JP3300775B2 - Field emission vacuum gauge with constant current operation - Google Patents

Field emission vacuum gauge with constant current operation

Info

Publication number
JP3300775B2
JP3300775B2 JP19012993A JP19012993A JP3300775B2 JP 3300775 B2 JP3300775 B2 JP 3300775B2 JP 19012993 A JP19012993 A JP 19012993A JP 19012993 A JP19012993 A JP 19012993A JP 3300775 B2 JP3300775 B2 JP 3300775B2
Authority
JP
Japan
Prior art keywords
field emission
cathode
anode
vacuum
vacuum gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19012993A
Other languages
Japanese (ja)
Other versions
JPH0743236A (en
Inventor
達夫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP19012993A priority Critical patent/JP3300775B2/en
Publication of JPH0743236A publication Critical patent/JPH0743236A/en
Application granted granted Critical
Publication of JP3300775B2 publication Critical patent/JP3300775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はガス吸着現象に伴う物質
表面の物理定数の変化を検出し、超高真空或いはそれよ
りも低い圧力を測定でき被測定系に与える影響が従来の
測定器に比べて格段に少ない二極構造の真空計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a change in the physical constant of a material surface due to a gas adsorption phenomenon, and can measure an ultra-high vacuum or a pressure lower than that. The present invention relates to a vacuum gauge having a two-pole structure, which is much smaller than that of the vacuum gauge.

【0002】[0002]

【従来の技術】従来、超高真空またはそれ以下の圧力領
域において、圧力計として使われている代表的真空計で
あるB−Aゲージや四重極子質量分析計は、熱陰極から
放射された電子を加速し真空中のガス分子に当て、それ
によってイオン化した分子数を数えて圧力を読む原理に
なっている。
2. Description of the Related Art Conventionally, BA gauges and quadrupole mass spectrometers, which are typical vacuum gauges used as pressure gauges in an ultrahigh vacuum or lower pressure range, emit light from a hot cathode. The principle is that electrons are accelerated and applied to gas molecules in a vacuum, and the pressure is read by counting the number of ionized molecules.

【0003】[0003]

【発明が解決しようとする課題】上記従来例にあって
は、熱電子源としての高温フィラメントによるガスの接
触分解による新たなガスの発生、容器壁を暖めそこから
新たにガスを発生するなど測定器が動作することにより
測定系に与える影響が深刻になり、超高真空領域、特に
1×10-8Pa以下の圧力では、もともと気相のガス分
子数が少ないため、上述の影響は重大な問題である。さ
らにイオン数を計測する限り、圧力の低下と共に減少す
るイオン数を補うため複雑な電極構造と電子増倍管など
新たなガス源となる構造の導入等は避けられない。この
ため本来の真空装置の圧力ではなく、しばしば圧力計が
作り出した真空を測るような事態も報告されている。こ
のような従来の真空計の欠点を補うために、イオン化以
外の新たな原理による真空計が必要になる。
In the above conventional example, a new gas is generated by catalytic decomposition of a gas by a high temperature filament as a thermionic electron source, and a new gas is generated from the container by warming the container wall. The influence on the measurement system becomes serious due to the operation of the instrument, and the above-described influence is significant because the number of gas molecules in the gas phase is originally small in an ultra-high vacuum region, particularly at a pressure of 1 × 10 −8 Pa or less. It is a problem. Further, as long as the number of ions is measured, it is inevitable to introduce a complicated electrode structure and a structure serving as a new gas source such as an electron multiplier in order to compensate for the number of ions decreasing with a decrease in pressure. For this reason, it has been reported that the pressure created by a pressure gauge is often measured instead of the original pressure of the vacuum device. In order to compensate for such a drawback of the conventional vacuum gauge, a vacuum gauge based on a new principle other than ionization is required.

【0004】[0004]

【課題を解決するための手段】本発明真空計は、上記の
課題を解決し、上記のような要請に応えてなされたもの
であって、図1に示すように陽極1と電界放射陰極2の
間に設定電界放射電流I、に応じて必要な高電圧Vを自
動的に印加する定電流電源3を接続し、この定電流電源
3に上記高電圧Vを微分する微分回路4及び二乗する二
乗回路5を接続せしめ、この微分回路4と二乗回路5に
それらの出力を入力して圧力Pを得る除算回路6を接続
し、この除算回路6に圧力を表示する表示部7を接続し
てなる。
SUMMARY OF THE INVENTION A vacuum gauge according to the present invention has been made in response to the above-mentioned demands by solving the above-mentioned problems, and comprises an anode 1 and a field emission cathode 2 as shown in FIG. A constant current power supply 3 for automatically applying a required high voltage V in accordance with the set field emission current I is connected between the two, and a differentiation circuit 4 for differentiating the high voltage V to the constant current power supply 3 is squared. A squaring circuit 5 is connected, a dividing circuit 6 for obtaining the pressure P by inputting their outputs to the differentiating circuit 4 and the squaring circuit 5 is connected, and a display unit 7 for displaying the pressure is connected to the dividing circuit 6. Become.

【0005】[0005]

【作 用】本発明真空計はこのような構成であるから、
被測定真空装置内に取付けることにより清浄な電界放射
陰極2の表面にガス分子が吸着し表面が汚染されるにつ
れて、陰極表面の仕事関数や実効的電子放射面積等の表
面の物理量が変化する。表面が汚染される割合は気相の
分子数すなわち圧力の関数である。従って表面の汚染速
度から圧力を求める事ができる。即ち、電界放射電流を
一定に保つ様に電圧を変化させてその電圧の変化から圧
力を測定する。いま、ある時刻における電界放射電流I
(t)は、ガス分子の吸着によって主として実効放射面
積が減少するとして次のように表わされる。 I(t) =a(t)cV(t)2exp(−bφ3/2/V(t)) ・・・・・(1) ここでa(t)は実効放射面積,c,bは定数,φは陰
極の仕事関数,V(t)は高電圧である。実効放射面積
は実験から a(t) =aoexp(−t/τ) ・・・・・・・(2) で与えられ、ここで時定数τは圧力Pと反比例の関係に
あり、 P=σ/τ ・・・・・・・・・(3) ここでσは定数、放射電流が時間に依存しない条件は、
(1)式を時間で微分しそれがゼロになる条件から与え
られる。指数前項のV(t)2 は電流変動に与える影響
が小さいので定数V(o)2 と置くと,
[Operation] Since the vacuum gauge of the present invention has such a configuration,
As the gas molecules are adsorbed on the clean surface of the field emission cathode 2 by being installed in the vacuum device to be measured and the surface is contaminated, the physical function of the surface such as the work function of the cathode surface and the effective electron emission area changes. The rate at which the surface is contaminated is a function of the number of molecules in the gas phase, or pressure. Therefore, the pressure can be obtained from the surface contamination rate. That is, the voltage is changed so as to keep the field emission current constant, and the pressure is measured from the change in the voltage. Now, the field emission current I at a certain time
(T) is expressed as follows, assuming that the effective radiation area is mainly reduced by gas molecule adsorption. I (t) = a (t) cV (t) 2 exp (−bφ 3/2 / V (t)) (1) where a (t) is an effective radiation area, and c and b are The constant, φ, is the work function of the cathode, and V (t) is the high voltage. The effective radiation area is given by a (t) = a o exp (−t / τ) (2) from the experiment, where the time constant τ is inversely proportional to the pressure P. = Σ / τ (3) Here, σ is a constant, and the condition that the radiation current does not depend on time is
Equation (1) is given from the condition that the equation is differentiated with time and becomes zero. Since V (t) 2 in the exponential term has a small effect on current fluctuation, if a constant V (o) 2 is set,

【数1】 仕事関数は陰極材料固有の値で定数として、(4)式括
弧内をゼロにする条件より,圧力は
(Equation 1) The work function is a constant that is a value specific to the cathode material.

【数2】 で表される。但しm=bφ3/2 σである。この(5)式
のうちのdV/dtが微分回路4により得られ、V2
二乗回路5により得られる。これらの出力が除算回路6
により除算されて圧力Pが算出され、適当な係数mを掛
けて表示部7により表示される。
(Equation 2) It is represented by However, m = bφ 3 / 2σ. DV / dt in the equation (5) is obtained by the differentiating circuit 4, and V 2 is obtained by the squaring circuit 5. These outputs are output from the division circuit 6
To calculate the pressure P, multiplied by an appropriate coefficient m, and displayed by the display unit 7.

【0006】[0006]

【実施例】図1は本発明真空計の第1実施例の構成を示
すブロック図で陽極1に正の高電圧を加えて電界放射陰
極2の表面に生じる高電界により引き出される電界放射
電流を陰極側で検出する方式の例を示す。図2はこの第
1実施例における陽極及び電界放射陰極の取付け例を示
す断面図で、陽極1に正の高電圧(陰極先端の半径に依
存する,数kv)を印加して放射電流を得る接続で使用
する際の両電極の取付け例を示す。図1,図2において
1は陽極で、通常の導体又はこれに蛍光体を塗布し電界
放射像の観察をできるようにしてもよい。2は電界放射
陰極で、先端を0.1μm程度に鋭く研磨した耐熱導体
線である。9は陰極支持線で、圧力測定前に陰極2を加
熱清浄化するための通電加熱用電極を兼ねる。12は真
空用フランジで、被測定真空装置に取付けるために用い
る。電界放射陰極2を陰極支持電極9を介して支持した
電流導入端子10と、該陰極2に対し正の高電圧Vを印
加する陽極1の陽極端子8が絶縁体11で絶縁されて真
空用フランジ12に取付けられている。
FIG. 1 is a block diagram showing the construction of a first embodiment of a vacuum gauge according to the present invention. In FIG. 1, a positive high voltage is applied to an anode 1 to extract a field emission current drawn by a high electric field generated on the surface of a field emission cathode 2. An example of a detection method on the cathode side will be described. FIG. 2 is a sectional view showing an example of mounting the anode and the field emission cathode in the first embodiment. A positive high voltage (several kv depending on the radius of the tip of the cathode, several kilovolts) is applied to the anode 1 to obtain a radiation current. An example of mounting both electrodes when used for connection is shown. In FIG. 1 and FIG. 2, reference numeral 1 denotes an anode, which may be a normal conductor or a phosphor coated thereon to enable observation of a field emission image. Reference numeral 2 denotes a field emission cathode, which is a heat-resistant conductor wire whose tip is sharply polished to about 0.1 μm. Reference numeral 9 denotes a cathode support wire, which also serves as an electric heating electrode for heating and cleaning the cathode 2 before pressure measurement. Reference numeral 12 denotes a vacuum flange used for mounting on a vacuum device to be measured. A current introduction terminal 10 supporting the field emission cathode 2 through a cathode support electrode 9 and an anode terminal 8 of an anode 1 for applying a positive high voltage V to the cathode 2 are insulated by an insulator 11 to form a vacuum flange. 12 attached.

【0007】この陽極1と電界放射陰極2の間に、設定
電界放射電流Iに応じて必要な高電圧Vを自動的に印加
する定電流電源3が接続されている。電界放射電流Iは
任意に設定が可能ですが、電流検出回路の応答性,雑音
の影響,放射電流による陽極からのガス放出等の影響を
考慮すると、0.1nAから100uA程度の間で選ぶ
のが適当と思われる。上記定電流電源3に、高電圧Vを
微分する微分回路4及び二乗する二乗回路5が接続さ
れ、この微分回路4と二乗回路5にそれらの出力を入力
して圧力Pを得る除算回路6が接続されており、この除
算回路6に圧力を表示する表示部7が接続されている。
[0007] A constant current power supply 3 for automatically applying a required high voltage V according to a set field emission current I is connected between the anode 1 and the field emission cathode 2. The electric field emission current I can be set arbitrarily. However, in consideration of the response of the current detection circuit, the influence of noise, and the effect of gas emission from the anode due to the emission current, a value of about 0.1 nA to about 100 uA is selected. Seems appropriate. A differentiating circuit 4 for differentiating the high voltage V and a squaring circuit 5 for squaring are connected to the constant current power supply 3, and a dividing circuit 6 for inputting their outputs to the differentiating circuit 4 and the squaring circuit 5 to obtain a pressure P is provided. The display unit 7 for displaying the pressure is connected to the dividing circuit 6.

【0008】上記の構成において第1実施例の作用を説
明する。真空用フランジ12を被測定真空装置に取付
け、陽極1と電界放射陰極2の間に接続された定電流電
源3により電界放射電流Iを一定に保つ様に高電圧Vが
変化する。この高電圧Vは微分回路4に入力されて微分
され、又二乗回路5にも入力されて二乗される。それら
の出力は除算回路6により除算されて圧力Pが算出さ
れ、適当な係数mを掛けて表示部7により表示される。
The operation of the first embodiment in the above configuration will be described. The vacuum flange 12 is mounted on the vacuum device to be measured, and the high voltage V changes by the constant current power supply 3 connected between the anode 1 and the field emission cathode 2 so as to keep the field emission current I constant. The high voltage V is input to the differentiating circuit 4 to be differentiated, and is also input to the squaring circuit 5 to be squared. These outputs are divided by a division circuit 6 to calculate a pressure P, which is multiplied by an appropriate coefficient m and displayed by a display unit 7.

【0009】図3は本発明真空計の第2実施例の構成を
示すブロック図で、電界放射陰極2に負の高電圧を加
え、電流の検出を定電流電源3内で行う例であり、その
他は図1に示す第1実施例と同様である。図4はこの第
2実施例における陽極及び電界放射陰極の取付け例を示
す断面図で、陽極1は通常の導体又はこれに蛍光体を塗
布し電界放射像の観察をできるようにしてもよい。電界
放射陰極2は先端を0.1μm程度に鋭く研磨した導体
線を用いる。この第2実施例では、陽極1の陽極端子8
を真空用フランジ12に直接取り付け、該陽極1に対し
負の高電圧を印加する電界放射陰極2を陰極支持電極9
を介して支持した電流導入端子10を絶縁体11で真空
用フランジ12に取付け、陽極1を接地し、電界放射陰
極2に負の高電圧Vを加える以外、上記第1実施例と同
様の作用をなすものである。
FIG. 3 is a block diagram showing the configuration of a second embodiment of the vacuum gauge according to the present invention, in which a negative high voltage is applied to the field emission cathode 2 and current is detected in the constant current power supply 3. Others are the same as the first embodiment shown in FIG. FIG. 4 is a cross-sectional view showing an example of mounting the anode and the field emission cathode in the second embodiment. The anode 1 may be a normal conductor or a phosphor coated on the conductor so that the field emission image can be observed. The field emission cathode 2 uses a conductor wire whose tip is sharply polished to about 0.1 μm. In the second embodiment, the anode terminal 8 of the anode 1
Is attached directly to the vacuum flange 12 and the field emission cathode 2 for applying a negative high voltage to the anode 1 is connected to the cathode support electrode 9.
The operation is the same as that of the first embodiment, except that the current introduction terminal 10 supported through the fin is attached to the vacuum flange 12 with the insulator 11, the anode 1 is grounded, and the negative high voltage V is applied to the field emission cathode 2. It is what makes.

【0010】[0010]

【発明の効果】上述のように本発明によれば、定電流動
作モードの、電界放射型真空計であるため、(1)動作
時に熱源を用いないので被測定系に与える影響が極めて
少ない、(2)吸着現象そのものが積分作用であるので
極めて低い測定下限を得られる、(3)感度の形状依存
性が殆どなく任意に小型化できる、(4)陽極、陰極の
2極構造で極めて簡単な構造で、センサー部分のガス出
し等が簡単である、(5)吸着の選択性,電界放射像の
ガス種毎の特徴等から分圧の測定も可能である、等の特
徴に加えて、電流変化から圧力を測定する定電圧モード
に比較して、さらに(6)スパッタリング等により陰極
表面状態が急激に変化し陰極表面の局部的電界が増大し
て放射電流の著しい増大が起こるような場合(多くの電
界放射陰極の応用において主要な不安定要素となってい
る)でも電圧が低下するのみで、過大電流などによる陰
極の破損を防ぐ事ができる。(7)陰極材料、陰極半径
などの条件が変わった場合でも印加電圧は自動的に設定
されるので、測定条件を変える必要がなく、利用にあた
って専門知識を要しない。(8)保護回路の必要がなく
制御回路が簡便になる、等実用的真空計として利用する
場合さらに好ましい特徴を得ることができる。
As described above, according to the present invention, since the field emission type vacuum gauge is in the constant current operation mode, (1) a heat source is not used at the time of operation, so that the influence on the system to be measured is extremely small. (2) Since the adsorption phenomenon itself is an integral action, an extremely low measurement lower limit can be obtained. (3) The sensitivity can be reduced arbitrarily with little dependence on the shape. (4) The anode and cathode are extremely simple with a two-pole structure. In addition to the features such as (5) partial selectivity can be measured based on the selectivity of adsorption and the characteristics of each field type of the field emission image, etc. Compared to the constant voltage mode in which the pressure is measured from the current change, (6) In the case where the cathode surface state changes abruptly due to sputtering or the like, the local electric field on the cathode surface increases, and the emission current increases significantly. (Many field emission cathode applications Oite only major uncertainties and going on) even voltage is reduced, it is possible to prevent damage to the cathode due to excessive current. (7) Since the applied voltage is automatically set even when the conditions such as the cathode material and the cathode radius change, there is no need to change the measurement conditions, and no special knowledge is required for use. (8) A more preferable feature can be obtained when used as a practical vacuum gauge, such as a simple control circuit without the need for a protection circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明真空計の第1実施例の構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a configuration of a first embodiment of a vacuum gauge according to the present invention.

【図2】この第1実施例における陽極及び電界放射陰極
の取付け例を示す断面図である。
FIG. 2 is a sectional view showing an example of mounting an anode and a field emission cathode in the first embodiment.

【図3】本発明真空計の第2実施例の構成を示すブロッ
ク図である。
FIG. 3 is a block diagram showing a configuration of a second embodiment of the vacuum gauge of the present invention.

【図4】この第2実施例における陽極及び電界放射陰極
の取付け例を示す断面図である。
FIG. 4 is a sectional view showing an example of mounting an anode and a field emission cathode in the second embodiment.

【符号の説明】[Explanation of symbols]

1 陽極 2 電界放射陰極 3 定電流電源 4 微分回路 5 二乗回路 6 除算回路 7 表示部 8 陽極端子 9 陰極支持電極 10 電流導入端子 11 絶縁体 12 真空用フランジ REFERENCE SIGNS LIST 1 anode 2 field emission cathode 3 constant current power supply 4 differentiating circuit 5 squaring circuit 6 division circuit 7 display section 8 anode terminal 9 cathode support electrode 10 current introduction terminal 11 insulator 12 vacuum flange

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極(1)と電界放射陰極(2)の間に
設定電界放射電流(I)、に応じて必要な高電圧(V)
を自動的に印加する定電流電源(3)を接続し、この定
電流電源(3)に上記高電圧(V)を微分する微分回路
(4)及び二乗する二乗回路(5)を接続せしめ、この
微分回路(4)と二乗回路(5)にそれらの出力を入力
して圧力(P)を得る除算回路(6)を接続し、この除
算回路(6)に圧力を表示する表示部(7)を接続して
なる定電流動作電界放射型真空計。
1. A high voltage (V) required between an anode (1) and a field emission cathode (2) according to a set field emission current (I).
Is connected, and a differential circuit (4) for differentiating the high voltage (V) and a square circuit (5) for squaring are connected to the constant current power supply (3). A dividing circuit (6) for inputting their outputs to the differentiating circuit (4) and the squaring circuit (5) to obtain a pressure (P) is connected, and a display unit (7) for displaying the pressure on the dividing circuit (6). ) Is a constant current operation field emission vacuum gauge connected to
【請求項2】 電界放射陰極(2)を陰極支持電極
(9)を介して支持した電流導入端子(10)と、該陰
極(2)に対し正の高電圧を印加する陽極(1)の陽極
端子(8)を絶縁体(11)で真空用フランジ(12)
に取付けてなる請求項1の定電流動作電界放射型真空
計。
2. A current introduction terminal (10) supporting a field emission cathode (2) via a cathode support electrode (9) and an anode (1) for applying a positive high voltage to the cathode (2). Anode terminal (8) with insulator (11) flange for vacuum (12)
2. A constant current operation field emission type vacuum gauge according to claim 1, wherein said vacuum gauge is mounted on said vacuum chamber.
【請求項3】 陽極(1)の陽極端子(8)を接地電位
である真空用フランジ(12)に接続し、該陽極(1)
に対し負の高電圧を印加する電界放射陰極(2)を陰極
支持電極(9)を介して支持した電流導入端子(10)
を絶縁体(11)で真空用フランジ(12)に取付けて
なる請求項1の定電流動作電界放射型真空計。
3. The anode terminal (8) of the anode (1) is connected to a vacuum flange (12) at a ground potential, and the anode (1) is
Current introduction terminal (10) supporting, via a cathode support electrode (9), a field emission cathode (2) for applying a negative high voltage to
2. A constant current operation field emission vacuum gauge according to claim 1, wherein the vacuum gauge is attached to the vacuum flange by an insulator.
JP19012993A 1993-07-30 1993-07-30 Field emission vacuum gauge with constant current operation Expired - Fee Related JP3300775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19012993A JP3300775B2 (en) 1993-07-30 1993-07-30 Field emission vacuum gauge with constant current operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19012993A JP3300775B2 (en) 1993-07-30 1993-07-30 Field emission vacuum gauge with constant current operation

Publications (2)

Publication Number Publication Date
JPH0743236A JPH0743236A (en) 1995-02-14
JP3300775B2 true JP3300775B2 (en) 2002-07-08

Family

ID=16252882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19012993A Expired - Fee Related JP3300775B2 (en) 1993-07-30 1993-07-30 Field emission vacuum gauge with constant current operation

Country Status (1)

Country Link
JP (1) JP3300775B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098667B2 (en) * 2003-12-31 2006-08-29 Fei Company Cold cathode ion gauge
DE102005010716A1 (en) * 2005-03-09 2006-09-14 Inficon Gmbh Cold cathode pressure sensor
CN106841369B (en) * 2017-03-03 2023-03-24 河南理工大学 Field electron emission testing device

Also Published As

Publication number Publication date
JPH0743236A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
JP4493139B2 (en) Ionization gauge
US5278510A (en) Ionization vacuum gauge using a cold micropoint cathode
JP5127042B2 (en) Ionization gauge
US2454564A (en) Ionization-type vacuum gauge
US3051868A (en) Ionization vacuum gauges
US6566884B2 (en) Ionization vacuum pressure gauge
Whetten Cleavage in high vacuums of alkali halide single crystals—Secondary electron emission
US2884550A (en) Ionization gauges and method of operation thereof
JP3300775B2 (en) Field emission vacuum gauge with constant current operation
US4833921A (en) Gas pressure measurement device
US2652532A (en) Electrical vapor detector
JP2000357487A (en) Mass-spectrometric device
US2523779A (en) Ionization gauge
US2062268A (en) Electrical discharge device
JP3125002B2 (en) Field emission vacuum gauge
JP2004349102A (en) Quadrupole type mass spectrometer and vacuum device provided with it
US3239715A (en) Electron emission monitor for magnetron-type ionization gauge
JPWO2011102117A1 (en) Quadrupole mass spectrometer
US6323586B1 (en) Closed drift hollow cathode
US3320455A (en) Ionization vacuum gauge having x-ray shielding means
JPH1019711A (en) Cold cathode ionization gauge
Metcalf et al. A New Low Noise Vacuum Tube
JP2019106342A (en) X-ray tube and X-ray generator
JPH0829283A (en) Ionization vacuum gage
US3356937A (en) Null-balanced compensation system for ion gauge with emission current instabilities

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees