JP3299391B2 - Heat supply device - Google Patents
Heat supply deviceInfo
- Publication number
- JP3299391B2 JP3299391B2 JP18532294A JP18532294A JP3299391B2 JP 3299391 B2 JP3299391 B2 JP 3299391B2 JP 18532294 A JP18532294 A JP 18532294A JP 18532294 A JP18532294 A JP 18532294A JP 3299391 B2 JP3299391 B2 JP 3299391B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- ice
- pipe
- return
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Other Air-Conditioning Systems (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、氷水を用いた熱供給装
置に関し、特に地域熱供給装置に好適な氷水を用いた熱
供給装置に関するものである。なお、本発明において、
氷水とは純粋なH2Oから構成される氷水だけではな
く、その他に別の物質を混ぜたものも含むものとする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat supply device using ice water, and more particularly to a heat supply device using ice water suitable for a district heat supply device. In the present invention,
The ice water includes not only ice water composed of pure H 2 O but also a mixture of other substances.
【0002】[0002]
【従来技術】最近、日本建築学会などではCO2による
地球温暖化の観点から、建築物や装置をLCCO2(ラ
イフサイクルCO2)で評価する研究が盛んになってき
ている。この評価は地域暖冷房(以下DHCと略称す
る)分野においても研究され始めている。即ち、DHC
を建設時に発生するCO2発生量、運転時に発生するC
O2発生量、廃棄時に発生するCO2発生量を「ライフサ
イクル」として合計し、この合計のCO2発生量を出来
る限り少なくしようとする考え方である。 2. Description of the Related Art In recent years, the Architectural Institute of Japan and the like have been actively studying LCCO 2 (life cycle CO 2 ) for evaluating buildings and equipment from the viewpoint of global warming due to CO 2 . This evaluation has also begun to be studied in the area of district heating and cooling (hereinafter abbreviated as DHC). That is, DHC
Of CO 2 generated during construction, C generated during operation
The idea is that the amount of O 2 generated and the amount of CO 2 generated at the time of disposal are totaled as a “life cycle”, and the total amount of generated CO 2 is reduced as much as possible.
【0003】最近この考え方により、冷流体として氷片
と水の混合流体を輸送する氷水輸送DHCが脚光を浴び
るようになった。その理由は、氷水輸送DHC方式は氷
水を製造するためのCO2発生量は多少大きくなるが、
輸送熱量当りの配管建設用CO2発生量やポンプ動力の
為のCO2発生量が減り、更に夜間蓄熱運転を行うこと
により発電所建設の為のCO2発生量も少なくでき、総
合的にLCCO2を減らすことが出来るからである。[0003] According to this concept, an ice water transport DHC that transports a mixed fluid of ice chips and water as a cold fluid has recently come into the spotlight. The reason is that the ice water transport DHC method generates a little CO 2 to produce ice water,
CO 2 emissions for the pipe construction CO 2 emissions and pump power per transport heat is reduced, can still less CO 2 emissions for power plants by performing nighttime thermal storage operation, overall LCCO 2 can be reduced.
【0004】図2は従来提案されているDHC装置のシ
ステム構成例を示すブロック図であり、同図において、
ビル40は氷融解槽のない需用家ビル、ビル50は氷融
解槽50−1が設置されている需用家ビルである。図示
するように、蓄熱製氷装置30は温流体及び氷と水の混
合流体である氷水を製造し、氷水はポンプ30−1によ
り氷水供給主管1を通して需要家ビル40、50に供給
され、冷熱を供給した後の戻り水は冷流体戻り主管2を
通して蓄熱製氷装置30へ戻される。同様に温流体はポ
ンプ30−2により温流体供給主管3を通して需要家ビ
ル40、50に供給され、熱を供給した後は温流体戻り
主管4を通して蓄熱製氷装置30へ戻される。FIG. 2 is a block diagram showing a system configuration example of a conventionally proposed DHC device.
The building 40 is a consumer building without an ice melting tank, and the building 50 is a consumer building in which an ice melting tank 50-1 is installed. As shown in the figure, the heat storage ice making device 30 produces ice water as a warm fluid and a mixed fluid of ice and water, and the ice water is supplied to the customer buildings 40 and 50 through the ice water supply main pipe 1 by the pump 30-1, and the cold heat is generated. The return water after the supply is returned to the heat storage ice making device 30 through the cold fluid return main pipe 2. Similarly, the warm fluid is supplied to the customer buildings 40, 50 through the warm fluid supply main pipe 3 by the pump 30-2, and after supplying heat, is returned to the heat storage ice making device 30 through the warm fluid return main pipe 4.
【0005】需要家ビル40の場合、氷水は氷水供給主
管1から氷水供給分岐管5を通して冷熱用熱交換器40
−5に供給され、戻り水は二方温度調節弁40−6、冷
流体戻り分岐管6を通して冷流体戻り主管2に戻されて
いる。戻り水の温度は温度調節器40−7で検出され、
更に、温度調節器40−7は二方温度調節弁40−6を
調節して流量を制御し、戻り水の温度を適切な温度(1
4℃)に保持している。冷熱用熱交換器40−5で冷却
された冷水はポンプ40−8で各冷熱負荷に供給され冷
熱用熱交換器40−5に戻される。なお、この冷熱用熱
交換器40−5の代りに直接空調用等の冷熱負荷を使用
してもよい。[0005] In the case of the customer building 40, ice water flows from the ice water supply main pipe 1 through the ice water supply branch pipe 5 to the heat exchanger 40 for cooling and heating.
The return water is supplied to the cold fluid return main pipe 2 through the two-way temperature control valve 40-6 and the cold fluid return branch pipe 6. The temperature of the return water is detected by the temperature controller 40-7,
Further, the temperature controller 40-7 controls the two-way temperature control valve 40-6 to control the flow rate, and adjusts the temperature of the return water to an appropriate temperature (1
(4 ° C.). The cold water cooled by the heat exchanger for cooling 40-5 is supplied to each cooling load by the pump 40-8 and returned to the heat exchanger for cooling 40-5. In addition, you may use the cooling load for air conditioning etc. directly instead of this heat exchanger 40-5 for cooling.
【0006】同様に、温流体は温流体供給主管3から温
流体供給分岐管7を通り、温熱用熱交換器40−1に供
給され、戻り水は二方温度調節弁40−2、温流体戻り
分岐管8を通して温流体戻り主管4に戻されている。戻
り水の温度は温度調節器40−3で二方温度調節弁40
−2を調節して流量を制御し、戻り水の温度を適切な温
度(32℃)に保持している。温熱用熱交換器40−1
で加熱された温水はポンプ40−4で各温熱負荷に供給
され冷却され、再び温熱用熱交換器40−1に戻され
る。Similarly, the warm fluid is supplied from the warm fluid supply main pipe 3 through the warm fluid supply branch pipe 7 to the heat exchanger 40-1 for heating, and the return water is supplied to the two-way temperature control valve 40-2 and the warm fluid. It is returned to the warm fluid return main pipe 4 through the return branch pipe 8. The return water temperature is controlled by a two-way temperature control valve 40 using a temperature controller 40-3.
-2 is adjusted to control the flow rate, and the temperature of the return water is maintained at an appropriate temperature (32 ° C.). Heat exchanger 40-1 for heating
The hot water heated in is supplied to each heating load by the pump 40-4, cooled, and returned to the heat exchanger for heating 40-1 again.
【0007】また、需要家ビル50では、氷水は氷水供
給主管1から氷水供給分岐管5を通して氷融解槽50−
1に流入するようになっている。該氷融解槽50−1内
の冷水はポンプ50−2により冷熱用熱交換器(低温
側)50−3に供給され、戻り水の一部はバイパス管5
0−11を通して氷融解槽50−1に供給され氷片の一
部を融解する為に使用され、その他の戻り水は冷熱用熱
交換器(高温側)50−4、二方温度調節弁50−5を
通り、冷流体戻り分岐管6を通して冷流体戻り主管2に
戻されている。In the customer building 50, ice water flows from the ice water supply main pipe 1 through the ice water supply branch pipe 5 to the ice melting tank 50-.
1. The cold water in the ice melting tank 50-1 is supplied to a cold heat exchanger (low temperature side) 50-3 by a pump 50-2, and a part of the return water is supplied to a bypass pipe 5.
It is supplied to the ice melting tank 50-1 through 0-11 and is used to melt a part of the ice pieces, and the other return water is used as a cooling heat exchanger (high temperature side) 50-4 and a two-way temperature control valve 50. -5, and is returned to the cold fluid return main pipe 2 through the cold fluid return branch pipe 6.
【0008】冷流体戻り水の温度は温度調節器50−6
で検出され、更に、温度調節器50−6は二方温度調節
弁50−5を調節して流量を制御し戻り水の温度を適切
な温度(14℃)に保持している。冷熱用熱交換器50
−3で冷却された冷水はポンプ50−7で各冷熱負荷に
供給され冷熱用熱交換器50−4を通り冷熱用熱交換器
50−3に戻され循環している。温流体による暖房は前
述したビル50の暖房と同じである。The temperature of the cold fluid return water is controlled by a temperature controller 50-6.
Further, the temperature controller 50-6 controls the two-way temperature control valve 50-5 to control the flow rate and maintain the temperature of the return water at an appropriate temperature (14 ° C.). Heat exchanger 50 for cold heat
The cold water cooled at -3 is supplied to each cooling load by the pump 50-7, passes through the cooling heat exchanger 50-4, is returned to the cooling heat exchanger 50-3, and is circulated. The heating by the warm fluid is the same as the heating of the building 50 described above.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上記シ
ステムをはじめ、これまで数多くの氷水輸送DHC方式
が提案されているにもかかわらず、従来提案されている
システムには問題点があり、いまだ実用化には至ってい
ない。その最大の問題点は配管曲がり部や熱交換器など
で氷片が詰まり閉塞を起こすおそれがあると云う点であ
る。即ち、配管の曲がり部などに氷片が付着し、その氷
片に次々と別の氷片が付着し、氷水が流れにくくなる。However, although many ice water transport DHC systems have been proposed, including the above system, the conventionally proposed systems have problems and are still in practical use. Has not been reached. The biggest problem is that ice pieces may be clogged at a bent portion of a pipe, a heat exchanger, or the like, causing blockage. That is, ice pieces adhere to the bent portion of the pipe, and another piece of ice adheres to the ice pieces one after another, making it difficult for ice water to flow.
