JP3297275B2 - Geothermal power plant bio desulfurization method - Google Patents

Geothermal power plant bio desulfurization method

Info

Publication number
JP3297275B2
JP3297275B2 JP33866895A JP33866895A JP3297275B2 JP 3297275 B2 JP3297275 B2 JP 3297275B2 JP 33866895 A JP33866895 A JP 33866895A JP 33866895 A JP33866895 A JP 33866895A JP 3297275 B2 JP3297275 B2 JP 3297275B2
Authority
JP
Japan
Prior art keywords
tank
sulfuric acid
hydrogen sulfide
sulfur
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33866895A
Other languages
Japanese (ja)
Other versions
JPH09173770A (en
Inventor
和久 竹内
祐一 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33866895A priority Critical patent/JP3297275B2/en
Publication of JPH09173770A publication Critical patent/JPH09173770A/en
Application granted granted Critical
Publication of JP3297275B2 publication Critical patent/JP3297275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は地熱発電所から発生
する硫化水素含有ガスの脱硫方法に関する。
The present invention relates to a method for desulfurizing a gas containing hydrogen sulfide generated from a geothermal power plant.

【0002】[0002]

【従来の技術】従来の地熱発電所で発生した高硫化水素
含有不凝縮ガスの脱硫技術を図2を用いて説明する。地
熱発電所(図示省略)では高硫化水素を含有する不凝縮
ガスが発生する。この地熱発電所で発生した高硫化水素
含有不凝縮ガス1は内部に硫黄酸化微生物(以下、菌体
とも云う)を含む培養液2(温度:70℃、pH:2.
5、硫酸酸性)が充填された気泡塔型の微生物処理槽3
に空気あるいは酸素4とともに導かれる。高硫化水素含
有不凝縮ガス1はガス中の硫化水素が微生物処理槽3で
酸化され低硫化水素含有不凝縮ガス5となり大気に放散
される。微生物処理槽3中の微生物にはスルフォロバス
(Sulfolobus) 属の一種が用いられる。微生物処理槽3
の培養液2のpHは硫化水素が酸化され硫黄を含む酸に
転換されるに伴い経時的に低下する。硫酸生成に伴い酸
性化した培養液2は微生物処理槽3から菌体分離フィル
タ6を通じて酸性水7として抜出されると同時に、培養
液2中の菌体8は微生物処理槽3に戻される。このよう
にして得られた酸性水7が還元井(図示省略)に注入さ
れることにより、熱水のpHが低下しスケール付着によ
る還元井の閉塞が軽減される。一方、抜出された酸性水
7と同量の新しい培養液9が培養液タンク10から増殖
用培養槽11で増殖した菌体12ともに、微生物処理槽
3に導入され連続的に脱硫が行われる。前記フィルタ6
による菌体回収及び増殖用培養槽11からの菌体投入に
より菌体の量は微生物処理槽3の中で一定以上に保たれ
る。
2. Description of the Related Art A conventional technique for desulfurizing non-condensable gas containing high hydrogen sulfide generated in a geothermal power plant will be described with reference to FIG. At a geothermal power plant (not shown), non-condensable gas containing high hydrogen sulfide is generated. The high-hydrogen sulfide-containing non-condensable gas 1 generated in this geothermal power plant is a culture solution 2 (temperature: 70 ° C., pH: 2.
5, microbial treatment tank 3 of bubble column type filled with sulfuric acid)
And air or oxygen 4. In the high hydrogen sulfide-containing non-condensable gas 1, the hydrogen sulfide in the gas is oxidized in the microorganism treatment tank 3 to become the low hydrogen sulfide-containing non-condensable gas 5 and is released to the atmosphere. As a microorganism in the microorganism treatment tank 3, a member of the genus Sulfolobus is used. Microbial treatment tank 3
The pH of the culture solution 2 decreases over time as hydrogen sulfide is oxidized and converted to an acid containing sulfur. The culture solution 2 which has been acidified due to the production of sulfuric acid is extracted from the microorganism treatment tank 3 as acidic water 7 through the cell separation filter 6, and the cells 8 in the culture solution 2 are returned to the microorganism treatment tank 3. By injecting the acidic water 7 thus obtained into a reducing well (not shown), the pH of the hot water is reduced and the blockage of the reducing well due to scale adhesion is reduced. On the other hand, a fresh culture solution 9 of the same amount as the extracted acidic water 7 is introduced into the microorganism treatment tank 3 together with the cells 12 grown in the culture tank 11 for growth from the culture tank 10 and continuously desulfurized. . The filter 6
The amount of cells is kept in the microbial treatment tank 3 at a certain level or more by collecting the cells and feeding the cells from the culture tank 11 for propagation.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では硫化水
素から硫黄へ転換される量と、硫化水素から硫酸へ転換
する量が制御できず、微生物処理槽から抜出した培養液
の中に硫黄の小粒径粒子が含まれており、硫化水素を完
全に硫酸へ転換することができなかった。本発明は上記
技術水準に鑑み、脱硫した硫化水素を完全に硫酸酸化し
て安定に酸性水を製造することのできる地熱発電所で発
生した高硫化水素含有不凝縮ガスの脱硫方法を提供しよ
うとするものである。
In the prior art, the amount of conversion from hydrogen sulfide to sulfur and the amount of conversion from hydrogen sulfide to sulfuric acid cannot be controlled, and the sulfuric acid is contained in the culture solution extracted from the microorganism treatment tank. Since small particles were contained, hydrogen sulfide could not be completely converted to sulfuric acid. The present invention has been made in view of the above technical level, and aims to provide a method for desulfurizing a high hydrogen sulfide-containing non-condensable gas generated in a geothermal power plant capable of completely producing sulfuric acid by sulfuric acid oxidation of desulfurized hydrogen sulfide. Is what you do.

【0004】[0004]

【課題を解決するための手段】本発明は微生物処理槽と
増殖用培養槽と菌体回収フィルタからなり、増殖用培養
槽において高温・好酸硫黄酸化微生物を増殖させ、増殖
用培養槽から微生物処理槽に高温・好酸硫黄酸化微生物
を供給し、高温・好酸微生物により硫化水素を硫酸に変
換することにより硫化水素を脱硫し、硫酸と高温・好酸
微生物とを含んだ溶液を微生物処理槽から菌体回収フィ
ルタへ送り、菌体回収フィルタにて硫酸を含んだ溶液か
ら高温・好酸微生物を分離し、高温・好酸微生物は微生
物処理槽へ戻し、硫酸を含んだ溶液を製造する方法にお
いて、微生物処理槽における硫酸生成量を制御するため
に微生物処理槽を脱硫槽と硫酸生成槽に分割し、この順
で直列にガスを通気して硫酸生成槽における硫化水素の
単位体積あたりの負荷を制御する一方、脱硫槽で脱硫液
中に固定された硫黄あるいは硫黄化合物を硫酸生成槽に
送るようにしてなることを特徴とする地熱発電所バイオ
脱硫方法である。
Means for Solving the Problems The present invention comprises a microorganism treatment tank, a culture tank for growth, and a cell recovery filter, wherein high-temperature, acid-sulfur-oxidizing microorganisms are proliferated in the culture tank for growth, and the microorganisms are removed from the culture tank for growth. High-temperature, acid-sulfur-oxidizing microorganisms are supplied to the treatment tank, and hydrogen sulfide is converted to sulfuric acid by the high-temperature, acidophilic microorganisms to desulfurize hydrogen sulfide. The solution is sent from the tank to the cell recovery filter, where the high temperature and acidophile microorganisms are separated from the solution containing sulfuric acid by the cell recovery filter, and the high temperature and acidophile are returned to the microbial treatment tank to produce a solution containing sulfuric acid. In the method, the microbial treatment tank is divided into a desulfurization tank and a sulfuric acid generation tank in order to control the amount of sulfuric acid generated in the microbial treatment tank, and gas is passed in series in this order and gas per unit volume of hydrogen sulfide in the sulfuric acid generation tank is controlled. While controlling the load, a geothermal power plant biotechnology desulfurization process for a fixed sulfur or sulfur compounds in desulfurization solution in the desulfurization vessel characterized by being to send the production tank sulfate.

【0005】上記方法において、地熱ガス中の硫化水素
を脱硫槽で除去後、硫酸生成槽に供給することにより硫
酸生成槽に供給するガス中の硫化水素負荷を0.1kg
/m 3 ・h以下とすることが好ましい。
[0005] In the above method, the hydrogen sulfide in the geothermal gas
After removing sulfur in the desulfurization tank, supply
0.1 kg of hydrogen sulfide load in the gas supplied to the acid generation tank
/ M Three-It is preferable to set it to h or less.

【0006】(作用)高温・好酸微生物であるスルフォ
ロバスは次の2つの機能を有すると考えられる。第一の
機能は硫化水素を水溶性硫黄化合物あるいは硫黄に酸化
し培養液中に固定することであり、第二の機能は脱硫液
中の水溶性硫黄化合物あるいは硫黄を完全に酸化し硫酸
イオンへ転換することである。微生物処理槽の単位体積
あたりの硫化水素負荷が大きくなると、上記第一の機能
の硫化水素を微生物処理槽の培養液中に固定、すなわち
脱硫することを優先し、上記第二の機能の水溶性硫黄化
合物あるいは硫黄を完全に酸化して硫酸イオンをつくる
反応を阻害するため硫酸生成速度が低下する。
(Action) Sulfolobus, which is a high-temperature, acidophilic microorganism, is considered to have the following two functions. The first function is to oxidize hydrogen sulfide to a water-soluble sulfur compound or sulfur and fix it in the culture solution, and the second function is to completely oxidize the water-soluble sulfur compound or sulfur in the desulfurization solution to sulfate ions. It is to change. When the hydrogen sulfide load per unit volume of the microorganism treatment tank increases, the hydrogen sulfide of the first function is fixed in the culture solution of the microorganism treatment tank, that is, the priority is given to desulfurization, and the water solubility of the second function Since the reaction of completely oxidizing sulfur compounds or sulfur to form sulfate ions is inhibited, the rate of sulfuric acid generation is reduced.

【0007】以上のことから、本発明方法のようにする
こと、すなわち微生物処理槽を脱硫槽と硫酸生成槽とに
分割し、硫酸生成槽における硫化水素負荷を小さくする
ことにより、硫化水素の酸化と硫酸生成の両方のバラン
スが合い、硫化水素から硫酸イオンの生成が直列に進
む。すなわち、本発明で用いる微生物は硫化水素負荷、
すなわち単位時間当たり単位体積当たり処理槽に導入さ
れる硫化水素量に応じて生成物が変化する。十分低負荷
であれば硫化水素は全て硫酸に転換される。高負荷にな
ると硫化水素は硫黄あるいは水溶性硫黄化合物までの反
応で止まる。そこで脱硫槽では主に硫化水素をガスから
別の形(硫黄あるいは水溶性硫黄化合物)で水側(培養
液側)に移動させることを目的とし、硫酸生成槽では水
側(培養液側)に固定されたものを完全に酸化するよう
にする。このようにして硫酸生成槽の硫化水素負荷を制
御するものである。すなわち、脱硫槽では硫化水素を高
負荷とし硫酸生成槽では低負荷とする。硫酸生成槽では
既にガス中の硫化水素が少なくなっているので結果的に
低負荷となる。
[0007] From the above, the method of the present invention, that is, the microorganism treatment tank is divided into a desulfurization tank and a sulfuric acid generation tank, and the hydrogen sulfide load in the sulfuric acid generation tank is reduced, so that the oxidation of hydrogen sulfide is reduced. And the production of sulfuric acid are balanced, and the production of sulfate ions from hydrogen sulfide proceeds in series. That is, the microorganism used in the present invention is a hydrogen sulfide load,
That is, the product changes according to the amount of hydrogen sulfide introduced into the processing tank per unit time per unit volume. At sufficiently low loads, all of the hydrogen sulfide is converted to sulfuric acid. At high loads, hydrogen sulfide stops reacting with sulfur or water-soluble sulfur compounds. Therefore, the purpose of the desulfurization tank is to mainly transfer hydrogen sulfide from the gas to the water side (culture solution side) in another form (sulfur or water-soluble sulfur compound), and in the sulfuric acid production tank to the water side (culture solution side). Ensure that the immobilized material is completely oxidized. Thus, the hydrogen sulfide load of the sulfuric acid production tank is controlled. That is, the load of hydrogen sulfide is high in the desulfurization tank, and the load is low in the sulfuric acid generation tank. Since the amount of hydrogen sulfide in the gas has already been reduced in the sulfuric acid generation tank, the load becomes low as a result.

【0008】[0008]

【実施例】本発明の一実施例を図1を用いて説明する。
地熱発電所(図示省略)では高硫化水素を含有する不凝
縮ガスが発生する。この地熱発電所で発生した高硫化水
素含有不凝縮ガス1は内部に硫黄酸化微生物(菌体)を
含む培養液2(温度:70℃、pH:2.5、硫酸酸
性)が充填された気泡塔型の微生物脱硫槽13に空気あ
るいは酸素4とともに導かれる。高硫化水素含有不凝縮
ガス1はガス中の硫化水素が微生物脱硫槽13で酸化さ
れ低硫化水素含有不凝縮ガス5となり硫酸生成槽14に
導かれた後、大気に放散される。微生物脱硫槽13及び
硫酸生成槽14中の微生物にはスルフォロバス属の一種
が用いられる。
An embodiment of the present invention will be described with reference to FIG.
At a geothermal power plant (not shown), non-condensable gas containing high hydrogen sulfide is generated. The non-condensable gas 1 containing high hydrogen sulfide generated in this geothermal power plant is a bubble filled with a culture solution 2 (temperature: 70 ° C., pH: 2.5, sulfuric acid) containing sulfur-oxidizing microorganisms (cells). It is led together with air or oxygen 4 to a tower type microbial desulfurization tank 13. The high hydrogen sulfide-containing non-condensable gas 1 is oxidized in the microbial desulfurization tank 13 into hydrogen sulfide and becomes a low hydrogen sulfide-containing non-condensable gas 5, guided to the sulfuric acid generation tank 14, and then released to the atmosphere. A microorganism of the genus Sulfolobus is used as the microorganisms in the microorganism desulfurization tank 13 and the sulfuric acid production tank 14.

【0009】微生物脱硫槽13では硫化水素が硫黄ある
いは水溶性硫黄化合物に転換し、硫黄酸化微生物を含む
培養液2に固定される。硫黄あるいは水溶性硫黄化合物
を固定した硫黄酸化微生物を含む培養液(以下、これを
脱硫液という)15が微生物脱硫槽13から硫酸生成槽
14に導かれる。硫酸生成槽14に移動した脱硫液15
と同量の新しい培養液9が培養液タンク10から増殖用
培養槽11で増殖した菌体12ともに、微生物脱硫槽1
3に導入され連続的に硫化水素脱硫が行われる。硫酸生
成槽14では硫黄あるいは水溶性硫黄化合物は完全に酸
化されpHが経時的に低下する。硫酸生成に伴い酸性化
した培養液16は硫酸生成槽14から菌体分離フィルタ
6を通じて酸性水7として抜出されると同時に、菌体8
は硫酸生成槽14に戻される。
In the microbial desulfurization tank 13, hydrogen sulfide is converted into sulfur or a water-soluble sulfur compound, and is fixed to the culture solution 2 containing sulfur-oxidizing microorganisms. A culture solution (hereinafter, referred to as a desulfurization solution) 15 containing sulfur-oxidizing microorganisms in which sulfur or a water-soluble sulfur compound is fixed is guided from a microorganism desulfurization tank 13 to a sulfuric acid generation tank 14. Desulfurization liquid 15 moved to sulfuric acid generation tank 14
A fresh culture solution 9 of the same amount as that of the microbial desulfurization tank 1 together with the cells 12 grown from the culture solution tank 10 in the growth culture tank 11
3 and continuous hydrogen sulfide desulfurization is performed. In the sulfuric acid producing tank 14, the sulfur or the water-soluble sulfur compound is completely oxidized and the pH decreases with time. The culture solution 16 acidified with the sulfuric acid production is extracted from the sulfuric acid production tank 14 through the bacterial cell separation filter 6 as the acidic water 7 and, at the same time, the bacterial cells 8
Is returned to the sulfuric acid generation tank 14.

【0010】このようにして抜出された酸性水7が還元
井(図示無し)に注入されることにより熱水のpHが低
下し、スケール付着による還元井の閉塞が軽減される。
一方抜出された酸性水7と同量の新しい培養液9が培養
液タンク10から増殖用培養槽11で増殖した菌体12
ともに、硫酸生成槽14に導入され連続的に酸性水製造
が行われる。フィルタ6による回収及び増殖用培養槽1
1からの菌体投入により菌体の量は硫酸生成槽14の中
で一定以上に保たれる。
[0010] The acidic water 7 thus extracted is injected into a reducing well (not shown) to lower the pH of the hot water, thereby reducing blockage of the reducing well due to scale adhesion.
On the other hand, a fresh culture solution 9 having the same amount as the extracted acidic water 7 was grown from the culture solution tank 10 in the culture tank 11 for growth.
Both are introduced into the sulfuric acid producing tank 14 and continuously produce acidic water. Culture tank 1 for collection and propagation by filter 6
By adding the cells from step 1, the amount of the cells is maintained in the sulfuric acid producing tank 14 at a certain level or more.

【0011】[0011]

【発明の効果】本発明方法によれば、硫化水素の酸化と
硫酸生成の両方のバランスが採れ、硫化水素から硫酸イ
オンの生成が直列に進むことにより脱硫した硫化水素を
完全に硫酸酸化でき、安定に酸性水を製造することが可
能となる。
According to the method of the present invention, both the oxidation of hydrogen sulfide and the production of sulfuric acid are balanced, and the desulfurized hydrogen sulfide can be completely oxidized with sulfuric acid by the generation of sulfate ions from hydrogen sulfide proceeding in series. It is possible to stably produce acidic water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る地熱発電所バイオ脱硫
装置のフロー図。
FIG. 1 is a flow chart of a geothermal power plant bio-desulfurization apparatus according to one embodiment of the present invention.

【図2】従来の地熱発電所バイオ脱硫装置のフロー図。FIG. 2 is a flow chart of a conventional geothermal power plant bio-desulfurization apparatus.

フロントページの続き (56)参考文献 特開 平4−371214(JP,A) 特開 平2−198612(JP,A) 特開 平5−23541(JP,A) 国際公開95/24960(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 Continuation of the front page (56) References JP-A-4-371214 (JP, A) JP-A-2-198612 (JP, A) JP-A-5-23541 (JP, A) International publication 95/24960 (WO, A1) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 微生物処理槽と増殖用培養槽と菌体回収
フィルタからなり、増殖用培養槽において高温・好酸硫
黄酸化微生物を増殖させ、増殖用培養槽から微生物処理
槽に高温・好酸硫黄酸化微生物を供給し、高温・好酸微
生物により硫化水素を硫酸に変換することにより硫化水
素を脱硫し、硫酸と高温・好酸微生物とを含んだ溶液を
微生物処理槽から菌体回収フィルタへ送り、菌体回収フ
ィルタにて硫酸を含んだ溶液から高温・好酸微生物を分
離し、高温・好酸微生物は微生物処理槽へ戻し、硫酸を
含んだ溶液を製造する方法において、微生物処理槽にお
ける硫酸生成量を制御するために微生物処理槽を脱硫槽
と硫酸生成槽に分割し、この順で直列にガスを通気して
硫酸生成槽における硫化水素の単位体積あたりの負荷を
制御する一方、脱硫槽で脱硫液中に固定された硫黄ある
いは硫黄化合物を硫酸生成槽に送るようにしてなること
を特徴とする地熱発電所バイオ脱硫方法。
1. A microorganism treatment tank, a culture tank for growth, and a cell recovery filter, wherein a high-temperature, acid-oxidizing, sulfur-oxidizing microorganism is proliferated in the culture tank for growth, and the high-temperature, acidophile is transferred from the culture tank for growth to the microorganism treatment tank. Sulfur-oxidizing microorganisms are supplied, and high-temperature, acidophilic microorganisms convert hydrogen sulfide into sulfuric acid to desulfurize hydrogen sulfide, and a solution containing sulfuric acid and high-temperature, acidophilic microorganisms is transferred from the microorganism treatment tank to a cell recovery filter. The high temperature and acidophile microorganisms are separated from the solution containing sulfuric acid by the cell recovery filter, and the high temperature acidophile microorganisms are returned to the microbial treatment tank. The microbial treatment tank is divided into a desulfurization tank and a sulfuric acid generation tank in order to control the amount of sulfuric acid generated, and gas is passed in series in this order to control the load per unit volume of hydrogen sulfide in the sulfuric acid generation tank. A biodesulfurization method for a geothermal power plant, wherein sulfur or a sulfur compound fixed in a desulfurization solution in a tank is sent to a sulfuric acid generation tank.
JP33866895A 1995-12-26 1995-12-26 Geothermal power plant bio desulfurization method Expired - Fee Related JP3297275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33866895A JP3297275B2 (en) 1995-12-26 1995-12-26 Geothermal power plant bio desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33866895A JP3297275B2 (en) 1995-12-26 1995-12-26 Geothermal power plant bio desulfurization method

Publications (2)

Publication Number Publication Date
JPH09173770A JPH09173770A (en) 1997-07-08
JP3297275B2 true JP3297275B2 (en) 2002-07-02

Family

ID=18320347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33866895A Expired - Fee Related JP3297275B2 (en) 1995-12-26 1995-12-26 Geothermal power plant bio desulfurization method

Country Status (1)

Country Link
JP (1) JP3297275B2 (en)

Also Published As

Publication number Publication date
JPH09173770A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
Jensen et al. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review
Jensen et al. Treatment of H2S-containing gases: a review of microbiological alternatives
US4200523A (en) Process for removing sulfate ions from aqueous streams
JPS6058296A (en) Method of controlling anaerobic treatment method
AU713615B2 (en) Sulphur reducing bacterium and its use in biological desulphurisation processes
US4666852A (en) Photosynthetic bioconversion sulfur removal
JPS62244495A (en) Anaerobic purification method of waste water containing sulfate and organic matter
JP2003523823A (en) Removal of sulfur compounds from wastewater
CN110240961B (en) Halophilic and alkalophilic biological desulfurization treatment process and treatment device
EP0451922B1 (en) Process for the removal of sulfur dioxide from waste gas
Kim et al. Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed‐batch reactor
CN106381183A (en) Biological desulfurization device and desulfurization process for biogas
CN110643403A (en) Chemical absorption combined biological removal hydrogen sulfide and sulfur resource technology in methane
EP1572325B1 (en) Chemical-biological process for the removal of h2s from a gas
EP0218958A2 (en) Microbiological desulfurization of gases
CN102908893A (en) Method for flue gas desulfurization and byproduct polymeric ferric sulfate production by using steel pickling waste liquor
JP3297275B2 (en) Geothermal power plant bio desulfurization method
CN106497760A (en) Biogas membrance separation purifying plant
US6051518A (en) Microbial process and composition for the regeneration of catalysts
KR20240025600A (en) Processes and sulfur recovery facilities for the continuous treatment of gases containing hydrogen sulfide
JPH0218129B2 (en)
CN208340431U (en) Zinc cation desulfurizer
CN108211672B (en) Biological washing desulfurization device and method based on acidophilic biological desulfurization bacteria
CN218516433U (en) Biological desulfurization reaction equipment
JP3468885B2 (en) Geothermal power generation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees