JP3302972B2 - Method for detecting impulse line blockage in air purge measurement system - Google Patents

Method for detecting impulse line blockage in air purge measurement system

Info

Publication number
JP3302972B2
JP3302972B2 JP2000183301A JP2000183301A JP3302972B2 JP 3302972 B2 JP3302972 B2 JP 3302972B2 JP 2000183301 A JP2000183301 A JP 2000183301A JP 2000183301 A JP2000183301 A JP 2000183301A JP 3302972 B2 JP3302972 B2 JP 3302972B2
Authority
JP
Japan
Prior art keywords
impulse line
pressure
air purge
back pressure
guiding tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000183301A
Other languages
Japanese (ja)
Other versions
JP2002005772A (en
Inventor
貴文 中野
誠一 綿引
Original Assignee
核燃料サイクル開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 核燃料サイクル開発機構 filed Critical 核燃料サイクル開発機構
Priority to JP2000183301A priority Critical patent/JP3302972B2/en
Publication of JP2002005772A publication Critical patent/JP2002005772A/en
Application granted granted Critical
Publication of JP3302972B2 publication Critical patent/JP3302972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エアパージ測定シ
ステムにおいて用いられる計測用導圧管の先端付近に生
じる詰まりを、早期に確実に検知する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for early and reliable detection of clogging occurring near the tip of a measuring pressure guiding tube used in an air purge measuring system.

【0002】[0002]

【従来の技術】原子力関係施設においては、液位、液密
度、圧力等の物理量を測定するために、エアパージ測定
システムが幅広く採用されている。図6に、エアパージ
測定システムの一例として、エアパージ式密度計を示
す。このエアパージ式密度計は、貯槽1内の液中に2本
の導圧管2、3を挿入し、各導圧管の上部からエアパー
ジ装置4により一定流量の空気を供給し、各導圧管先端
より気泡を放出させる。このとき各導圧管内の空気圧
は、液体の深さH1 、H2 に相当する圧力となる。各導
圧管先端a点、b点における背圧をそれぞれP1 、P2
とすると P1 =ρ・H1 +P02 =ρ・H2 +P0 従って ρ=(P2 −P1 )/(H2 −H1 ) となり、H2 −H1 を一定として背圧P1 、P2 を測定
することによって液体の密度を求めることができる。こ
こで、 ρ :液体の密度 H1 :a点の高さ H2 :b点の高さ P1 :導圧管2内の背圧 P2 :導圧管3内の背圧 P0 :貯槽1内の圧力。
2. Description of the Related Art In nuclear facilities, an air purge measurement system is widely used to measure physical quantities such as liquid level, liquid density, and pressure. FIG. 6 shows an air purge type density meter as an example of the air purge measurement system. In this air purge type density meter, two impulse lines 2 and 3 are inserted into a liquid in a storage tank 1, air is supplied at a constant flow rate from an upper part of each impulse line by an air purge device 4, and bubbles are introduced from the end of each impulse line. Release. At this time, the air pressure in each pressure guiding tube is a pressure corresponding to the liquid depths H 1 and H 2 . The back pressures at the points a and b of the impulse tube tips are P 1 and P 2 respectively.
Back pressure to the P 1 = ρ · H 1 + P 0 P 2 = ρ · H 2 + P 0 Thus ρ = (P 2 -P 1) / (H 2 -H 1) . Therefore, the H 2 -H 1 as a constant and The density of the liquid can be determined by measuring P 1 and P 2 . Here, ρ: density of liquid H 1 : height at point a H 2 : height at point b P 1 : back pressure in pressure guiding tube 2 P 2 : back pressure in pressure guiding tube 3 P 0 : inside storage tank 1 Pressure.

【0003】なお、図6中の5は圧力検出器、6は圧力
検出器からの出力を記録する記録計、7は圧力検出器か
らの出力が所定の値を超えたときに警報を発する警報装
置である。
In FIG. 6, reference numeral 5 denotes a pressure detector, 6 denotes a recorder for recording the output from the pressure detector, and 7 denotes an alarm for issuing an alarm when the output from the pressure detector exceeds a predetermined value. Device.

【0004】このエアパージ測定システムにおいては、
貯槽内の液に浸されている導圧管の先端付近に塩の析出
による詰まりが発生して、導圧管内の背圧が上昇し、異
常な計測値を示すことがある。かような導圧管の詰まり
を検知するための従来からの方法としては、導圧管内の
背圧変動時間波形の固有振動数を測定し、この固有振動
数の上昇から、詰まりを検出する方法が提案されている
(特公平8−7130号)。
In this air purge measurement system,
Clogging due to salt precipitation may occur near the tip of the impulse tube immersed in the liquid in the storage tank, and the back pressure in the impulse tube may increase, resulting in abnormal measurement values. As a conventional method for detecting such blockage of the impulse line, a method of measuring the natural frequency of the back pressure fluctuation time waveform in the impulse line and detecting the blockage from the rise in the natural frequency is known. It has been proposed (Japanese Patent Publication No. 8-7130).

【0005】導圧管内の背圧は、導圧管先端部からの空
気の放出に伴い微少に変動する。導圧管先端部に詰まり
が発生し、先端部の径が小さくなり、放出される気泡が
小さくなると、エアパージの流量が一定であることか
ら、空気の放出周期が短くなる。このとき背圧変動時間
波形の固有振動数は、空気の放出周期に相当するため、
背圧変動時間波形の固有振動数も上昇する。このよう
に、導圧管内の背圧変動を測定しておけば、その固有振
動数の上昇から導圧管先端部の詰まりを検知することが
できる。
[0005] The back pressure in the pressure guiding tube fluctuates minutely with the release of air from the pressure guiding tube tip. If the distal end of the pressure guiding tube is clogged, the diameter of the distal end is reduced, and the amount of released bubbles is reduced, the flow rate of the air purge is constant, and the discharge period of air is shortened. At this time, the natural frequency of the back pressure fluctuation time waveform corresponds to the air discharge cycle,
The natural frequency of the back pressure fluctuation time waveform also increases. As described above, if the back pressure fluctuation in the pressure guiding tube is measured, the clogging of the pressure guiding tube tip can be detected from the rise in the natural frequency.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、導圧管
詰まり現象の初期の段階においては、塩の析出は導圧管
先端部よりやや上方に発生する傾向がある。このような
場合には、導圧管先端部の径は変化せず、従って、気泡
の放出周期も変化しないため、背圧変動の固有振動数が
変化しない。このため詰まり現象の初期段階において
は、上記した従来の方法では導圧管の詰まりを確実に検
知することが難しくなる。
However, in the early stage of the impulse line clogging phenomenon, salt precipitation tends to occur slightly above the end of the impulse line. In such a case, the diameter of the leading end of the pressure guiding tube does not change, and therefore, the cycle of releasing bubbles does not change, so that the natural frequency of the back pressure fluctuation does not change. For this reason, in the initial stage of the clogging phenomenon, it is difficult to reliably detect the clogging of the pressure guiding tube by the above-described conventional method.

【0007】また、貯槽内の液をポンプで循環させてい
る場合等には、貯槽内の液面に常に一定の乱れが生じて
いる。このような場合には、導圧管からの空気の放出に
伴う微少な背圧変動に比べ、液面の乱れに由来する導圧
管内の圧力変動が大きくなり、導圧管内背圧変動の固有
振動数を確実に測定することができないため、上記した
従来の方法が適用できない。
[0007] Further, when the liquid in the storage tank is circulated by a pump, the liquid level in the storage tank is constantly disturbed. In such a case, the pressure fluctuation in the impulse line due to the turbulence of the liquid level becomes larger than the minute back pressure fluctuation due to the discharge of air from the impulse line, and the natural vibration of the back pressure fluctuation in the impulse line Since the number cannot be reliably measured, the above-described conventional method cannot be applied.

【0008】そこで本発明は、エアパージ測定システム
の導圧管先端付近に発生する詰まり現象を、初期の段階
でも早期に確実に検知することができ、さらには、貯槽
内の液をポンプで循環させた場合等に生じる液面の乱れ
に由来する導圧管内の背圧変動があっても、導圧管詰ま
り現象を確実に検知することができる、新規かつ改良さ
れた導圧管詰まり検知方法を提供することを目的として
なされたものである。
Therefore, according to the present invention, a clogging phenomenon occurring near the leading end of a pressure guiding tube of an air purge measuring system can be reliably detected at an early stage even at an early stage, and the liquid in the storage tank is circulated by a pump. To provide a new and improved impulse line detection method capable of reliably detecting an impulse line clogging phenomenon even when there is a back pressure fluctuation in the impulse line due to a liquid level disturbance that occurs in some cases. It was made for the purpose of.

【0009】[0009]

【課題を解決するための手段】すなわち本発明によるエ
アーパージ測定システムの導圧管詰まり検知方法は、液
内に挿入した計測用導圧管を通して一定量の空気を液内
にパージしたときに前記導圧管に発生する背圧を測定す
るエアパージ測定システムで用いられる前記導圧管の詰
まりを検知する方法であって、前記導圧管の背圧変動時
間波形を測定し、この背圧変動時間波形の周波数解析を
行って得られたパワースペクトラムにおける高周波数成
分の減衰により前記導圧管の詰まりを検知することを特
徴とするものである。
That is, a method of detecting a blockage of a pressure guiding tube of an air purge measuring system according to the present invention is characterized in that the pressure guiding tube is purged when a certain amount of air is purged into the liquid through a measuring pressure guiding tube inserted into the liquid. A method for detecting clogging of the impulse line used in the air purge measurement system that measures the back pressure generated in the impulse line, wherein a back pressure fluctuation time waveform of the impulse line is measured, and a frequency analysis of the back pressure fluctuation time waveform The blockage of the pressure guiding tube is detected by the attenuation of the high frequency component in the power spectrum obtained by performing the operation.

【0010】[0010]

【発明の実施の形態】本発明の方法を実施するに際して
好ましく使用できる装置例を図1に示す。なお、エアパ
ージ測定システム自体は図6に示した構成と同様なもの
であるから、図6のシステムと同じ部材は同じ参照番号
を付すことにより説明を省略する。図1の装置によれ
ば、エアーパージ測定システムの導圧管2、3内の背圧
変動時間波形を圧力センサー8で測定し、これを演算装
置9に入力する。演算装置9においては周波数解析を行
ない、パワースペクトラムを得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an apparatus which can be preferably used in carrying out the method of the present invention. Since the air purge measurement system itself has the same configuration as that shown in FIG. 6, the same members as those in the system of FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted. According to the apparatus shown in FIG. 1, the back pressure fluctuation time waveform in the pressure guiding tubes 2 and 3 of the air purge measurement system is measured by the pressure sensor 8 and input to the arithmetic unit 9. The arithmetic unit 9 performs frequency analysis to obtain a power spectrum.

【0011】図2は、導圧管2または3に詰まりがない
状態を示している。かような詰まりがない状態で測定さ
れた背圧変動時間波形を図4Aに、この背圧変動時間波
形の周波数解析により得られたパワースペクトラムを図
4Bにそれぞれ示す。
FIG. 2 shows a state where the pressure guiding tube 2 or 3 is not clogged. FIG. 4A shows a back pressure fluctuation time waveform measured without such clogging, and FIG. 4B shows a power spectrum obtained by frequency analysis of the back pressure fluctuation time waveform.

【0012】一方、図3は、導圧管2または3の先端部
よりやや上方で塩の析出物10による詰まりがある状態
を示している。かような詰まりがある状態で測定された
背圧変動時間波形を図5Aに、この背圧変動時間波形の
周波数解析により得られたパワースペクトラムを図5B
にそれぞれ示す。
On the other hand, FIG. 3 shows a state where there is a clogging with a salt precipitate 10 slightly above the tip of the pressure guiding tube 2 or 3. FIG. 5A shows a back pressure fluctuation time waveform measured in a state where there is such clogging, and FIG. 5B shows a power spectrum obtained by frequency analysis of this back pressure fluctuation time waveform.
Are shown below.

【0013】図4および図5に例示した背圧変動時間波
形およびパワースペクトラムの測定は、液温50℃の3
0%塩化ナトリウム水溶液を貯槽に入れ、内径14mm
の導圧管を液浸深さ10cmとなるように液内に挿入
し、パージエア流量を7NL(リットル)/hの条件で
行ったものである。また、図3に示したような導圧管の
詰まり状態とするために、導圧管先端から5mm上方の
位置に、詰まりを模擬したオリフィス(内径3.5m
m、幅20mm)を取りつけた。
The measurement of the back pressure fluctuation time waveform and the power spectrum illustrated in FIGS.
Put 0% aqueous sodium chloride solution in the storage tank, inner diameter 14mm
Was introduced into the liquid so as to have a liquid immersion depth of 10 cm, and the purge air flow rate was set at 7 NL (liter) / h. In order to make the pressure guiding tube clogged as shown in FIG. 3, an orifice (3.5 m inner diameter) simulating the clogging was placed at a position 5 mm above the tip of the pressure guiding tube.
m, width 20 mm).

【0014】詰まりのない状態の導圧管により得られた
図4Bのパワースペクトラムからわかるように、このス
ペクトラムにおいては、8Hz未満に見られるピーク群
と、8〜35Hzの間に見られるピーク群の2つのピー
ク群が現れている。本発明において「高周波数成分」と
は、これら2つのピーク群のうちの高い方の周波数、す
なわち図示の例では8〜35Hzの成分を指している。
As can be seen from the power spectrum of FIG. 4B obtained by the impulse line without clogging, in this spectrum, there are two groups of peaks observed below 8 Hz and peaks observed between 8 and 35 Hz. Two peak groups appear. In the present invention, the “high frequency component” refers to the higher frequency of the two peak groups, that is, the component of 8 to 35 Hz in the illustrated example.

【0015】かようなピーク群の位置(周波数)は、導
圧管の内径、パージエアの流量、測定液の表面張力や密
度により変動するが、2つのピーク群が現れるという特
徴は変わらない。また、高周波数成分の周波数範囲は、
測定対象となるエアパージ測定システム毎に実測あるい
は計算により決定することができる。
The position (frequency) of such a peak group varies depending on the inner diameter of the pressure guiding tube, the flow rate of the purge air, the surface tension and the density of the measurement solution, but the characteristic that two peak groups appear does not change. Also, the frequency range of the high frequency component is
It can be determined by actual measurement or calculation for each air purge measurement system to be measured.

【0016】導圧管が詰まった状態において得られた図
5Bのパワースペクトラムを、図4Bと比較すると、8
〜35Hzの間の高周波数成分が減衰していることがわ
かる。高周波数成分のかような減衰は、詰まりにより導
圧管の径が小さくなった部分が、導圧管内背圧変動のう
ちの特に高い周波数の成分の伝達を妨げるためと考えら
れる。
The power spectrum of FIG. 5B obtained when the impulse line is clogged is compared with FIG. 4B.
It can be seen that high frequency components between 35 Hz and 35 Hz are attenuated. It is considered that such a high-frequency component attenuation is caused by a portion where the diameter of the impulse line becomes small due to clogging, which prevents transmission of a particularly high frequency component of the back pressure fluctuation in the impulse line.

【0017】減衰しているか否かの実際の判断は、高周
波数成分の範囲のパワースペクトル密度を積分した値を
比較することが好ましい。積分値は下記式により求める
ことができる。
The actual determination as to whether or not the signal is attenuated is preferably made by comparing values obtained by integrating power spectral densities in a range of high frequency components. The integral value can be obtained by the following equation.

【0018】[0018]

【数1】 (Equation 1)

【0019】上式中、P(f)は周波数fにおけるパワ
ースペクトル密度であり、f1 〜f 2 は高周波数成分の
周波数範囲である。つまりこの積分値は、例えば図4B
と図5Bに示す斜線部分の面積を表す。これらの積分値
を比較すると、図5B(導圧管が詰まった状態)の方が
図4B(導圧管が詰まっていない状態)と比較して約3
5%少ない値となっている。
In the above equation, P (f) is the power at frequency f.
-The spectral density, f1~ F TwoIs the high frequency component
Frequency range. That is, this integral value is, for example,
And the area of the hatched portion shown in FIG. 5B. These integrals
5B (when the impulse line is clogged)
About 3 times as compared with FIG.
The value is 5% less.

【0020】なお、図5Bのパワースペクトラムにおけ
る8Hz未満の低周波数成分についても、図4Bに比べ
て多少は減衰するが、減衰の割合は高周波数成分に比べ
て少ないため、本発明においては高周波数成分の減衰の
みを判断すればよい。
Although the low frequency component of less than 8 Hz in the power spectrum of FIG. 5B is slightly attenuated as compared with FIG. 4B, the rate of attenuation is smaller than that of the high frequency component. Only the attenuation of the component needs to be determined.

【0021】本発明の方法を実施するに際しては、図1
のごとき装置を用いて、導圧管の背圧変動時間波形のパ
ワースペクトラムを継続的に観測し、高周波数成分の減
衰から、導圧管の詰まりを早期かつ確実に検知すること
ができる。
In carrying out the method of the present invention, FIG.
By using a device such as described above, the power spectrum of the back pressure fluctuation time waveform of the impulse line can be continuously observed, and clogging of the impulse line can be detected early and reliably from the attenuation of the high frequency component.

【0022】また、貯槽内の液をポンプで循環させてい
る場合等、貯槽内の液の液面に常に一定の乱れが生じて
いる場合においても、液面の乱れに由来する圧力変動も
含めた導圧管内の背圧変動を測定し、パワースペクトラ
ムを観測すると、導圧管の詰まり発生時には、同様に高
周波数成分の減衰が認められるため、本発明の検知方法
を効果的に適用することができる。
Further, even when the liquid level in the storage tank is constantly disturbed, such as when the liquid in the storage tank is circulated by a pump, the pressure fluctuation caused by the liquid level disturbance is included. By measuring the back pressure fluctuation in the impulse line, and observing the power spectrum, when clogging of the impulse line occurs, high frequency components are similarly attenuated, so that the detection method of the present invention can be effectively applied. it can.

【0023】[0023]

【発明の効果】上述したところからわかるように、本発
明の導圧管詰まり検知方法によれば、導圧管の先端付近
に発生した詰まり現象を、従来の検知方法より早期かつ
確実に検知することができる。
As can be seen from the above description, according to the pressure guiding tube blockage detecting method of the present invention, the clogging phenomenon occurring near the tip of the pressure guiding tube can be detected earlier and more reliably than the conventional detection method. it can.

【0024】さらに、貯槽内の液面の乱れに由来するよ
る圧力変動が液内に生じている場合でも、導圧管の詰ま
り現象を確実に検知することができる。
Furthermore, even when pressure fluctuations due to disturbances in the liquid level in the storage tank occur in the liquid, the clogging of the pressure guiding tube can be reliably detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するための装置の実施例を示
す説明図。
FIG. 1 is an explanatory view showing an embodiment of an apparatus for performing the method of the present invention.

【図2】導圧管に詰まりがない状態を示す説明図。FIG. 2 is an explanatory view showing a state in which a pressure guiding tube is not clogged.

【図3】導圧管先端部よりやや上方で詰まりがある状態
を示す説明図。
FIG. 3 is an explanatory view showing a state where there is a clogging slightly above a pressure guiding tube tip.

【図4】図4Aは、導圧管に詰まりがない状態での背圧
変動時間波形の例。図4Bは、図4Aの背圧変動時間波
形の周波数解析により得られたパワースペクトラム。
FIG. 4A is an example of a back pressure fluctuation time waveform in a state where the pressure guiding tube is not clogged. FIG. 4B is a power spectrum obtained by frequency analysis of the back pressure fluctuation time waveform of FIG. 4A.

【図5】図5Aは、導圧管先端付近に詰まりがある状態
での背圧変動時間波形の例。図5Bは、図5Aの背圧変
動時間波形の周波数解析により得られたパワースペクト
ラム。
FIG. 5A is an example of a back pressure fluctuation time waveform in a state where clogging is present near the leading end of a pressure guiding tube. FIG. 5B is a power spectrum obtained by frequency analysis of the back pressure fluctuation time waveform of FIG. 5A.

【図6】エアパージ測定システムの一例としてのエアパ
ージ式密度計の説明図。
FIG. 6 is an explanatory diagram of an air purge type density meter as an example of an air purge measurement system.

【符号の説明】[Explanation of symbols]

1:貯槽 2、3:導圧管 4:エアーパージ装置 5:圧力検出器 6:記録計 7:警報装置 8:圧力センサー 9:演算装置 10:析出物 1: Storage tank 2, 3: Pressure guide tube 4: Air purge device 5: Pressure detector 6: Recorder 7: Alarm device 8: Pressure sensor 9: Operation device 10: Deposit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G01N 9/28 G01N 9/28 Z (56)参考文献 特開2001−264228(JP,A) 特開 平11−14528(JP,A) 特開 平7−159261(JP,A) 特開 平4−198829(JP,A) 中野貴文他,計測用配管詰まり診断装 置の開発,日本原子力学会秋の大会予稿 集,日本,日本原子力学会,第2001巻 第2分冊,p320 福田一仁他,計測用詰まり予知・除去 装置,動燃技報,日本,(旧)動力炉核 燃料開発事業団,第96巻,p71−75 TANAKA N,et.al,De velopment of highl y reliable air pur ge and declogging system at the Toka i Reprocessing Pla nt,Proc RECOD 91,日 本,Vol.2,p.863−868 (58)調査した分野(Int.Cl.7,DB名) G01L 27/00 G01N 9/28 G01M 3/28 G01F 23/18 G01F 25/00 G01L 7/00 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI G01N 9/28 G01N 9/28 Z (56) References JP-A-2001-264228 (JP, A) JP-A-11-14528 (JP) , A) JP-A-7-159261 (JP, A) JP-A-4-198829 (JP, A) Takafumi Nakano et al., Development of diagnostic equipment for clogging of piping for measurement, Proceedings of Autumn Meeting of the Atomic Energy Society of Japan, Japan, Atomic Energy Society of Japan, Vol. 2001, 2nd volume, p320 Kazuhito Fukuda et al., Clogging prediction and removal equipment for measurement, JASDF, Japan, (former) Power Reactor Nuclear Fuel Development Corp., Vol. 96, p71-75 TANAKA N, et. al, Development of highly reliable air purge and declogging system at the Tokai Reprocessing Plant, Proc RECOD 91, Japan, Vol. 2, p. 863-868 (58) Fields investigated (Int. Cl. 7 , DB name) G01L 27/00 G01N 9/28 G01M 3/28 G01F 23/18 G01F 25/00 G01L 7/00 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液内に挿入した計測用導圧管を通して一
定量の空気を液内にパージしたときに前記導圧管に発生
する背圧を測定するエアパージ測定システムで用いられ
る前記導圧管の詰まりを検知する方法であって、前記導
圧管の背圧変動時間波形を測定し、この背圧変動時間波
形の周波数解析を行って得られたパワースペクトラムに
おける高周波数成分の減衰により前記導圧管の詰まりを
検知することを特徴とするエアパージ測定システムの導
圧管詰まり検知方法。
An air purge measurement system for measuring a back pressure generated in a pressure impulse pipe when a predetermined amount of air is purged into the liquid through a measurement pressure impulse pipe inserted into the liquid. A method for detecting, by measuring a back pressure fluctuation time waveform of the impulse line, and performing a frequency analysis of the back pressure fluctuation time waveform to reduce clogging of the impulse line due to attenuation of a high frequency component in a power spectrum obtained. A method for detecting pressure blockage in a pressure guiding tube of an air purge measurement system, comprising:
JP2000183301A 2000-06-19 2000-06-19 Method for detecting impulse line blockage in air purge measurement system Expired - Fee Related JP3302972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000183301A JP3302972B2 (en) 2000-06-19 2000-06-19 Method for detecting impulse line blockage in air purge measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000183301A JP3302972B2 (en) 2000-06-19 2000-06-19 Method for detecting impulse line blockage in air purge measurement system

Publications (2)

Publication Number Publication Date
JP2002005772A JP2002005772A (en) 2002-01-09
JP3302972B2 true JP3302972B2 (en) 2002-07-15

Family

ID=18683904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000183301A Expired - Fee Related JP3302972B2 (en) 2000-06-19 2000-06-19 Method for detecting impulse line blockage in air purge measurement system

Country Status (1)

Country Link
JP (1) JP3302972B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249000B2 (en) * 2008-12-01 2013-07-31 アズビル株式会社 Impulse tube clogging diagnosis device and clogging diagnosis method
JP5302178B2 (en) 2009-12-21 2013-10-02 アズビル株式会社 Impulse tube clogging diagnosis device and clogging diagnosis method
SE1250440A1 (en) * 2012-05-03 2013-11-04 Scania Cv Ab Method for indicating the function of a pressure sensor, and a single indication device in connection with the method
US20140072085A1 (en) * 2012-09-11 2014-03-13 Ge-Hitachi Nuclear Energy Americas Llc Method and system for a spent fuel pool level measurement without electrical power
CN104568309A (en) * 2014-12-23 2015-04-29 长春轨道客车股份有限公司 Function testing method of air conditioner pressure wave sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TANAKA N,et.al,Development of highly reliable air purge and declogging system at the Tokai Reprocessing Plant,Proc RECOD 91,日本,Vol.2,p.863−868
中野貴文他,計測用配管詰まり診断装置の開発,日本原子力学会秋の大会予稿集,日本,日本原子力学会,第2001巻 第2分冊,p320
福田一仁他,計測用詰まり予知・除去装置,動燃技報,日本,(旧)動力炉核燃料開発事業団,第96巻,p71−75

Also Published As

Publication number Publication date
JP2002005772A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US4696191A (en) Apparatus and method for void/particulate detection
KR100822776B1 (en) Flow condition monitoring system and method
US3854323A (en) Method and apparatus for monitoring the sand concentration in a flowing well
EP2893301B1 (en) Self-diagnosing differential pressure flow meter
JP3344742B2 (en) Method and apparatus for detecting fluid leaks from tubes
EP0880681A1 (en) Method and devices used in flow measurement
CN109668723B (en) Regulating valve cavitation diagnosis system and diagnosis method thereof
US7542860B2 (en) Method and device for detecting the location of a pulse-type mechanical effect on a system part
JP3302972B2 (en) Method for detecting impulse line blockage in air purge measurement system
US4926675A (en) Air detector for liquid-filled sensing lines
JP2002236084A (en) Method and device for measuring concentration of mixed suspended matter
Xu et al. Bubble detection in sodium flow using EVFM and correlation coefficient calculation
JPS59176643A (en) Measuring device for fine leakage of valve
JP2021526218A (en) Vortex flowmeter to detect flow instability
KR20140011266A (en) Equipment for diagnosing blockage of lead pipe and method for diagnosing blockage of lead pipe
CN110260931B (en) Liquid propellant pipeline flow field quality evaluation system and evaluation method
US4858460A (en) Air detector for liquid-filled sensing lines
JPH04235380A (en) Detecting device of extraneous substance in fluid inside tube
CN110455465B (en) Frequency fluctuation-based sodium bubble detection signal processing method
CN104089685B (en) Improve the conforming method of transit time ultrasonic ripple heat quantity flow measurement error
RU2243508C2 (en) Method for measuring steam flowrate in steam line
JP2765456B2 (en) Pipeline leak detection method
CN105181027B (en) Gas-liquid two-phase reverse flow detection means in pipe
RU2087704C1 (en) Method for determining output of operating gas well
JP3117842B2 (en) Gas leak detection method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees