patterns on silicon substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term