【0010】また、負荷自動調節装置は氷水を更に流す
ように作動するので、氷片で流れにくくなった僅かな隙
間に氷水が流れるので更に氷片が付着し、遂には大量の
氷が流路を塞ぐ閉塞状態となり冷房が長期間停止すると
云う問題があった。In addition, since the automatic load adjusting device operates so that ice water flows more, ice water flows in a small gap which is hardly made to flow by the ice chips, so that more ice chips adhere and finally a large amount of ice flows in the flow path. And the cooling is stopped for a long time.
【0011】本発明は上述の点に鑑みてなされたもの
で、上記問題点を除去するために、氷と流体の混合流体
及び温流体を利用して熱を供給する熱供給装置におい
て、混合流体の流れる流路が氷片により閉塞することを
防止し、又は閉塞状態になった場合速やかに回復できる
熱供給装置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and in order to eliminate the above-mentioned problems, in a heat supply apparatus for supplying heat using a mixed fluid of ice and a fluid and a warm fluid, It is an object of the present invention to provide a heat supply device that can prevent a flow path through which water flows from being blocked by ice chips, or can quickly recover from a blocked state.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するため
本発明は、蓄熱製氷装置(30)からの氷と流体の混合
体を供給する氷流体供給管(1)と、該氷と流体の混合
体により直接又は間接的に冷却される冷熱負荷(10−
3、20−13)と、該冷熱負荷(10−3、20−1
3)の容量変化に応じて負荷からの戻り流体の流量を制
御する流量調節手段(制御器10−12、20−18、
温度検出器10−13、20−19等)と、冷熱負荷
(10−3、20−13)からの戻り流体を返送するた
めの冷流体戻り管(6)と、蓄熱製氷装置(30)から
の温流体を供給する温流体供給管(3)と、温流体によ
り直接又は間接的に加熱される温熱負荷(10−8、2
0−16)と、該温熱負荷(10−8、20−16)か
らの戻り流体を返送するための温流体戻り管(8)及び
これらを接続する配管、バルブ及びポンプ等で構成され
る熱供給装置において、氷流体供給管(1)から冷熱負
荷(10−3、20−13)に至る流路内の冷流体を、
温流体供給管(3)から供給される温流体により加熱す
る温流体加熱バイパス手段(バイパス管10−14、バ
イパス管20−21等)を設けたことを特徴とする。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an ice fluid supply pipe (1) for supplying a mixture of ice and fluid from a heat storage ice making device (30), and an ice fluid supply pipe (1). Cooling load (10-) cooled directly or indirectly by the mixture
3, 20-13) and the cooling load (10-3, 20-1).
3) Flow control means for controlling the flow rate of the return fluid from the load according to the change in capacity (controllers 10-12, 20-18,
Temperature detectors 10-13, 20-19, etc.), a cold fluid return pipe (6) for returning the return fluid from the cold load (10-3, 20-13), and a heat storage ice making device (30). A hot fluid supply pipe (3) for supplying a warm fluid, and a thermal load (10-8, 2) heated directly or indirectly by the warm fluid.
0-16), a heat fluid return pipe (8) for returning a return fluid from the thermal load (10-8, 20-16), and a heat pipe composed of a pipe, a valve, a pump, and the like connecting these pipes. In the supply device, the cold fluid in the flow path from the ice fluid supply pipe (1) to the cold load (10-3, 20-13) is
A hot fluid heating bypass unit (bypass pipe 10-14, bypass pipe 20-21, etc.) for heating with hot fluid supplied from the hot fluid supply pipe (3) is provided.
【0013】また、氷流体供給管(1)から冷熱負荷に
至る流路内の圧力損失を直接又は間接的に検出する圧力
損失検出手段(圧力センサ10−16、20−20、圧
力センサ10−1−2、20−1−2)を設け、該圧力
損失検出手段が検出する圧力損失が所定以上となった
時、流体加熱バイパス手段(バイパス管10−14、バ
イパス管20−21等)を通して温流体を該流路内に送
ることを特徴とする。Further, pressure loss detecting means (pressure sensors 10-16, 20-20, pressure sensor 10-) for directly or indirectly detecting the pressure loss in the flow path from the ice fluid supply pipe (1) to the cold load. 1-2, 20-1-2), and when the pressure loss detected by the pressure loss detecting means becomes equal to or more than a predetermined value, the fluid is passed through the fluid heating bypass means (bypass pipe 10-14, bypass pipe 20-21, etc.). The method is characterized in that a warm fluid is sent into the flow path.
【0014】[0014]
【作用】本発明は、上記のように温流体供給管から供給
される温流体により冷流体を加熱する温流体加熱バイパ
ス手段を設けたので、氷流体供給管から冷熱負荷に至る
流路内に氷が付着して圧力損失が増大した場合、該温流
体加熱バイパス手段を通して、温流体を該流路内に流す
ことにより、流路内に付着した氷を融解させることがで
きるから、流路が氷片により閉塞することを防止し、又
は閉塞状態になった場合速やかに回復させることができ
る。According to the present invention, since the hot fluid heating bypass means for heating the cold fluid with the hot fluid supplied from the hot fluid supply pipe as described above is provided, the hot fluid heating bypass means is provided in the flow path from the ice fluid supply pipe to the cold load. When the ice adheres and the pressure loss increases, the ice adhered in the flow path can be melted by flowing the hot fluid into the flow path through the hot fluid heating bypass means. It can be prevented from being blocked by ice chips, or can be promptly recovered when it becomes blocked.
【0015】また、氷流体供給管から冷熱負荷に至る流
路内の圧力損失を直接又は間接的に検出する圧力損失検
出手段を設け、該圧力損失検出手段が検出する圧力損失
が所定以上となった時、流体加熱バイパス手段を通して
温流体を該流路内に送ることにより、氷流体供給管から
冷熱負荷に至る流路管内に氷片が付着して流路の圧力損
失が増大した場合、該氷片を自動的に融解することがで
き、流路の閉塞状態を未然に防ぐことが可能となる。Further, a pressure loss detecting means for directly or indirectly detecting a pressure loss in a flow passage from the ice fluid supply pipe to the cooling load is provided, and the pressure loss detected by the pressure loss detecting means is equal to or more than a predetermined value. When the hot fluid is sent through the fluid heating bypass means into the flow path, ice chips adhere to the flow path pipe from the ice fluid supply pipe to the cold load, and the pressure loss in the flow path increases. The ice chips can be automatically melted, and the blocked state of the flow channel can be prevented before it occurs.
【0016】[0016]
【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は本発明の熱供給装置の構成例を示
すブロック図である。同図は本発明の熱供給装置をビル
10及び、ビル20に使用した地域暖冷房システムの例
である。図示するように、蓄熱製氷装置30は温流体及
び氷と水の混合流体である氷水を製造し、氷水はポンプ
30−1により氷水供給主管1を通してビル10及びビ
ル20の各々に供給され、冷熱を供給した後の冷流体は
冷流体戻り主管2を通して蓄熱製氷装置30へ戻され
る。同様に温流体はポンプ30−2により温流体供給主
管3を通して各ビルに供給され、熱を供給した後の戻り
水は温流体戻り主管4を通して蓄熱製氷装置30へ戻さ
れる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of the heat supply device of the present invention. FIG. 1 shows an example of a district heating / cooling system in which the heat supply device of the present invention is used in a building 10 and a building 20. As shown in the drawing, the heat storage ice making device 30 produces ice water which is a warm fluid and a mixed fluid of ice and water, and the ice water is supplied to each of the buildings 10 and 20 through the ice water supply main pipe 1 by the pump 30-1. Is supplied to the heat storage ice making device 30 through the cold fluid return main pipe 2. Similarly, the warm fluid is supplied to each building through the warm fluid supply main pipe 3 by the pump 30-2, and the return water after supplying the heat is returned to the thermal storage device 30 through the warm fluid return main pipe 4.
【0017】ビル10においては、冷熱負荷10−3に
冷流体を直接供給し、温熱負荷10−8に温流体を直接
供給する。氷水は氷水供給主管1から氷水供給分岐管5
を通して氷融解槽10−1に供給される。氷融解槽10
−1は冷熱用蓄熱を兼ねており、流入口より氷融解槽1
0−1に流入した氷水はノズル10−1−1から供給さ
れる負荷戻り水により加熱され氷水中の氷片の一部が融
解する。この氷融解槽10−1の底部の約0℃の冷水は
ポンプ10−2により冷熱負荷10−3に供給される。In the building 10, a cold fluid is directly supplied to the cold load 10-3, and a hot fluid is directly supplied to the hot load 10-8. Ice water is supplied from an ice water supply main pipe 1 to an ice water supply branch pipe 5
Is supplied to the ice melting tank 10-1. Ice melting tank 10
-1 also serves as heat storage for cold heat, and the ice melting tank 1
The ice water flowing into 0-1 is heated by the load return water supplied from the nozzle 10-1-1, and a part of the ice pieces in the ice water is melted. Cold water at about 0 ° C. at the bottom of the ice melting tank 10-1 is supplied to a cooling load 10-3 by a pump 10-2.
【0018】冷熱を供給した後の戻り水はバルブ10−
4を通り一部は氷融解槽10−1を通り氷片の一部を溶
かし、他の戻り水は三方自動温度調節弁10−5、三方
電磁弁10−6、冷流体戻り分岐管6を通って冷流体戻
り主管2へ戻され循環している。戻り水の温度は温度検
出器10−13で検出され、制御器10−12は三方自
動温度調節弁10−5を制御し戻り水の温度が14℃に
なるように調節している。The return water after supplying cold heat is supplied to the valve 10-
Part 4 passes through the ice melting tank 10-1 to melt part of the ice pieces, and other return water passes through the three-way automatic temperature control valve 10-5, the three-way solenoid valve 10-6, and the cold fluid return branch pipe 6. The fluid is returned to the cold fluid return main pipe 2 and circulated. The temperature of the return water is detected by the temperature detector 10-13, and the controller 10-12 controls the three-way automatic temperature control valve 10-5 to adjust the temperature of the return water to 14 ° C.
【0019】従って、蓄熱製氷装置30から供給されて
くる氷水の冷流体はビル10で冷熱負荷10−3を通
り、氷の潜熱と0℃から14℃までの顕熱の両方の冷熱
が利用され、冷流体戻り主管2から再び蓄熱製氷装置3
0に戻される。なお、三方電磁弁10−6のもう一方の
出口は温流体戻り分岐管8とバイパス管10−15で接
続されている。Accordingly, the cold fluid of the ice water supplied from the heat storage ice making device 30 passes through the cold load 10-3 in the building 10, and uses both the latent heat of ice and the sensible heat from 0 ° C. to 14 ° C. From the cold fluid return main pipe 2 again to the heat storage ice making device 3
Returned to 0. The other outlet of the three-way solenoid valve 10-6 is connected to the hot fluid return branch pipe 8 and the bypass pipe 10-15.
【0020】一方、温水は温流体供給主管3から温流体
供給分岐管7、三方電磁弁10−7を通り温熱負荷10
−8に供給される。給熱後の戻り温水はバルブ10−
9、調節弁10−10、温流体戻り分岐管8を通り温流
体戻り主管4へ戻され循環している。温度調節器10−
11は戻り水の温度を検出し、調節弁10−10を制御
することにより温度を32℃に調節する。なお、三方電
磁弁10−7のもう一方の出口は氷水供給分岐管5とバ
イパス管10−14で接続されている。On the other hand, the hot water passes from the hot fluid supply main pipe 3 to the hot fluid supply branch pipe 7, the three-way solenoid valve 10-7, and the thermal load 10
-8. Return hot water after heating is supplied to valve 10-
9, the control valve 10-10 and the hot fluid return branch pipe 8 return to the hot fluid return main pipe 4 and circulate. Temperature controller 10-
Numeral 11 detects the temperature of the return water and adjusts the temperature to 32 ° C. by controlling the control valve 10-10. The other outlet of the three-way solenoid valve 10-7 is connected to the ice water supply branch pipe 5 and the bypass pipe 10-14.
【0021】氷水供給分岐管5の途中のq点には圧力セ
ンサ10−16が設けられ、氷融解槽10−1の内部に
は圧力センサ10−1−2が設けられ、制御器10−1
2は常時この両センサの圧力差を監視している。この運
転状態でなんらかの不具合の為、例えば氷水供給管の曲
がり部pで氷が閉塞状態となると、氷融解槽内部と氷水
供給分岐管5の途中のq点との圧力差が大きくなる。A pressure sensor 10-16 is provided at a point q in the middle of the ice water supply branch pipe 5, and a pressure sensor 10-1-2 is provided inside the ice melting tank 10-1.
2 constantly monitors the pressure difference between the two sensors. For example, if the ice is closed at the bent portion p of the ice water supply pipe due to some trouble in this operation state, the pressure difference between the inside of the ice melting tank and the point q in the middle of the ice water supply branch pipe 5 becomes large.
【0022】制御器10−12は氷融解槽内部の圧力セ
ンサ10−1−2及び流入配管部qの圧力センサ10−
16からこの圧力差を検出し、この圧力差が設定値以上
になるとそれまで行っていた冷流体戻り水の温度制御を
中止し、三方電磁弁10−6及び三方電磁弁10−7を
切替え、温水が温流体供給分岐管7→三方電磁弁10−
7→バイパス管10−14→氷融解槽10−1→三方自
動温度調節弁10−5→三方電磁弁10−6→バイパス
管10−15→温流体戻り分岐管8と流れるようにす
る。即ち、高温の温水を閉塞部pに流入させることで氷
を融解させる。The controller 10-12 has a pressure sensor 10-1-2 inside the ice melting tank and a pressure sensor 10-
When the pressure difference is detected from 16 and the pressure difference becomes equal to or more than the set value, the temperature control of the cold fluid return water which has been performed until then is stopped, and the three-way solenoid valve 10-6 and the three-way solenoid valve 10-7 are switched. Hot water is supplied from the hot fluid supply branch pipe 7 → three-way solenoid valve 10-
7 → bypass pipe 10-14 → ice melting tank 10-1 → three-way automatic temperature control valve 10-5 → three-way solenoid valve 10-6 → bypass pipe 10-15 → hot fluid return branch pipe 8. That is, ice is melted by flowing high-temperature hot water into the closed part p.
【0023】上述したように本発明の熱供給装置は氷片
で閉塞状態が生じたことを圧力差で検出し、三方電磁弁
10−6及び三方電磁弁10−7を切替え、閉塞部へ温
水を流すことにより閉塞状態を自動的に速やかに復旧す
ることが出来る。As described above, the heat supply device of the present invention detects the occurrence of a blockage state with ice pieces by detecting the pressure difference, switches the three-way solenoid valve 10-6 and the three-way solenoid valve 10-7, and supplies hot water to the blockage. , The closed state can be automatically and promptly restored.
【0024】ビル20は冷熱用熱交換器(低温側)20
−3及び冷熱用熱交換器(高温側)20−4を介して冷
熱負荷20−13に冷水を供給し、温熱用熱交換器20
−8を介して温熱負荷20−16に温流体を供給する場
合の例である。氷水は氷水供給主管1から氷水供給分岐
管5を通して氷融解槽20−1に供給される。The building 20 has a heat exchanger for cold heat (low temperature side) 20.
-3 and the cold heat load 20-13 via the cold heat exchanger (high temperature side) 20-4 to supply the cold heat to the cold heat load 20-13.
This is an example of supplying a warm fluid to a thermal load 20-16 via -8. Ice water is supplied from the ice water supply main pipe 1 to the ice melting tank 20-1 through the ice water supply branch pipe 5.
【0025】氷融解槽20−1は冷熱用蓄熱を兼ねてお
り、流入口より該氷融解槽20−1に流入した氷水は冷
熱用熱交換器(低温側)20−3から戻り水の一部が供
給され氷片の一部が融解される。この氷融解槽20−1
の底部の約0℃の冷水はポンプ20−2により冷熱用熱
交換器(低温側)20−3及び冷熱用熱交換器(高温
側)20−4に供給される。The ice-melting tank 20-1 also serves as cold heat storage, and the ice water flowing into the ice-melting tank 20-1 from the inflow port is returned to the cold-heat heat exchanger (low-temperature side) 20-3 by one of the return water. Part is supplied and a part of the ice piece is melted. This ice melting tank 20-1
The cold water at about 0 ° C. at the bottom is supplied to a heat exchanger for cooling / heating (low temperature side) 20-3 and a heat exchanger for cooling / heating (high temperature side) 20-4 by a pump 20-2.
【0026】冷熱を供給した後の戻り水の一部は氷融解
槽20−1を通り氷片の一部を溶かし、他の戻り水は温
度調節弁20−5、三方電磁弁20−6、冷流体戻り分
岐管6を通って冷流体戻り主管2へ戻されている。戻り
水の温度は温度検出器20−19で検出され、制御器2
0−18は温度調節弁20−5を制御し戻り水の温度を
14℃になるように調節している。その他の冷流体及び
温流体の流れはビル10と同じなので説明は省略する。A part of the return water after supplying the cold heat passes through the ice melting tank 20-1 to melt a part of the ice pieces, and the other return water is supplied to the temperature control valve 20-5, the three-way solenoid valve 20-6, It is returned to the cold fluid return main pipe 2 through the cold fluid return branch pipe 6. The temperature of the return water is detected by the temperature detector 20-19 and the controller 2
Reference numeral 0-18 controls the temperature control valve 20-5 to adjust the temperature of the return water to 14 ° C. Other flows of the cold fluid and the hot fluid are the same as those of the building 10, and the description is omitted.
【0027】氷水供給分岐管5の途中のq´点には圧力
センサ20−20が設けられ、氷融解槽20−1の内部
には圧力センサ20−1−2が設けられている。制御器
20−18は常時、両センサの圧力差を監視している。
この状態で氷水供給管の曲がり部p´で氷が閉塞状態と
なると、氷融解槽20−1の内部と氷水供給分岐管5の
途中のq´点との圧力差が大きくなる。A pressure sensor 20-20 is provided at a point q 'in the middle of the ice water supply branch pipe 5, and a pressure sensor 20-1-2 is provided inside the ice melting tank 20-1. Controller 20-18 constantly monitors the pressure difference between both sensors.
In this state, when the ice is closed at the bent portion p ′ of the ice water supply pipe, the pressure difference between the inside of the ice melting tank 20-1 and the point q ′ in the middle of the ice water supply branch pipe 5 increases.
【0028】制御器20−18は圧力センサ20−1−
2の出力と圧力センサ20−20の出力から氷融解槽2
0−1の内部圧力とq´点の圧力の圧力差を検出し、こ
の圧力差が設定値以上になるとそれまで行っていた冷流
体戻り水の温度制御を中止し、三方電磁弁20−6及び
三方電磁弁20−7を切替え、温水が温流体供給分岐管
7→三方電磁弁20−7→バイパス管20−21→氷融
解槽20−1→バイパス管20−23→温度調節弁20
−5→三方電磁弁20−6→バイパス管20−22→温
流体戻り分岐管8と流れるようにする。即ち、高温の温
水を閉塞部p´に流入させることで氷を融解させる。The controller 20-18 includes a pressure sensor 20-1-
2 and the output of the pressure sensor 20-20 from the ice melting tank 2
The pressure difference between the internal pressure at 0-1 and the pressure at the point q 'is detected, and when the pressure difference exceeds a set value, the temperature control of the cold fluid return water which has been performed so far is stopped, and the three-way solenoid valve 20-6 is stopped. And the three-way solenoid valve 20-7 is switched so that the hot water is supplied from the hot fluid supply branch pipe 7 → the three-way solenoid valve 20-7 → the bypass pipe 20-21 → the ice melting tank 20-1 → the bypass pipe 20-23 → the temperature control valve 20.
-5 → three-way solenoid valve 20-6 → bypass pipe 20-22 → hot fluid return branch pipe 8 That is, ice is melted by flowing high-temperature hot water into the closed part p ′.
【0029】上記説明は氷融解槽10−1及び、氷融解
槽20−1の流入口の氷片による閉塞状態を温水を流す
ことにより自動的に復旧する手段を説明したが、閉塞個
所は氷融解槽の流入口に限定されることなく、氷片によ
る閉塞状態ならば何処でも応用可能なことは云うまでも
ない。なお、上記説明では氷水で説明したが純粋な水か
ら構成される氷水だけでなく、不純物が混合または融け
ていても差し支えない。In the above description, the means for automatically recovering the ice-melting tank 10-1 and the blockage of the inlet of the ice-melting tank 20-1 by ice chips by flowing hot water has been described. It is needless to say that the present invention is not limited to the inlet of the melting tank, but can be applied to any blockage state by ice chips. Although the above description has been made with ice water, not only ice water composed of pure water but also impurities may be mixed or melted.
【0030】[0030]
【発明の効果】以上、詳細に説明したように本発明によ
れば、下記のような優れた効果が期待される。 (1)温流体供給管から供給される温流体により冷流体
を加熱する温流体加熱バイパス手段を設けたので、氷流
体供給管から冷熱負荷に至る流路管内に氷が付着して圧
力損失が増大した該流路が閉塞しそうになった場合、該
温流体加熱バイパス手段を通して、温流体を該流路管内
に流すことにより、管内に付着した氷を融解させること
ができ、流路の閉塞状態を防止し、また閉塞状態となっ
た場合速やかに回復させることができる。As described above, according to the present invention, the following excellent effects are expected. (1) Since the hot fluid heating bypass means for heating the cold fluid by the hot fluid supplied from the hot fluid supply pipe is provided, ice adheres to the flow pipe from the ice fluid supply pipe to the cold load, and pressure loss occurs. When the increased flow path is about to be closed, the ice adhered to the flow path can be melted by flowing the hot fluid into the flow path pipe through the hot fluid heating bypass means, and the flow path is closed. Can be prevented, and can be quickly recovered in the case of a closed state.
【0031】(2)また、氷流体供給管から冷熱負荷に
至る流路内の圧力損失を直接又は間接的に検出する圧力
損失検出手段を設け、該圧力損失検出手段が検出する圧
力損失が所定以上となった時、流体加熱バイパス手段を
通して温流体を該流路内に送ることにより、氷流体供給
管から冷熱負荷に至る流路管内に氷片が付着して流路の
圧力損失が増大した場合、該氷片を自動的に融解するこ
とができ、流路の閉塞状態を未然に防ぐことが可能とな
る。(2) Further, a pressure loss detecting means for directly or indirectly detecting a pressure loss in a flow path from the ice fluid supply pipe to the cooling load is provided, and the pressure loss detected by the pressure loss detecting means is predetermined. At this time, by sending the warm fluid into the flow path through the fluid heating bypass means, ice chips adhered to the flow path pipe from the ice fluid supply pipe to the cold load, and the pressure loss in the flow path increased. In this case, the ice pieces can be automatically melted, and the closed state of the flow path can be prevented.
【図1】本発明の熱供給装置の構成例を示すブロック図
である。FIG. 1 is a block diagram showing a configuration example of a heat supply device of the present invention.
【図2】従来の熱供給装置の構成例を示すブロック図で
ある。FIG. 2 is a block diagram illustrating a configuration example of a conventional heat supply device.
1 氷水供給主管 2 冷流体戻り主管 3 温流体供給主管 4 温流体戻り主管 5 氷水供給分岐管 6 冷流体戻り分岐管 7 温流体供給分岐管 8 温流体戻り分岐管 10 ビル 10−1 氷融解槽 10−1−1 ノズル 10−1−2 圧力センサ 10−2 ポンプ 10−3 冷熱負荷 10−4 バルブ 10−5 三方自動温度調節弁 10−6 三方電磁弁 10−7 三方電磁弁 10−8 温熱負荷 10−9 バルブ 10−10 調節弁 10−11 温度調節器 10−12 制御器 10−13 温度検出器 10−14 バイパス管 10−15 バイパス管 10−16 圧力センサ 20 ビル 20−1 氷融解槽 20−1−2 圧力センサ 20−2 ポンプ 20−3 冷熱用熱交換器(低温側) 20−4 冷熱用熱交換器(高温側) 20−5 温度調節弁 20−6 三方電磁弁 20−7 三方電磁弁 20−8 温熱用熱交換器 20−10 調節弁 20−11 温度調節器 20−12 ポンプ 20−13 冷熱負荷 20−14 バルブ 20−15 ポンプ 20−16 温熱負荷 20−17 バルブ 20−18 制御器 20−19 温度検出器 20−20 圧力センサ 20−21 バイパス管 20−22 バイパス管 20−23 バイパス管 30 蓄熱製氷装置 30−1 ポンプ 30−2 ポンプ DESCRIPTION OF SYMBOLS 1 Ice water supply main pipe 2 Cold fluid return main pipe 3 Hot fluid supply main pipe 4 Hot fluid return main pipe 5 Ice water supply branch pipe 6 Cold fluid return branch pipe 7 Hot fluid supply branch pipe 8 Hot fluid return branch pipe 10 Building 10-1 Ice melting tank 10-1-1 Nozzle 10-1-2 Pressure sensor 10-2 Pump 10-3 Cold load 10-4 Valve 10-5 Three-way automatic temperature control valve 10-6 Three-way solenoid valve 10-7 Three-way solenoid valve 10-8 Heat Load 10-9 Valve 10-10 Control valve 10-11 Temperature controller 10-12 Controller 10-13 Temperature detector 10-14 Bypass pipe 10-15 Bypass pipe 10-16 Pressure sensor 20 Building 20-1 Ice melting tank 20-1-2 Pressure sensor 20-2 Pump 20-3 Heat exchanger for cold heat (low temperature side) 20-4 Heat exchanger for cold heat (high temperature side) 20-5 Temperature control valve 20-6 Three-way power Valve 20-7 Three-way solenoid valve 20-8 Heat exchanger for heating 20-10 Control valve 20-11 Temperature controller 20-12 Pump 20-13 Cold load 20-14 Valve 20-15 Pump 20-16 Heat load 20- 17 Valve 20-18 Controller 20-19 Temperature detector 20-20 Pressure sensor 20-21 Bypass pipe 20-22 Bypass pipe 20-23 Bypass pipe 30 Ice storage device 30-1 Pump 30-2 Pump
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−157296(JP,A) 特開 平6−137620(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-157296 (JP, A) JP-A-6-137620 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 5/00
Claims (2)
供給する氷流体供給管と、該氷と流体の混合体により直
接又は間接的に冷却される冷熱負荷と、該冷熱負荷の容
量変化に応じて負荷からの戻り流体の流量を制御する流
量調節手段と、該冷熱負荷からの戻り流体を返送するた
めの冷流体戻り管と、前記蓄熱製氷装置からの温流体を
供給する温流体供給管と、該温流体により直接又は間接
的に加熱される温熱負荷と、該温熱負荷からの戻り流体
を返送するための温流体戻り管及びこれらを接続する配
管、バルブ及びポンプ等で構成された熱供給装置におい
て、 前記氷流体供給管から冷熱負荷に至る流路管内に前記蓄
熱製氷装置から前記温流体供給管を通して供給される温
流体を供給し、該流路管内の冷流体を加熱する温流体加
熱バイパス手段を設けたことを特徴とする熱供給装置。1. An ice fluid supply pipe for supplying a mixture of ice and fluid from a thermal storage ice making device, a cooling load directly or indirectly cooled by the mixture of ice and fluid, and a capacity of the cooling load. Flow rate adjusting means for controlling the flow rate of the return fluid from the load according to the change, a cold fluid return pipe for returning the return fluid from the cold load, and a hot fluid for supplying the hot fluid from the heat storage ice making device It is composed of a supply pipe, a thermal load heated directly or indirectly by the hot fluid, a hot fluid return pipe for returning the return fluid from the thermal load, and a pipe, a valve, a pump, and the like connecting these. in the heat supply system, the蓄 from the ice fluid supply tube to the flow channel pipe leading to the cooling load
The temperature supplied from the hot ice making device through the hot fluid supply pipe
Fluid supply, heat supply apparatus characterized in that a hot fluid heating bypass means for heating the cold fluid of the duct pipe.
路内の圧力損失を直接又は間接的に検出する圧力損失検
出手段を設け、該圧力損失検出手段が検出する圧力損失
が所定以上となった時、前記温流体加熱バイパス手段を
通して温流体を該流路内に送ることを特徴とする請求項
1に記載の熱供給装置。2. A pressure loss detecting means for directly or indirectly detecting a pressure loss in a flow passage from the ice fluid supply pipe to a cooling load, wherein the pressure loss detected by the pressure loss detecting means is equal to or more than a predetermined value. 2. The heat supply device according to claim 1, wherein when it becomes, a hot fluid is sent into the flow path through the hot fluid heating bypass means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18532294A JP3299391B2 (en) | 1994-07-13 | 1994-07-13 | Heat supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18532294A JP3299391B2 (en) | 1994-07-13 | 1994-07-13 | Heat supply device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0828911A JPH0828911A (en) | 1996-02-02 |
JP3299391B2 true JP3299391B2 (en) | 2002-07-08 |
Family
ID=16168809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18532294A Expired - Fee Related JP3299391B2 (en) | 1994-07-13 | 1994-07-13 | Heat supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3299391B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6336067B1 (en) | 1998-08-12 | 2002-01-01 | Hitachi Construction Machinery Co., Ltd. | Electronic control system and control device for construction machine |
JP4489258B2 (en) | 2000-07-17 | 2010-06-23 | 日立建機株式会社 | Electronic control system for construction machinery |
JP4044763B2 (en) | 2002-01-16 | 2008-02-06 | 日立建機株式会社 | Electronic control system for construction machinery |
-
1994
- 1994-07-13 JP JP18532294A patent/JP3299391B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0828911A (en) | 1996-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004340492A (en) | Cooling system | |
US5363668A (en) | Absorption air conditioning system and cooling/heating changing-over method | |
JP3299391B2 (en) | Heat supply device | |
JPH01107055A (en) | Method and device for controlling defrostation of temperature conditioning humidity conditioning facility | |
JP3485679B2 (en) | Air conditioner | |
CN112229094B (en) | Constant temperature air circulation system | |
JPH10232000A (en) | Liquid piping facility for heat utilizing | |
JP2827078B2 (en) | Ice water cooling system | |
JP4097405B2 (en) | Engine cooling method and apparatus and refrigeration apparatus | |
JP3252209B2 (en) | Ice storage type cooling equipment | |
JP2771883B2 (en) | Ice storage device | |
JP2892114B2 (en) | Air conditioner and its operation method | |
JP3378712B2 (en) | Air conditioner | |
JP2001182968A (en) | Method for preventing coil in air conditioner from freezing | |
JPH03271675A (en) | Cold water manufacturing device | |
JP3304261B2 (en) | Ice storage type air conditioner | |
JPH0842899A (en) | Heat feeding device | |
JP2916381B2 (en) | Separate heat pump | |
JPH03186160A (en) | Operation controller of heat storage type air conditioner | |
JPH055577A (en) | Heat pump type room cooling/heating hot water supplying system | |
JPS6256430B2 (en) | ||
JP4421983B2 (en) | Air conditioning system. | |
JPH0285627A (en) | Secondary side system in cooling method using water containing ice | |
JPH0776646B2 (en) | Air conditioner / water heater | |
JPH11118282A (en) | Cold/hot water supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090419 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090419 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100419 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110419 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120419 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130419 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |