JP3302131B2 - Current compensation type undervoltage relay - Google Patents

Current compensation type undervoltage relay

Info

Publication number
JP3302131B2
JP3302131B2 JP27619093A JP27619093A JP3302131B2 JP 3302131 B2 JP3302131 B2 JP 3302131B2 JP 27619093 A JP27619093 A JP 27619093A JP 27619093 A JP27619093 A JP 27619093A JP 3302131 B2 JP3302131 B2 JP 3302131B2
Authority
JP
Japan
Prior art keywords
value
voltage
output
voltage vector
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27619093A
Other languages
Japanese (ja)
Other versions
JPH07111727A (en
Inventor
隆文 前田
充 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP27619093A priority Critical patent/JP3302131B2/en
Publication of JPH07111727A publication Critical patent/JPH07111727A/en
Application granted granted Critical
Publication of JP3302131B2 publication Critical patent/JP3302131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は送電線の事故を検出する
ための電流補償形不足電圧継電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current compensation type undervoltage relay for detecting a fault in a transmission line.

【0002】[0002]

【従来の技術】電流補償形不足電圧継電器としては、例
えば特許第1339128号がある。これは図10に示す
ように、電流I−電圧V平面上の原点Oを中心とし半径
K′の円弧及び補償ベクトルZIの先端Pを中心とし、
半径K′の円弧及びこれらの円弧に接する線分で囲まれ
る、所謂運動場形の動作範囲を有するもので、静特性と
して送電線の事故を検出するのに適している。
2. Description of the Related Art Japanese Patent No. 1339128 discloses a current compensation type undervoltage relay. This is, as shown in FIG. 10, centered on the origin O on the current I-voltage V plane, centered on the arc of radius K 'and the tip P of the compensation vector ZI,
It has a so-called motion-field-shaped operating range surrounded by arcs having a radius K 'and segments in contact with these arcs, and is suitable for detecting a transmission line accident as static characteristics.

【0003】[0003]

【発明が解決しようとする課題】しかし、その判定原理
は瞬時値によるものであり、昨今の厳しい系統条件によ
る事故時電圧電流の波形歪の影響を防止するには十分な
フィルタリングを要する。又、この原理では半周期に1
点の瞬時値が実際上動作限界を決定し、その有効な判定
タイミングまでの待ち時間を要する。これらは何れも動
作の遅れを意味する。所謂積形アルゴリズムによりベク
トルの内積や外積を使用することにより、半周期に1点
ではなく連続的に、即ち、各サンプリング時点で有効な
判定をすることは可能であるが、基本波に着目したもの
であり、やはり十分なフィルタリングを要する。本発明
は上記事情に鑑みてなされたものであり、連続的な判定
が可能で、かつフィルタリングが少なく早い応答の得ら
れる電流補償形不足電圧継電器を提供することを目的と
している。
However, the principle of the determination is based on the instantaneous value, and sufficient filtering is required to prevent the influence of the waveform distortion of the voltage and current at the time of an accident due to recent severe system conditions. According to this principle, one half cycle
The instantaneous value of the point actually determines the operating limit and requires a waiting time until its effective determination timing. Any of these means a delay in operation. By using the inner product and outer product of the vector by the so-called product algorithm, it is possible to make a valid decision continuously instead of one point in a half cycle, that is, at each sampling time, but focused on the fundamental wave And still requires sufficient filtering. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a current compensation type undervoltage relay capable of performing continuous determination and having a small response with a small filtering.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1に係る
電流補償形不足電圧継電器は、電圧サンプル値及び電流
サンプル値を入力とし、送電線の対象区間のインダクタ
ンス及び抵抗をもとに前記対象区間の線路電圧降下を計
算し、系統周波数の半周期あるいは1周期を所定期間と
すると共に、前記電圧サンプル値の2乗の前記所定期間
における和よりなる第1の値と、前記電圧サンプル値と
前記線路電圧降下との積の前記所定期間における和より
なる第2の値と、前記線路電圧降下の2乗の前記所定期
間における和よりなる第3の値とを計算する計算手段
と、前記第1の値が所定値以下の時、あるいは前記第1
の値と第3の値との和から前記第2の値の2倍を差し引
いた値が前記所定値以下の時、あるいは前記第2の値が
正で前記第3の値以下、かつ前記第2の値の2乗を前記
第3の値で除した値を前記第1の値から差し引いた値が
前記所定値以下の時、の何れかの時に出力を生ずる判定
手段とを備える。
A current compensation type undervoltage relay according to a first aspect of the present invention receives a voltage sample value and a current sample value as inputs, and performs the above operation based on inductance and resistance of a target section of a transmission line. A line voltage drop in a target section is calculated, and a half period or one period of a system frequency is set as a predetermined period, and a first value which is a sum of a square of the voltage sample value in the predetermined period and the voltage sample value Calculating means for calculating a second value that is a sum of the product of the line voltage drop and the line voltage drop in the predetermined period, and a third value that is a sum of the square of the line voltage drop in the predetermined period, When the first value is equal to or less than a predetermined value, or when the first value
When the value obtained by subtracting twice the second value from the sum of the second value and the third value is equal to or less than the predetermined value, or when the second value is positive and equal to or less than the third value, and Determining means for generating an output when a value obtained by subtracting a value obtained by dividing a square of a value of 2 by the third value from the first value is equal to or less than the predetermined value;

【0005】本発明の請求項2に係る電流補償形不足電
圧継電器は、電圧サンプル値及び電流サンプル値を入力
とし、送電線の対象区間のインダクタンス及び抵抗をも
とに前記対象区間の線路電圧降下を計算し、系統周波数
の半周期あるいは1周期を所定期間とすると共に、前記
電圧サンプル値の2乗の前記所定期間における和よりな
る第1の値と、前記電圧サンプル値と前記線路電圧降下
との積の前記所定期間における和よりなる第2の値と、
前記線路電圧降下の2乗の前記所定期間における和より
なる第3の値とを計算する計算手段と、前記第1の値が
所定値以下の時、あるいは前記第1の値が所定値以下の
時、あるいは前記第1の値が所定値と前記第2の値の2
倍との和から前記第3の値を差し引いた値以下の時、あ
るいは前記第1の値が前記所定値と前記第2の値との和
以下、かつ、前記第1の値が前記第2の値の2乗を前記
第3の値で除した値と前記所定値との和以下の時、の何
れかの時に出力を生ずる判定手段とする。
A current compensation type undervoltage relay according to a second aspect of the present invention receives a voltage sample value and a current sample value as inputs, and determines a line voltage drop in the target section based on the inductance and resistance of the target section of the transmission line. Is calculated, and a half cycle or one cycle of the system frequency is set as a predetermined period, and a first value which is a sum of the square of the voltage sample value in the predetermined period, the voltage sample value, the line voltage drop, A second value that is the sum of the product of
Calculating means for calculating a third value, which is a sum of the square of the line voltage drop in the predetermined period, when the first value is equal to or less than a predetermined value, or when the first value is equal to or less than a predetermined value. Time, or the first value is a predetermined value and the second value
When the third value is less than or equal to a value obtained by subtracting the third value from the sum of the times, or when the first value is less than or equal to the sum of the predetermined value and the second value, and when the first value is the second value. When the value is equal to or less than the sum of the value obtained by dividing the square of the value by the third value and the predetermined value, an output is generated in any of the following cases.

【0006】本発明の請求項3に係る電流補償形不足電
圧継電器は、不足電圧要素,オフセット要素,平行要素
及び論理和要素からなり、前記不足電圧要素は電圧ベク
トルの大きさが所定値以下の時出力を生じ、前記オフセ
ット要素はインピーダンス降下からなる第2の電圧ベク
トルにて前記電圧ベクトルを補償してなる第3の電圧ベ
クトルの大きさが所定値以下の時出力を生じ、前記平行
要素は縦要素,横要素及び論理積要素を有し、前記縦要
素は前記電圧ベクトルと前記第2の電圧ベクトルと前記
第3の電圧ベクトルの各大きさから求めた前記第2の電
圧ベクトルに対する前記電圧ベクトルの先端からの垂線
の足が前記第2の電圧ベクトルの範囲内にある時出力を
生じ、前記横要素は前記垂線の長さが所定値以下の時出
力を生じ、前記論理積要素は前記縦要素と前記横要素と
が共に出力を生じた時出力を生じ、前記論理和要素は前
記不足電圧要素,前記オフセット要素あるいは前記平行
要素の何れかの出力が生じた時出力を生ずるようにし
た。
According to a third aspect of the present invention, there is provided a current compensation type undervoltage relay comprising an undervoltage element, an offset element, a parallel element, and an OR element, wherein the undervoltage element has a voltage vector of a predetermined value or less. The offset element generates an output when the magnitude of a third voltage vector obtained by compensating the voltage vector with a second voltage vector consisting of an impedance drop is equal to or less than a predetermined value. A vertical element, a horizontal element, and a logical AND element, wherein the vertical element is the voltage with respect to the second voltage vector obtained from the magnitudes of the voltage vector, the second voltage vector, and the third voltage vector. The output occurs when the foot of the perpendicular from the vector tip is within the range of the second voltage vector, and the lateral element produces an output when the length of the perpendicular is less than or equal to a predetermined value. The product element produces an output when both the vertical element and the horizontal element produce an output, and the OR element produces an output when any of the undervoltage element, the offset element or the parallel element produces an output. Was to occur.

【0007】本発明の請求項4に係る電流補償形不足電
圧継電器は、請求項3において、縦要素は前記電圧ベク
トル及び前記第3の電圧ベクトルの各大きさが共に所定
値以下の時出力を生ずるようにした。
According to a fourth aspect of the present invention, in the current compensation type undervoltage relay according to the third aspect, the vertical element outputs an output when each of the magnitudes of the voltage vector and the third voltage vector is less than a predetermined value. Was to occur.

【0008】本発明の請求項5に係る電流補償形不足電
圧継電器は、請求項3において、縦要素は前記第2の電
圧ベクトルの1/2の電圧ベクトルで前記電圧ベクトル
を補償してなる第4の電圧ベクトルの大きさが所定値以
下の時に出力を生ずるようにした。
According to a fifth aspect of the present invention, in the current compensation type undervoltage relay according to the third aspect, the vertical element is configured to compensate the voltage vector with a voltage vector that is 1 / of the second voltage vector. An output is generated when the magnitude of the voltage vector of No. 4 is equal to or smaller than a predetermined value.

【0009】本発明の請求項6に係る電流補償形不足電
圧継電器は、請求項1において、前記所定期間は系統周
波数の半周期あるいは1周期のn/2周期あるいはn周
期(但し、nは正の整数)とした。
According to a sixth aspect of the present invention, in the current compensation type undervoltage relay according to the first aspect, the predetermined period is a half cycle of a system frequency, n / 2 cycles of one cycle or n cycles (where n is a positive value). Integer).

【0010】[0010]

【作用】本発明の請求項1及び請求項2に係る電流補償
形不足電圧継電器は、両者とも自端電圧電流から対象区
間の範囲内で線路電圧降下を補償した電圧の実効値に比
例する量が最小となる点を求め、この実効値が所定値以
下の時送電線の事故と判定するものである。そして送電
線の対象区間の中で電圧実効値が最小となる地点を導出
して、対象区間の事故を検出しているので連続的判定が
可能である。又、このような地点は略事故点であり、事
故点の電圧は通常十分に降下するので、自端電圧電流に
歪があっても、歪の影響を受け難い。事故点抵抗が大き
く事故点残留電圧が大きい場合には、大きい事故点抵抗
により過渡振動の減衰時定数が短くなり、急速に減衰す
るので、過渡振動成分の影響を受け難い。従ってフィル
タリングはサンプリングに必要な簡単なものでよく、早
い応答が得られる。なかんずく、請求項2は請求項1の
判定式を変形したものである。
The current-compensated undervoltage relay according to the first and second aspects of the present invention is characterized in that the current-compensated undervoltage relay is proportional to the effective value of the voltage that compensates for the line voltage drop within the range of the target section from the self-terminal voltage / current. Is determined, and when this effective value is less than or equal to a predetermined value, it is determined that a transmission line accident has occurred. Then, a point where the effective voltage value is minimized in the target section of the transmission line is derived and an accident in the target section is detected, so that continuous determination is possible. In addition, such a point is almost a fault point, and the voltage at the fault point usually drops sufficiently, so that even if there is a distortion in the self-terminal voltage / current, it is hardly affected by the distortion. When the fault point resistance is large and the fault point residual voltage is large, the transient fault decay time constant is shortened due to the large fault point resistance and rapidly attenuates, so that it is hardly affected by the transient vibration component. Therefore, the filtering can be simple as required for sampling, and a fast response can be obtained. In particular, claim 2 is a modification of the determination formula of claim 1.

【0011】本発明の請求項3,請求項4,請求項5に
係る電流補償形不足電圧継電器は、いずれも交流量の大
きさのみを基に判定する方式としたものであり、電圧の
大きさ,インピーダンス降下でなる第2の電圧の大きさ
及び前記電圧と第2の電圧との差でなる第3の電圧の大
きさによって判定するようにした。この場合、交流量の
瞬時値を直接使用せず、大きさのみを基にするので、演
算の基になる量が平均化された量であり、前置フィルタ
を簡単なものにできる。特に所謂整流加算形アルゴリズ
ムにより大きさを演算すれば、平均値を意味し、それ自
体フィルタ効果を有するので特別な前置フィルタを要し
ない。なかんずく、請求項4,請求項5は請求項3の判
定式の一部を変形したものである。
The current compensation type undervoltage relay according to claim 3, claim 4, or claim 5 of the present invention is of a type in which the determination is made based only on the magnitude of the alternating current. The determination is made based on the magnitude of the second voltage represented by the impedance drop and the magnitude of the third voltage represented by the difference between the voltage and the second voltage. In this case, since the instantaneous value of the AC amount is not directly used and is based only on the magnitude, the amount on which the calculation is based is an averaged amount, and the pre-filter can be simplified. In particular, if the magnitude is calculated by a so-called rectification addition type algorithm, it means an average value, and has a filtering effect itself, so that no special pre-filter is required. In particular, claims 4 and 5 are modifications of a part of the judgment formula of claim 3.

【0012】本発明の請求項6に係る電流補償形不足電
圧継電器は、請求項1において前記所定期間は系統周波
数のn/2周期あるいはn周期(但し、nは正の整数)
とすることにより、より一般化させたものである。
According to a sixth aspect of the present invention, in the current compensation type undervoltage relay according to the first aspect, the predetermined period is n / 2 cycles or n cycles of a system frequency (where n is a positive integer).
By doing so, it is more generalized.

【0013】[0013]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明による電流補償形不足電圧継電器を説明する一
実施例のブロック図である。図1において、1は計算手
段(計算ステップ)、2は判定手段(判定ステップ)で
ある。そして計算手段1は電圧サンプル値vm 及び電流
サンプル値im を入力として、(1) 式によりA,B及び
Dを計算して出力する。
An embodiment will be described below with reference to the drawings. FIG.
FIG. 1 is a block diagram of an embodiment for explaining a current compensation type undervoltage relay according to the present invention. In FIG. 1, reference numeral 1 denotes calculation means (calculation step) and reference numeral 2 denotes determination means (determination step). The calculating unit 1 as an input voltage sample values v m and the current sample value i m, and calculates and outputs A, B and D by (1).

【数1】 なお、R及びLは夫々送電線の対象区間の抵抗及びイン
ダクタンス、添え字mは通常の表記法に従ってサンプリ
ング時点を表し、Σは系統周波数の半周期又は1周期に
わたる和を表すものとする。i′m は電流の微分値に相
当する量で、周知の手法例えば特許第1660533号
によって実現できる。
(Equation 1) Note that R and L represent the resistance and inductance of the target section of the transmission line, respectively, the subscript m represents the sampling time according to a general notation, and Σ represents the sum of one half cycle or one cycle of the system frequency. i ′ m is an amount corresponding to the differential value of the current, and can be realized by a known method, for example, Japanese Patent No. 1660533.

【0014】判定手段2は(2) 式が成り立つ時、出力O
Pを生ずる。
When the equation (2) holds, the judgment means 2 outputs the output O
Produces P.

【数2】 ここでKは検出すべき電圧の実効値に比例する値であ
る。その比例定数は前述の(1) 式のAが電圧の実効値に
比例する比例定数と共通である。以下混乱のない限り、
この共通の比例定数を省略して単に実効値と称する。図
1の構成によって得られる特性は、基本波領域では図10
の従来の方式と等価な特性であり、これを含む更に一般
化したものである。以下その理由を説明する。
(Equation 2) Here, K is a value proportional to the effective value of the voltage to be detected. The proportionality constant is the same as the proportionality constant in which A in the above equation (1) is proportional to the effective value of the voltage. Unless below confusion,
The common proportionality constant is omitted and simply referred to as an effective value. The characteristic obtained by the configuration of FIG.
This is a characteristic equivalent to that of the conventional method, and further generalized including this. The reason will be described below.

【0015】送電線上の任意の点の電圧v(x)m は、
事故点より手前では(3) 式で表される。xは正規化した
距離で、0≦x≦1は対象区間、x=0は自端、x=1
は対象区間の遠端を意味する。v(x)m の実効値をV
(x)とすると、前述のように比例定数を省略すると
(4) 式となり、自端はx=0、遠端はx=1であるか
ら、夫々(5) 式となる。従って(6) 式は自端あるいは遠
端の電圧実効値が所定値Kより小さいことを意味する。
この所定値Kを図10の半径K′の2乗に前述の共通の比
例定数を乗じた値とすれば、(6) 式は図10の原点Oを中
心とする円あるいは補償ベクトルZIの先端Pを中心と
する円に相当する特性と等価であることを意味する。
The voltage v (x) m at any point on the transmission line is
Before the accident point, it is expressed by equation (3). x is a normalized distance, 0 ≦ x ≦ 1 is the target section, x = 0 is its own end, x = 1
Means the far end of the target section. The effective value of v (x) m is V
(X), if the proportionality constant is omitted as described above,
(4), and x = 0 at the own end and x = 1 at the far end. Therefore, equation (6) means that the effective voltage value at the self end or the far end is smaller than the predetermined value K.
Assuming that the predetermined value K is a value obtained by multiplying the square of the radius K 'in FIG. 10 by the above-mentioned common proportionality constant, the equation (6) can be expressed by a circle centered on the origin O in FIG. This means that it is equivalent to a characteristic corresponding to a circle centered on P.

【0016】[0016]

【数3】 v(x)m =vm −x(Rim +Li′m ) ………(3) V(x)2 =Σv(x)m 2 =A−2Bx+Dx2 ……(4) V(0)2 =A,V(1)2 =A−2B+D ………(5) A≦K OR A−2B+D≦K ………………(6) [Number 3] v (x) m = v m -x (Ri m + Li 'm) ......... (3) V (x) 2 = Σv (x) m 2 = A-2Bx + Dx 2 ...... (4) V (0) 2 = A, V (1) 2 = A−2B + D (5) A ≦ K OR A−2B + D ≦ K (6)

【0017】次にV(x)が最小となるxを求めると
(7) 式となる。従ってV(x)2 の最小値は(8) 式とな
る。ここで0≦B≦Dであれば0≦x≦1であるから
(9) 式が得られ、(9) 式は電圧実効値の対象区間での最
小値が所定値Kより小さいことを意味し、図10の線分の
特性に相当する。これらを総合して図10全体の特性に相
当することが分かる。
Next, when x that minimizes V (x) is obtained,
Equation (7) is obtained. Therefore, the minimum value of V (x) 2 is given by equation (8). If 0 ≦ B ≦ D, then 0 ≦ x ≦ 1
Equation (9) is obtained, and equation (9) means that the minimum value of the effective voltage value in the target section is smaller than the predetermined value K, and corresponds to the characteristic of the line segment in FIG. It can be seen that the sum of these corresponds to the characteristics of FIG.

【数4】 d(A−2Bx+Dx2 )/dx=0よりx=B/D ……(7) V(x)2 =A−B2 /D …………………………(8) 0≦B≦D AND A−B2 /D≦K ……………(9) From d (A−2Bx + Dx 2 ) / dx = 0, x = B / D (7) V (x) 2 = A−B 2 / D... (8) ) 0 ≦ B ≦ D AND AB 2 / D ≦ K (9)

【0018】なお、前述したようにΣは系統周波数の半
周期あるいは1周期にわたる総計を表すものとするが、
その理由は次の通りである。即ち、どのサンプリング時
点で計算しても一定の値にするには整数周期、特に応答
性を考慮すると1周期とすべきであるが、DC分を除去
して計算すれば半周期でもよい。比例定数が異なるのみ
で一定になることは同様であり、応答性は更に高まる。
このように送電線の対象区間で、電圧実効値が最小とな
る点により判定するので歪の影響が少なく、最小限のフ
ィルタリングでよい。又、実効値により判定するので連
続判定が可能である。
As described above, Σ represents a total over a half cycle or one cycle of the system frequency.
The reason is as follows. That is, even if the calculation is performed at any sampling time, an integer period should be used to obtain a constant value, especially one period in consideration of responsiveness, but a half period may be used if the calculation is performed after removing the DC component. It is the same that the proportional constant becomes constant only when the proportional constant is different, and the response is further enhanced.
Thus, in the target section of the transmission line, the determination is made based on the point at which the effective voltage value is minimized, so that the influence of distortion is small and minimal filtering is required. Further, since the determination is made based on the effective value, a continuous determination can be made.

【0019】図2は本発明の他の実施例の構成を表すブ
ロック図である。2-1 は判定手段で図1の判定手段2を
等価変換したものである。その他は図1と同様である。
判定手段3は(6) 式とのORの関係はそのままとして、
(9) 式の前半を置き換え、(10)式としたものである。
FIG. 2 is a block diagram showing the configuration of another embodiment of the present invention. Reference numeral 2-1 denotes a determination means obtained by equivalently converting the determination means 2 of FIG. Others are the same as FIG.
The determination means 3 keeps the relationship of OR with Expression (6) as it is,
The former half of equation (9) is replaced with equation (10).

【数5】 A≦K+B AND A≦K+B2 /D …………(10) これが判定手段2と等価であることを以下に説明する。A ≦ K + B AND A ≦ K + B 2 / D (10) The fact that this is equivalent to the determination means 2 will be described below.

【0020】B≧Dの範囲では、K+2B−D≧K+B
であるから、A≦K+Bが成り立てば、A≦K+2B−
Dも成り立ち、A≦K+B2 /Dの真偽如何に拘らず
(6) 式が成り立つので、この範囲では(10)式は(6) 式に
包含される。B≦0の範囲では、K+B≦Kであるか
ら、A≦K+Bが成り立てば、A≦Kも成り立ち、同様
に(6) 式に包含される。0≦B≦Dの範囲では、B/D
≦1、従ってA≦K+B2 /D≦K+Bであるから、(1
0)式の前半が成り立てば後半も成り立ち、(10)式全体が
成り立つ。以上を総合して判定手段2と等価であること
が分かる。
In the range of B ≧ D, K + 2B−D ≧ K + B
Therefore, if A ≦ K + B holds, then A ≦ K + 2B−
D holds true, regardless of whether A ≦ K + B 2 / D is true or false.
Since equation (6) holds, equation (10) is included in equation (6) within this range. In the range of B ≦ 0, K + B ≦ K. Therefore, if A ≦ K + B holds, A ≦ K also holds, which is also included in the equation (6). In the range of 0 ≦ B ≦ D, B / D
≦ 1, therefore since the A ≦ K + B 2 / D ≦ K + B, (1
If the first half of equation (0) holds, the second half also holds, and the whole equation (10) holds. It is understood that the above is equivalent to the determination means 2 in total.

【0021】図3は本発明の他の実施例の構成を表すブ
ロック図である。2-2 は判定手段で下記(11)式の判定式
を有し、図2の判定手段2-1 と等価である。
FIG. 3 is a block diagram showing the configuration of another embodiment of the present invention. Reference numeral 2-2 denotes a determination unit having a determination expression of the following expression (11), which is equivalent to the determination unit 2-1 of FIG.

【数6】 A−K≦ max{ min(B2 /D,B),2B−D,0} ……(11) (11)式は第1の値Aから所定値Kを差し引いた値が、下
記の判定値より小さい時出力を生ずることを意味する。
この判定値はB2 /DとBの小さい方と、2B−Dと、
0との内の最大の値である。{ }内の第1項 min(B
2 /D,B)が他の2項より大きい場合、即ち、B2
DとBの内小さい方が正で2B−Dより大きい場合には
(11)式は(12)式となり、(10)式と等価である。
Equation 6: A−K ≦ max 2min (B 2 / D, B), 2B−D, 0} (11) In equation (11), the value obtained by subtracting the predetermined value K from the first value A is , Means that an output is generated when it is smaller than the following judgment values.
This determination value is the smaller of B 2 / D and B, 2B-D,
This is the maximum value among 0. The first term in {}, min (B
2 / D, B) is greater than the other two terms, ie, B 2 /
If the smaller of D and B is positive and greater than 2BD,
Equation (11) becomes equation (12), which is equivalent to equation (10).

【数7】 A≦K+ min(B2 /D,B) 即ち、 A≦K+B2 /D AND A≦K+B …………(12)A ≦ K + min (B 2 / D, B) That is, A ≦ K + B 2 / D AND A ≦ K + B (12)

【0022】又、第2項2B−Dが最大であるとすると
(11)式はA≦K+2B−Dを意味し、(6) 式の後半と等
価であり、第1項及び第2項が共に負の場合は0が最大
となり(11)式はA≦Kを意味し、(6) 式の前半と等価で
ある。以上を総合して判定手段2-2 は判定手段2-1 と等
価である。本実施例によれば、送電線の対象区間の中で
電圧実効値が最小となる地点を導出し、対象区間の事故
を検出しているので連続的判定が可能である。
If the second term 2BD is the maximum,
Equation (11) means A ≦ K + 2B−D, which is equivalent to the latter half of equation (6). When both the first and second terms are negative, 0 becomes the maximum, and equation (11) indicates that A ≦ K And is equivalent to the first half of equation (6). In consideration of the above, the determining means 2-2 is equivalent to the determining means 2-1. According to the present embodiment, a point where the effective voltage value is minimized in the target section of the transmission line is derived and an accident in the target section is detected, so that continuous determination is possible.

【0023】図4は請求項3に係る発明の実施例のブロ
ック図である。そして、本実施例は交流量の大きさのみ
を基に判定する方式とした。図において、3は不足電圧
要素で電圧ベクトルVの大きさ|V|(以下、単に電圧
の大きさ|V|と称す。他もこれに準ずる)が一定値K
以下の場合に出力PVを生ずる。なお、一定値以下(|
V|≦K)と一定値より小(|V|<K)とは、本発明
においては特に区別する必要がないため、以下両方の意
味で一定値以下と表現する。4はオフセット要素で、イ
ンピーダンス降下電圧ベクトルZIにより前記電圧ベク
トルVを補償した電圧ベクトルU=V−ZIの大きさ|
U|=|V−ZI|が一定値K以下の場合に出力PUを
生ずる。以下、上記の電圧ベクトルZIを第2の電圧ベ
クトル、同じく電圧ベクトルUを第3の電圧ベクトルと
称する。
FIG. 4 is a block diagram showing an embodiment of the third aspect of the present invention. In this embodiment, the determination is made based only on the magnitude of the alternating current. In the figure, reference numeral 3 denotes an undervoltage element, and the magnitude | V | of the voltage vector V (hereinafter, simply referred to as the magnitude of the voltage | V |;
The output PV is generated in the following cases. In addition, below a certain value (|
In the present invention, V | ≦ K) and a value smaller than a certain value (| V | <K) need not be particularly distinguished from each other. 4 is an offset element, the magnitude of a voltage vector U = V-ZI, in which the voltage vector V is compensated by the impedance drop voltage vector ZI |
An output PU is produced when U | = | V-ZI | is less than or equal to a constant value K. Hereinafter, the voltage vector ZI is referred to as a second voltage vector, and the voltage vector U is also referred to as a third voltage vector.

【0024】5は平行要素で、縦要素50,横要素51及び
論理積要素6よりなる。縦要素50は電圧の大きさ|V
|,第2の電圧の大きさ|ZI|及び第3の電圧の大き
さ|U|から、第2の電圧ベクトルZIに対して下ろし
た電圧ベクトルVの垂線の足を求め、これが第2の電圧
の範囲内にある時出力PHを生ずる。その判定式は(13)
式である。その詳細は図5を用いて後述する。
Reference numeral 5 denotes a parallel element, which comprises a vertical element 50, a horizontal element 51, and a logical product element 6. The vertical element 50 has a magnitude of voltage | V
|, The magnitude of the second voltage | ZI | and the magnitude of the third voltage | U |, the foot of the perpendicular of the voltage vector V lowered with respect to the second voltage vector ZI is obtained. An output PH is produced when within the voltage range. The judgment formula is (13)
It is an expression. The details will be described later with reference to FIG.

【0025】横要素51は前記垂線の長さWが一定値K以
下の場合に出力PWを生ずる。その判定式は(14)式であ
る。論理積要素6は出力PH及び出力PWが共に生じた
時、平行要素としての出力PZを生ずる。論理和要素7
は出力PV,出力PUあるいは出力PZの何れかが生じ
た時最終出力OPを生ずる。
The horizontal element 51 produces an output PW when the length W of the perpendicular is equal to or less than a constant value K. The determination equation is equation (14). The AND element 6 produces an output PZ as a parallel element when the output PH and the output PW both occur. OR element 7
Produces a final output OP when any of the outputs PV, PU or PZ occurs.

【数8】 0<H={|ZI|+(|V|2 −|U|2 )/|ZI|}/2 <|ZI| …………………………………(13) W2 =|V|2 −H2 <K2 ………………………(14)## EQU8 ## 0 <H = Z | ZI | + (| V | 2 − | U | 2 ) / | ZI |} / 2 <| ZI |...... ) W 2 = | V | 2 −H 2 <K 2 (14)

【0026】図5は図4の作用を説明する説明図で、図
10と同様のI−V平面での特性を表している。上述の説
明から分かるように、不足電圧要素3及びオフセット要
素4は半径がKで、中心が夫々原点O及び第2の電圧ベ
クトルZIの先端の円となる。平行要素5の特性は以下
の述べるように図示した長方形ABCDとなる。図示し
た点Gは電圧ベクトルVの先端から第2の電圧ベクトル
ZIへ下ろした垂線の足であり、HはOG間の距離、W
は前記垂線の長さである。ここでHは符号を有する値
で、OGが第2の電圧ベクトルZIと同方向の時正とす
る。これらの値について以下の(15)式が成り立ち、これ
よりHを求めると(16)式が成り立つ。
FIG. 5 is an explanatory diagram for explaining the operation of FIG.
10 shows characteristics on an IV plane similar to FIG. As can be seen from the above description, the radius of the undervoltage element 3 and the offset element 4 are K, and the centers are the origin O and the tip of the second voltage vector ZI, respectively. The characteristic of the parallel element 5 is the rectangular ABCD illustrated as described below. The illustrated point G is a perpendicular leg lowered from the tip of the voltage vector V to the second voltage vector ZI, and H is the distance between OGs, W
Is the length of the perpendicular. Here, H is a value having a sign, and is positive when OG is in the same direction as the second voltage vector ZI. The following equation (15) holds for these values, and when H is calculated from this, equation (16) holds.

【数9】 |V|2 =W2 +H2 ,|U|2 =W2 +(|ZI|−H)2 ……(15) 上式よりHを求めると、 H={|ZI|+(|V|2 −|U|2 )/|ZI|}/2 ……(16)| V | 2 = W 2 + H 2 , | U | 2 = W 2 + (| ZI | −H) 2 (15) When H is obtained from the above equation, H = {| ZI | + (| V | 2 − | U | 2 ) / | ZI |} / 2 (16)

【0027】従って上述の縦要素50の判定式(13)は前記
垂線の足Gが第2の電圧ベクトルZIの範囲内にあるこ
とを意味する。横要素51の判定式(14)は自明であり、こ
れらが共に成り立つ時、電圧ベクトルVは図示した長方
形ABCDの範囲にある。更にこれらを論理和で結合し
た最終特性が図10と同様の所謂運動形の特性となること
は明らかである。なお、特に図示はしないが、判定式(1
3)及び(14)は簡単な計算で(13′),(14′)のように
も変形できる。このような変形も本発明の範囲内である
ことは勿論である。
Therefore, the above-mentioned determination formula (13) of the vertical element 50 means that the perpendicular foot G is within the range of the second voltage vector ZI. The judgment formula (14) of the horizontal element 51 is self-evident, and when these hold together, the voltage vector V is in the range of the illustrated rectangle ABCD. Further, it is apparent that the final characteristic obtained by combining these by OR is a so-called motion-type characteristic similar to FIG. Although not particularly shown, the judgment formula (1
3) and (14) can be transformed into (13 ') and (14') by simple calculations. Such modifications are, of course, within the scope of the present invention.

【数10】 ||V|2 −|U|2 |<|ZI|2 ……………(13′) W2 =|U|2 −(|ZI|−H)2 <K2 …………(14′)|| V | 2 − | U | 2 | <| ZI | 2 ... (13 ′) W 2 = | U | 2 − (| ZI | −H) 2 <K 2. ……(14')

【0028】以上のように本実施例は交流量の大きさの
みで判定し、瞬時値を直接使用しないので、連続判定つ
まり各サンプリング時点で有効に判定が可能であり、
又、歪の影響を受けにくく、所期の目的を達することが
できる。なお、大きさの算出に周知の種々のアルゴリズ
ムが使用でき、何れにしても瞬時値の歪を緩和した量と
なるが、特に所謂整流加算形アルゴリズムを使用すれ
ば、平均値による大きさの算出を意味し、フィルタ効果
を有するので効果が大きい。
As described above, in this embodiment, the determination is made only by the magnitude of the AC amount, and the instantaneous value is not directly used. Therefore, the continuous determination, that is, the determination can be made effectively at each sampling time.
In addition, it is hardly affected by distortion, and the intended purpose can be achieved. Various known algorithms can be used to calculate the magnitude. In any case, the amount of the distortion of the instantaneous value is reduced. However, especially when a so-called rectification addition algorithm is used, the magnitude can be calculated by the average value. And has a large filtering effect.

【0029】図6は本発明の更に他の実施例のブロック
図であり、図において図4と同一部分については同一符
号を付して説明を省略する。50-1は縦要素で(17),(18)
式が共に成立するとき、論理積要素8により出力PHを
生ずる。
FIG. 6 is a block diagram of still another embodiment of the present invention. In FIG. 6, the same parts as those in FIG. 50-1 is the vertical element (17), (18)
When both equations hold, the output PH is generated by the AND element 8.

【数11】 |V|2 <K2 +|ZI|2 ……………(17) |U|2 <K2 +|ZI|2 ……………(18)| V | 2 <K 2 + | ZI | 2 (17) | U | 2 <K 2 + | ZI | 2 (18)

【0030】図7は図6の作用を説明する特性図であ
る。図4の実施例では、横要素51の特性を直接A−B及
びC−Dとした。A,B,C及びDは、不足電圧要素3
及びオフセット要素4の特性でなる2つの円と横要素51
の特性でなる2つの直線との接点である。式(17)は電圧
の大きさ|V|が原点Oと接点CあるいはDとの間の距
離以下であること、即ち、電圧ベクトルVが原点Oを中
心とし接点C及びDを通る円の内側であることを意味す
る。同様に、式(18)は電圧ベクトルVが、第2の電圧ベ
クトルZIの先端を中心とし、接点AあるいはBを通る
円の内側であることを意味する。
FIG. 7 is a characteristic diagram for explaining the operation of FIG. In the embodiment of FIG. 4, the characteristics of the horizontal element 51 are directly set to AB and CD. A, B, C and D are undervoltage elements 3
And two horizontal and horizontal elements 51 having the characteristics of the offset element 4
Is a point of contact with two straight lines having the following characteristics. Equation (17) indicates that the magnitude | V | of the voltage is equal to or less than the distance between the origin O and the contact point C or D. That is, the voltage vector V is centered on the origin point O and is inside the circle passing through the contact points C and D. Means that Similarly, equation (18) means that the voltage vector V is inside the circle passing through the contact point A or B centered on the tip of the second voltage vector ZI.

【0031】従って、図4の実施例では平行要素3が長
方形ABCDの領域で出力を生じたのに対し、図6の実
施例では、円弧A−B直線B−C円弧C−D直線D−A
の領域で出力を生ずる。ところで直線A−Bと円弧A−
B、あるいは直線C−Dと円弧C−Dとが相違する領域
は、不足電圧要素3あるいはオフセット要素4が出力を
生ずる領域と重複しているので、横要素としてはどちら
でもよい。
Therefore, in the embodiment shown in FIG. 4, the parallel element 3 produces an output in the area of the rectangular ABCD, whereas in the embodiment shown in FIG. 6, the arc AB line BC and the arc CD line D-D A
Produces an output in the region of By the way, straight line AB and arc A-
B or the area where the straight line CD differs from the arc CD overlaps with the area where the undervoltage element 3 or the offset element 4 produces an output, and therefore may be either horizontal element.

【0032】図8は本発明の更に他の実施例のブロック
図であり、図4と同一部分については同一符号を付して
説明を省略する。50-2は縦要素で(19)式が成立すると
き、出力PHを生ずる。
FIG. 8 is a block diagram of still another embodiment of the present invention. The same parts as those in FIG. 50-2 is a vertical element, and when the equation (19) is satisfied, an output PH is generated.

【数12】 |V−ZI/2|2 <K2 +|ZI/2|2 ………(19)| V−ZI / 2 | 2 <K 2 + | ZI / 2 | 2 (19)

【0033】図9は図8の作用を説明する特性図であ
る。そして図7と同様に必要な個所のみを示している。
上判定式(19)は第2の電圧ベクトルZIの1/2の電圧
ベクトルZI/2の先端を中心として接点A,B,C及
びDを通る円の内側を意味する。従ってこの実施例も図
7と同様な効果を有す。図7あるいは図9の実施例は図
4の実施例に対して特に利点がある訳ではないが、縦要
素が図4のような直線特性に限定されるものではないこ
とを示すものである。上記実施例によれば交流量の大き
さのみを基に判定するように構成したので、歪の影響を
受け難く応答の早い性能を得ることができる。
FIG. 9 is a characteristic diagram for explaining the operation of FIG. Only necessary parts are shown as in FIG.
The above determination formula (19) means the inside of a circle passing through the contacts A, B, C and D with the center of the tip of the voltage vector ZI / 2, which is 1 / of the second voltage vector ZI, as the center. Therefore, this embodiment also has the same effect as that of FIG. Although the embodiment of FIG. 7 or FIG. 9 is not particularly advantageous over the embodiment of FIG. 4, it shows that the vertical elements are not limited to the linear characteristics as in FIG. According to the above embodiment, since the determination is made based only on the magnitude of the AC amount, it is possible to obtain a performance that is less affected by distortion and has a quick response.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば連
続的に判定が可能で、かつフィルタリングが少なく、早
い応答が得られる電流補償不足電圧継電器を提供でき
る。
As described above, according to the present invention, it is possible to provide a current-compensation undervoltage relay which can make a continuous determination, has little filtering, and can obtain a quick response.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電流補償不足電圧継電器を説明す
る一実施例の構成図。
FIG. 1 is a configuration diagram of an embodiment illustrating a current compensation undervoltage relay according to the present invention.

【図2】他の実施例の構成図。FIG. 2 is a configuration diagram of another embodiment.

【図3】更に他の実施例の構成図。FIG. 3 is a configuration diagram of still another embodiment.

【図4】更に他の実施例の構成図。FIG. 4 is a configuration diagram of still another embodiment.

【図5】図4の作用説明の特性図。FIG. 5 is a characteristic diagram for explaining the operation of FIG. 4;

【図6】更に他の実施例の構成図。FIG. 6 is a configuration diagram of still another embodiment.

【図7】図6の作用説明の特性図。FIG. 7 is a characteristic diagram for explaining the operation of FIG. 6;

【図8】更に他の実施例の構成図。FIG. 8 is a configuration diagram of still another embodiment.

【図9】図8の作用説明の特性図。FIG. 9 is a characteristic diagram for explaining the operation of FIG. 8;

【図10】従来方式の特性図。FIG. 10 is a characteristic diagram of a conventional method.

【符号の説明】[Explanation of symbols]

1 計算手段 2,2-1 ,2-2 判定手段 3 不足電圧要素 4 オフセット要素 5 平行要素 DESCRIPTION OF SYMBOLS 1 Calculation means 2,2-1, 2-2 Judgment means 3 Undervoltage element 4 Offset element 5 Parallel element

フロントページの続き (56)参考文献 特開 昭63−92216(JP,A) 特開 昭63−92217(JP,A) 特開 平5−91646(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02H 3/24 Continuation of front page (56) References JP-A-63-92216 (JP, A) JP-A-63-92217 (JP, A) JP-A-5-91646 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) H02H 3/24

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電圧サンプル値及び電流サンプル値を入
力とし、送電線の対象区間のインダクタンス及び抵抗を
もとに前記対象区間の線路電圧降下を計算し、系統周波
数の半周期あるいは1周期を所定期間とすると共に、前
記電圧サンプル値の2乗の前記所定期間における和より
なる第1の値と、前記電圧サンプル値と前記線路電圧降
下との積の前記所定期間における和よりなる第2の値
と、前記線路電圧降下の2乗の前記所定期間における和
よりなる第3の値とを計算する計算手段と、前記第1の
値が所定値以下の時、あるいは前記第1の値と第3の値
との和から前記第2の値の2倍を差し引いた値が前記所
定値以下の時、あるいは前記第2の値が正で前記第3の
値以下かつ前記第2の値の2乗を前記第3の値で除した
値を前記第1の値から差し引いた値が前記所定値以下の
時、の何れかの時に出力を生ずる判定手段とを具備する
ことを特徴とする電流補償形不足電圧継電器。
1. A voltage sample value and a current sample value are input, and a line voltage drop in a target section of a transmission line is calculated based on an inductance and a resistance of the target section, and a half cycle or one cycle of a system frequency is determined. And a second value consisting of the sum of the square of the voltage sample value in the predetermined period and the product of the voltage sample value and the line voltage drop in the predetermined period. Calculating means for calculating a third value which is a sum of the square of the line voltage drop in the predetermined period; and when the first value is equal to or less than a predetermined value, or when the first value and the third value When a value obtained by subtracting twice the second value from the sum of the second value and the second value is equal to or less than the predetermined value, or when the second value is positive and equal to or less than the third value and the square of the second value. Is divided by the third value from the first value. Determining means for generating an output when the subtracted value is equal to or less than the predetermined value.
【請求項2】 電圧サンプル値及び電流サンプル値を入
力とし、送電線の対象区間のインダクタンス及び抵抗を
もとに前記対象区間の線路電圧降下を計算し、系統周波
数の半周期あるいは1周期を所定期間とすると共に、前
記電圧サンプル値の2乗の前記所定期間における和より
なる第1の値と、前記電圧サンプル値と前記線路電圧降
下との積の前記所定期間における和よりなる第2の値
と、前記線路電圧降下の2乗の前記所定期間における和
よりなる第3の値とを計算する計算手段と、前記第1の
値が所定値以下の時、あるいは前記第1の値が所定値以
下の時、あるいは前記第1の値が所定値と前記第2の値
の2倍との和から前記第3の値を差し引いた値以下の
時、あるいは前記第1の値が前記所定値と前記第2の値
との和以下かつ前記第1の値が前記第2の値の2乗を前
記第3の値で除した値と前記所定値との和以下の時、の
何れかの時に出力を生ずる判定手段とを具備することを
特徴とする電流補償形不足電圧継電器。
2. A voltage sample value and a current sample value are inputted.
And the inductance and resistance of the target section of the transmission line
Calculate the line voltage drop of the target section based on the
The half period or one period of the number is set as the predetermined period, and
From the sum of the square of the voltage sample value in the predetermined period,
A first value, the voltage sample value and the line voltage drop
A second value that is the sum of the product of the above and the product during the predetermined period
And the sum of the square of the line voltage drop in the predetermined period
Calculating means for calculating a third value comprising:
When the value is equal to or less than a predetermined value, or when the first value is equal to or less than a predetermined value, or when the first value is equal to twice the predetermined value and twice the second value, the third value is subtracted. When the first value is equal to or less than the sum of the predetermined value and the second value and the first value is the square of the second value divided by the third value. A current compensating type undervoltage relay , comprising: a judging means for generating an output at any one of a time equal to or less than a sum of the value and the predetermined value.
【請求項3】 不足電圧要素,オフセット要素,平行要
素及び論理和要素からなり、前記不足電圧要素は電圧ベ
クトルの大きさが所定値以下の時出力を生じ、前記オフ
セット要素はインピーダンス降下からなる第2の電圧ベ
クトルにて前記電圧ベクトルを補償してなる第3の電圧
ベクトルの大きさが所定値以下の時出力を生じ、前記平
行要素は縦要素,横要素及び論理積要素を有し、前記縦
要素は前記電圧ベクトルと前記第2の電圧ベクトルと前
記第3の電圧ベクトルの各大きさから求めた前記第2の
電圧ベクトルに対する前記電圧ベクトルの先端からの垂
線の足が前記第2の電圧ベクトルの範囲内にある時出力
を生じ、前記横要素は前記垂線の長さが所定値以下の時
出力を生じ、前記論理積要素は前記縦要素と前記横要素
とが共に出力を生じた時出力を生じ、前記論理和要素は
前記不足電圧要素,前記オフセット要素あるいは前記平
行要素の何れかの出力が生じた時出力を生ずることを特
徴とする電流補償形不足電圧継電器。
3. An undervoltage element, an offset element, a parallel element, and an OR element. The undervoltage element generates an output when the magnitude of a voltage vector is equal to or less than a predetermined value, and the offset element includes an impedance drop. An output is generated when the magnitude of a third voltage vector obtained by compensating the voltage vector with the second voltage vector is equal to or less than a predetermined value, wherein the parallel element has a vertical element, a horizontal element, and a logical AND element, The vertical element is the second voltage that is perpendicular to the second voltage vector obtained from the magnitudes of the voltage vector, the second voltage vector, and the third voltage vector. An output is generated when the vector is within the range of the vector, the horizontal element generates an output when the length of the perpendicular is less than a predetermined value, and the AND element generates an output when both the vertical element and the horizontal element are output. A current-compensated undervoltage relay, wherein the OR element produces an output when any of the undervoltage element, the offset element or the parallel element produces an output.
【請求項4】 請求項3記載の電流補償形不足電圧継電
器において、縦要素は前記電圧ベクトル及び前記第3の
電圧ベクトルの各大きさが共に所定値以下の時出力を生
ずることを特徴とする電流補償形不足電圧継電器。
4. A current compensation type undervoltage relay according to claim 3.
A current-compensated undervoltage relay, wherein a vertical element produces an output when each of the magnitudes of the voltage vector and the third voltage vector is less than a predetermined value.
【請求項5】 請求項3記載の電流補償形不足電圧継電
器において、縦要素は前記第2の電圧ベクトルの1/2
の電圧ベクトルで前記電圧ベクトルを補償してなる第4
の電圧ベクトルの大きさが所定値以下の時に出力を生ず
ることを特徴とする電流補償形不足電圧継電器。
5. A current compensation type undervoltage relay according to claim 3.
The vertical element is one half of the second voltage vector
The fourth voltage vector obtained by compensating the voltage vector with the voltage vector
Characterized in that an output is generated when the magnitude of the voltage vector is equal to or smaller than a predetermined value.
【請求項6】 請求項1記載の電流補償形不足電圧継電
器において、前記所定期間は系統周波数の半周期あるい
は1周期のn/2周期あるいはn周期(但し、nは正の
整数)とすることを特徴とする電流補償形不足電圧継電
器。
6. A current compensation type undervoltage relay according to claim 1.
The predetermined period is a half cycle of the system frequency or
Is a current-compensated undervoltage relay characterized by one cycle of n / 2 cycles or n cycles (where n is a positive integer).
JP27619093A 1993-10-07 1993-10-07 Current compensation type undervoltage relay Expired - Lifetime JP3302131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27619093A JP3302131B2 (en) 1993-10-07 1993-10-07 Current compensation type undervoltage relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27619093A JP3302131B2 (en) 1993-10-07 1993-10-07 Current compensation type undervoltage relay

Publications (2)

Publication Number Publication Date
JPH07111727A JPH07111727A (en) 1995-04-25
JP3302131B2 true JP3302131B2 (en) 2002-07-15

Family

ID=17565957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27619093A Expired - Lifetime JP3302131B2 (en) 1993-10-07 1993-10-07 Current compensation type undervoltage relay

Country Status (1)

Country Link
JP (1) JP3302131B2 (en)

Also Published As

Publication number Publication date
JPH07111727A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
JPH08163782A (en) Power system stabilizer
EP0259805B1 (en) Reactive power compensation apparatus
US6604056B2 (en) Method and system of harmonic regulation
JPH0471331A (en) Active filter device
JP3302131B2 (en) Current compensation type undervoltage relay
JP4320228B2 (en) Control device for self-excited converter
JP3950083B2 (en) Ground fault distance relay
JPH10322887A (en) Grounding distance relay
JP3129173B2 (en) AC motor control device
JP2003199244A (en) Bus-bar protective relay
JP3447402B2 (en) Digital distance relay
JP3201457B2 (en) Induction motor flux estimator Input voltage error correction method and induction motor flux estimator
JPS63121424A (en) Digital current differential relay
JPH0923585A (en) Control of reactive power compensation
JP2863952B2 (en) Ground fault fault location method and device, ground fault distance relay
JP3198578B2 (en) Synchronous closing relay
JPH0236723A (en) Digital ground fault distance relay
JPS5994014A (en) Signal processing method of electromagnetic flowmeter
JP3645065B2 (en) Change width relay
KR950009886B1 (en) Ind current recovering method for saturation transformer
JP2000148266A (en) Power suppressing device
JPH05252751A (en) Self-excited power converter controlling device
JPS6016123A (en) Distance relay
JPH07177657A (en) Protective relay with charging current compensation and circuit for detecting malfunction of transformer
JPS63121425A (en) Digital current differential relay

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

EXPY Cancellation because of completion of term