JP3296096B2 - Liquid crystal light control body and light control window using the same - Google Patents

Liquid crystal light control body and light control window using the same

Info

Publication number
JP3296096B2
JP3296096B2 JP15404294A JP15404294A JP3296096B2 JP 3296096 B2 JP3296096 B2 JP 3296096B2 JP 15404294 A JP15404294 A JP 15404294A JP 15404294 A JP15404294 A JP 15404294A JP 3296096 B2 JP3296096 B2 JP 3296096B2
Authority
JP
Japan
Prior art keywords
liquid crystal
transparent
light
light control
crystal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15404294A
Other languages
Japanese (ja)
Other versions
JPH0821990A (en
Inventor
祐一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP15404294A priority Critical patent/JP3296096B2/en
Publication of JPH0821990A publication Critical patent/JPH0821990A/en
Application granted granted Critical
Publication of JP3296096B2 publication Critical patent/JP3296096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、液晶物質により構成さ
れた液晶調光体およびそれを用いた調光窓に関し、さら
に詳しくは光透過率制御性能に優れた液晶調光体および
それを用いた調光窓に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal light adjuster made of a liquid crystal material and a light adjusting window using the same, and more particularly, to a liquid crystal light adjuster excellent in light transmittance control performance and using the same. Light control window.

【0002】[0002]

【従来の技術】建築、自動車などの用途において、窓か
らの太陽光エネルギーの流入が室内の空調負荷に大きな
影響を与えるため、窓に調光機能を持たせることが省エ
ネルギーの観点から重要視されてきている。
2. Description of the Related Art In buildings, automobiles and the like, the inflow of solar energy from windows greatly affects the air-conditioning load in a room. Is coming.

【0003】実用上望まれる調光範囲としては、少なく
とも現在窓ガラスとして用いられている透明ガラスと太
陽光エネルギーの吸収を目的とした熱線吸収ガラスとの
光学特性値を選択できることが必要と考えられ、この調
光範囲は太陽光エネルギーの透過率変化幅(以下「△T
g」という)で15%以上ということができる。ここ
で、太陽光透過率Tgは、全透過光に太陽光エネルギー
の強度分布係数を乗じることにより得られる(JIS
R 3106)。
[0003] It is considered that it is necessary to be able to select optical characteristic values of at least a transparent glass currently used as a window glass and a heat ray absorbing glass intended to absorb sunlight energy as a dimming range which is practically desired. , The dimming range is the range of change in transmittance of sunlight energy (hereinafter “ΔT
g ") is 15% or more. Here, the sunlight transmittance Tg is obtained by multiplying the total transmitted light by the intensity distribution coefficient of sunlight energy (JIS).
R 3106).

【0004】従来、このような調光機能を持った素子
(以下「調光素子」という)の一つとして、エレクトロ
クロミック素子(以下「EC素子」という)が知られて
いる。EC素子は酸化タングステン、プルシアンブルー
などの電気化学的な酸化還元反応によるスペクトル変化
を伴う材料を用い、太陽光エネルギーの透過光量の制御
を光の吸収により可能としている。
Conventionally, an electrochromic device (hereinafter, referred to as an “EC device”) has been known as one of the devices having such a light controlling function (hereinafter, referred to as a “light controlling device”). The EC element uses a material with a spectrum change due to an electrochemical oxidation-reduction reaction, such as tungsten oxide or Prussian blue, and the amount of transmitted sunlight energy can be controlled by light absorption.

【0005】しかしながら、EC素子は電流駆動型であ
るため大面積化した場合、大きな電圧降下により応答速
度が著しく低下するほか、長時間通電中に生じる構成材
料の電気化学的変化などによる劣化が避けられず、実用
上充分な耐久性を有する大面積の素子は実現されていな
い。
[0005] However, since the EC element is of a current-driven type, when the area is increased, the response speed is remarkably reduced due to a large voltage drop, and deterioration due to electrochemical changes of constituent materials caused during long-time energization is avoided. Therefore, a large-area element having sufficient practical durability has not been realized.

【0006】そこで、このような電流駆動型のEC素子
に代わるものとして、電圧駆動型の調光素子が注目され
るようになった。耐久性に優れかつ大面積化の容易な調
光機能を持つ液晶素子として、特開昭58−50163
1号に記載される曲線的な配列相のネマティック(NC
AP:Nematic Curvilinear Aligned Phase)液晶素
子、また特開昭60−502128号に記載される相分
離法により得られる液晶素子などが知られている。これ
らの素子は、以下の原理に基づいて動作する。
[0006] Therefore, as a substitute for such a current-driven EC device, a voltage-driven dimming device has attracted attention. Japanese Patent Application Laid-Open No. 58-50163 discloses a liquid crystal element having excellent durability and a dimming function capable of easily increasing the area.
No. 1 has a nematic (NC
2. Description of the Related Art Liquid crystal devices having a nematic curvilinear aligned phase (AP) and liquid crystal devices obtained by a phase separation method described in JP-A-60-502128 are known. These elements operate based on the following principle.

【0007】安価なポリマー中に液晶物質の小滴を分散
した該公報記載の液晶素子は、電圧を印加しない状態で
は、ポリマー壁の曲面に沿って液晶が配列することによ
り、光路がねじ曲げられたり、ポリマーと液晶滴との界
面において光が反射して散乱し、乳白色に見える。
In the liquid crystal device described in this publication, in which small droplets of a liquid crystal substance are dispersed in an inexpensive polymer, when no voltage is applied, the liquid crystal is arranged along the curved surface of the polymer wall, so that the optical path is twisted. At the interface between the polymer and the liquid crystal droplets, light is reflected and scattered, and looks milky white.

【0008】一方、電圧を印加した時においては、液晶
滴内の液晶は外部電界により電界方向に配列し、このと
き液晶の常光屈折率noとポリマーの屈折率npとを一致
するように選択することにより、液晶素子面に垂直に入
射した光は液晶とポリマーの界面で反射することなく通
過するため、液晶素子は透明となる。
On the other hand, when a voltage is applied, the liquid crystals in the liquid crystal droplets are arranged in the direction of the electric field by an external electric field, and at this time, the ordinary light refractive index no of the liquid crystal and the refractive index np of the polymer are selected so as to match. Accordingly, the light that is perpendicularly incident on the liquid crystal element surface passes without being reflected at the interface between the liquid crystal and the polymer, so that the liquid crystal element is transparent.

【0009】前記液晶素子(以下「高分子分散型液晶素
子」ということがある)は透視性を調節することはでき
るが、電圧無印加時に液晶素子に入射した光はそのほと
んどが入射側とは反対側(以下「前方」という)に散乱
しているため、電圧印加時と比較して太陽光エネルギー
の透過量はほとんど減少せず、数%の△Tgしか得られ
ていなかった。
Although the liquid crystal element (hereinafter sometimes referred to as a “polymer-dispersed liquid crystal element”) can adjust the transparency, most of the light incident on the liquid crystal element when no voltage is applied is equal to the incident side. Since the light was scattered on the opposite side (hereinafter referred to as “forward”), the amount of transmitted solar energy hardly decreased compared to when voltage was applied, and only a few% ΔTg was obtained.

【0010】上記問題点を解決するために、高分子分散
型液晶素子に使用される液晶物質中に多色性染料を添加
し、電圧無印加時の光の吸収を増大させる方法が特開平
3−66162号に記載されている。この素子は大きな
△Tgを有するが、多色性染料が本質的に光、熱に対し
て劣化するため、長期間太陽光に曝される建築、自動車
などの屋外用途には使用することができなかった。
In order to solve the above problems, a method of adding a polychromatic dye to a liquid crystal material used in a polymer dispersed type liquid crystal element to increase light absorption when no voltage is applied is disclosed in Japanese Patent Application Laid-Open No. HEI 3 (1993) -207. -66162. Although this element has a large ΔTg, it can be used for outdoor applications such as architecture and automobiles that are exposed to sunlight for a long period of time because the polychromatic dye is inherently deteriorated by light and heat. Did not.

【0011】本発明者は、高分子分散型液晶素子のパラ
メータを種々変更し△Tgとの関係を詳細に調べ、種々
のパラメータを好適に組み合わせることにより、前方に
散乱する入射光をより多く入射側(以下「後方」とい
う)に散乱させることで、電圧無印加時の透過光量を減
少させ、光透過率制御性能を著しく高め、△Tgが15
%以上の調光性能を持った液晶素子を得ることを可能と
した(特願平3−270934号)。
The inventor of the present invention has variously changed the parameters of the polymer-dispersed liquid crystal device and has examined the relationship with ΔTg in detail. By suitably combining the various parameters, more incident light scattered forward is incident. Side (hereinafter referred to as “rearward”), the amount of transmitted light when no voltage is applied is reduced, the light transmittance control performance is significantly increased, and ΔTg is 15
% Can be obtained (Japanese Patent Application No. 3-270934).

【0012】[0012]

【発明が解決しようとする課題】しかしながら、市場で
はより大きな△Tgを有する調光体が求められている。
例えば、高分子分散型液晶素子が一対の透明体間にプラ
スチック接着膜を介して挟持された調光体を作製する際
に、前記透明体として透過率の低い着色ガラスを用いれ
ば、電圧無印加時に着色ガラスにより光が吸収された分
だけ前記液晶素子単体よりも透過率が低下し、より大き
な△Tgを得る可能性がある。前記調光体を作製する技
術は既に確立されており、容易に大面積化が可能である
(実開昭64−32124号)。しかしながら、前記構
成では電圧印加時においても電圧無印加時と同様に透過
率が低下してしまうため、ほとんど△Tgは変化せず、
より大きな△Tgは得られていない。
However, there is a need in the market for dimmers having a larger ΔTg.
For example, when producing a dimmer in which a polymer-dispersed liquid crystal element is sandwiched between a pair of transparent bodies via a plastic adhesive film, if a colored glass having a low transmittance is used as the transparent bodies, no voltage is applied. Sometimes the transmittance is lower than that of the liquid crystal element alone due to the absorption of light by the colored glass, and a larger ΔTg may be obtained. The technology for manufacturing the dimmer has already been established, and the area can be easily increased (Japanese Utility Model Application Laid-Open No. 64-32124). However, in the above configuration, even when a voltage is applied, the transmittance is reduced similarly to when no voltage is applied, so that ΔTg hardly changes.
No larger ΔTg has been obtained.

【0013】本発明は、かかる従来の問題点を解決する
ためになされたもので、大面積化が容易であり、より優
れた調光性能を持った液晶調光体およびそれを用いた調
光窓を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and a liquid crystal light adjuster which is easy to increase in area and has more excellent light control performance, and light control using the same. The purpose is to provide windows.

【0014】[0014]

【課題を解決するための手段】すなわち本発明は、透明
な一対の基板の対向面にそれぞれ透明導電膜を配設し、
液晶物質を空隙中に保持してなる媒体を前記透明導電膜
間に介在させた液晶素子において、この液晶素子の一方
の基板の外側面に吸収異方性透明体を積層させたことを
特徴とする液晶調光体である。
That is, according to the present invention, a transparent conductive film is provided on each of opposing surfaces of a pair of transparent substrates,
In a liquid crystal element in which a medium holding a liquid crystal substance in a gap is interposed between the transparent conductive films, an absorbing anisotropic transparent body is laminated on an outer surface of one substrate of the liquid crystal element. Liquid crystal light adjuster.

【0015】また本発明は、透明な一対の基板の対向面
にそれぞれ透明導電膜を配設し、液晶物質を空隙中に保
持してなる媒体を前記透明導電膜間に介在させて液晶素
子とし、この液晶素子の一方の基板の外側面に吸収異方
性透明体を積層させて液晶調光体を構成し、吸収異方性
透明体の形成面を屋内側、非形成面を屋外側として前記
液晶調光体を開口部に取り付けたことを特徴とする調光
窓である。
Further, according to the present invention, a transparent conductive film is provided on the opposing surfaces of a pair of transparent substrates, and a medium holding a liquid crystal substance in a gap is interposed between the transparent conductive films to form a liquid crystal element. A liquid crystal light modulator is formed by laminating an absorbing anisotropic transparent body on the outer surface of one substrate of the liquid crystal element, and the surface on which the absorbing anisotropic transparent body is formed is the indoor side, and the non-formed surface is the outdoor side. A dimming window, wherein the liquid crystal dimmer is attached to an opening.

【0016】図2は、透明基板の光学特性評価方法につ
いて、その測定原理を説明するための装置であり、要部
のみが描かれている。前記測定装置は、光源(8)と検
出器(9)とで構成され、また試料(10)である透明
基板は光源(8)と検出器(9)との間にあって、しか
も両者を結ぶ線上に配置され、また図示しない補助具に
よりその長さ方向の中心位置が両側面から挟持され、さ
らに軸により回動可能とされている。
FIG. 2 is an apparatus for explaining the measurement principle of the method for evaluating the optical characteristics of a transparent substrate, and only the main parts are illustrated. The measuring device is composed of a light source (8) and a detector (9), and a transparent substrate as a sample (10) is located between the light source (8) and the detector (9), and on a line connecting the two. The center position in the longitudinal direction is held from both side surfaces by an auxiliary tool (not shown), and is rotatable by a shaft.

【0017】図2では、前記光源(8)として、各光成
分を含み、しかも平行ビームを得ることが可能な白色光
源を用いているが、これに限定されるものではなく、例
えば太陽光や蛍光灯も含むものである。また、検出器
(9)は光−電気変換器であり、光源(8)から照射さ
れた検出光を受光し、入力される光信号を電気信号に変
換する。
In FIG. 2, a white light source containing each light component and capable of obtaining a parallel beam is used as the light source (8). However, the present invention is not limited to this. It also includes fluorescent lights. The detector (9) is an optical-electrical converter, which receives the detection light emitted from the light source (8) and converts an input optical signal into an electric signal.

【0018】図2において、光源(8)から試料(1
0)表面に検出光を照射し、入射される検出光が試料
(10)の法線(11)となす角を入射角度θとして、
試料(10)を軸中心に一定角度ずつ回動させて、各角
度における透過率T及び透過光強度を検出器(8)によ
り検出する。
In FIG. 2, the light source (8) is used to
0) The surface is irradiated with detection light, and an angle between the incident detection light and the normal (11) of the sample (10) is defined as an incident angle θ.
The sample (10) is rotated by a certain angle about the axis, and the transmittance T and the transmitted light intensity at each angle are detected by the detector (8).

【0019】図3は、入射角θに対する透過率Tの変化
を示したグラフである。例えば、着色された透明ガラス
基板や透明プラスチック基板は、吸収係数に異方性がな
いため、角度θに対して吸収係数は変化しない。このた
め、透過率T(θ)は図3において破線で示すように、
光路長(基板中を通過する光の距離、θ=0では基板の
厚みdに等しい)がd・(1−cosθ)/cosθ長
くなった分だけT(θ=0)より低くなる。
FIG. 3 is a graph showing a change in the transmittance T with respect to the incident angle θ. For example, a colored transparent glass substrate or transparent plastic substrate does not have anisotropy in the absorption coefficient, so that the absorption coefficient does not change with respect to the angle θ. Therefore, the transmittance T (θ) is, as shown by the broken line in FIG.
The optical path length (the distance of light passing through the substrate, which is equal to the thickness d of the substrate when θ = 0) becomes lower than T (θ = 0) by the length of d · (1−cos θ) / cos θ.

【0020】これに対して、試料(1)として吸収異方
性透明体(7)を用いた場合には、吸収係数が角度θに
対して変化し、角度θが大きくなるほど吸収係数が増加
する。その結果、吸収異方性透明体(7)のT(θ)は
図3において実線で示すように、前記した着色された透
明基板や透明プラスチック基板の場合に比較して、角度
θが大きくなると急激に透過率Tが低下する。
On the other hand, when the absorption anisotropic transparent body (7) is used as the sample (1), the absorption coefficient changes with respect to the angle θ, and the absorption coefficient increases as the angle θ increases. . As a result, as shown by the solid line in FIG. 3, the T (θ) of the absorption anisotropic transparent body (7) becomes larger as the angle θ becomes larger than that of the colored transparent substrate or the transparent plastic substrate. The transmittance T sharply decreases.

【0021】図4は、液晶調光体の透過光の角度依存性
を示すグラフである。同図は、液晶調光体の基板面に対
して垂直に光を入射し、そのときの透過光強度(相対
値)の角度依存性を測定したものであり、同図において
実線は液晶調光体に電圧を印加しない状態(以下「of
f時」という)を示し、破線は液晶調光体が十分に透明
になるように電圧を印加した状態(以下「on時」とい
う)を示している。off時では、液晶調光体に入射し
た光が広い角度にわたって出射する。他方、on時で
は、液晶調光体に入射した光のほとんどが直進して出射
する。
FIG. 4 is a graph showing the angle dependence of the transmitted light of the liquid crystal light adjuster. The figure shows the measurement of the angle dependence of the transmitted light intensity (relative value) when light is incident perpendicularly to the substrate surface of the liquid crystal light controller. When no voltage is applied to the body (hereinafter “of
f), and the broken line indicates a state in which a voltage is applied so that the liquid crystal light adjuster is sufficiently transparent (hereinafter referred to as “on”). At the time of off, light incident on the liquid crystal light adjuster is emitted over a wide angle. On the other hand, when it is on, most of the light that has entered the liquid crystal light adjuster goes straight and exits.

【0022】一方の液晶素子表面に吸収異方性透明体を
積層し、かつ、他方の液晶素子表面を光源側に配置させ
ることにより、off時には液晶素子から広角度に出射
した光を大きく減衰させるため、全透過光が低下して結
果的にTgが低下する。
By laminating an absorbing anisotropic transparent body on one liquid crystal element surface and arranging the other liquid crystal element surface on the light source side, light emitted from the liquid crystal element at a wide angle at the time of off is greatly attenuated. Therefore, the total transmitted light decreases, and as a result, Tg decreases.

【0023】これに対し、on時には直進光が吸収異方
性透明基板により僅かに減衰するだけであり、ほとんど
Tgは低下しない。従って、△Tgは大きくなる。
On the other hand, when the light is on, the straight traveling light is only slightly attenuated by the transparent transparent anisotropic substrate, and Tg hardly decreases. Therefore, ΔTg increases.

【0024】なお、液晶素子表面に積層した前記吸収異
方性透明体を光源側に配置した場合は、光源から照射さ
れた光が吸収異方性透明体により僅かに減衰して液晶素
子に入射するため、吸収係数に異方性のない透明基板を
積層した場合と同様に、△Tgはほとんど変化しない。
When the transparent transparent anisotropic material laminated on the surface of the liquid crystal element is disposed on the light source side, the light emitted from the light source is slightly attenuated by the transparent transparent anisotropic material and enters the liquid crystal element. Therefore, ΔTg hardly changes, as in the case where a transparent substrate having no anisotropy in the absorption coefficient is laminated.

【0025】このような前記吸収異方性透明体として
は、吸収係数に異方性があり、かつ大面積にわたって板
状であれば特に限定されない。例えば、図5および図6
に示すように透明プラスチックフィルム(13)上にル
ーバ状レリーフ(14)を形成させたライトコントロー
ルフィルム(12)(以下「LCF」という)を適用す
ることができる。なお、図5はストライプ型、図6はハ
ニカム型のLCFである。
There is no particular limitation on the absorption anisotropic transparent material as long as it has an anisotropic absorption coefficient and is plate-shaped over a large area. For example, FIGS.
As shown in (1), a light control film (12) (hereinafter referred to as "LCF") having a louver-shaped relief (14) formed on a transparent plastic film (13) can be applied. FIG. 5 shows a stripe type LCF, and FIG. 6 shows a honeycomb type LCF.

【0026】前記ストライプ型のLCFは、図7に示す
ように面内の方位に対する依存性があり、面内角αが9
0度のとき、すなわちレリーフ(14)の長さ方向と垂
直な方向に対しては、透過率Tが視野角θに対して大き
く変化するが、レリーフ(14)の長さ方向と水平な方
向(面内角度αが0度)に対しては、透過率Tの視野角
θに対する依存性がほとんどない。
The stripe-type LCF has a dependence on the in-plane orientation as shown in FIG.
At 0 degrees, that is, in the direction perpendicular to the length direction of the relief (14), the transmittance T greatly changes with respect to the viewing angle θ, but in the direction parallel to the length direction of the relief (14). (The in-plane angle α is 0 degree), the transmittance T hardly depends on the viewing angle θ.

【0027】一方、ハニカム型のLCFでは、図8に示
すように透過率Tの視野角θに対する依存性が大きく、
かつ、それが全方位においてほとんど変化しないため、
高分子分散型液晶素子にストライプ型LCFを積層した
場合に比較して、より大きな△Tgを得ることができ
る。さらに、LCFの透過率Tの視野角θに対する依存
性が大きいほど、つまり視野角θ=0度における透過率
Tがより高く、しかも視野角θが大きくなるほど透過率
Tがより低くなれば、LCFを積層させた液晶素子の△
Tgは大きくなる。
On the other hand, in the honeycomb type LCF, the transmittance T greatly depends on the viewing angle θ as shown in FIG.
And since it hardly changes in all directions,
A larger ΔTg can be obtained as compared with a case where a stripe-type LCF is laminated on a polymer-dispersed liquid crystal element. Furthermore, if the dependency of the transmittance T of the LCF on the viewing angle θ is greater, that is, the transmittance T at the viewing angle θ = 0 ° is higher and the transmittance T is lower as the viewing angle θ is larger, the LCF Of a liquid crystal element in which
Tg increases.

【0028】また、本発明の液晶調光体を建物等の開口
部に取り付けて調光窓を構成する。この場合、前記のよ
うに液晶調光体の吸収異方性透明体を積層した面を屋内
側すなわち非光源として開口部に取り付けることによ
り、off時にはTgを低下させ、on時にはTgがほ
とんど低下しないため、結果的に△Tgを大きくするこ
とが可能である。
Further, the liquid crystal light adjuster of the present invention is attached to an opening of a building or the like to form a light adjusting window. In this case, as described above, the surface on which the absorption anisotropic transparent body of the liquid crystal light modulator is laminated is attached to the opening on the indoor side, that is, as a non-light source, so that Tg is reduced at the time of off, and Tg hardly decreases at the time of on. Therefore, ΔTg can be increased as a result.

【0029】[0029]

【作用】本発明の液晶調光体では、液晶素子の一方の透
明基板の外側面に吸収異方性透明体が積層されているの
で、大きな太陽光エネルギーの透過率変化幅を得ること
ができる。
In the liquid crystal light modulator of the present invention, since the absorption anisotropic transparent material is laminated on the outer surface of one of the transparent substrates of the liquid crystal element, a large change in transmittance of sunlight energy can be obtained. .

【0030】このような特性は、前記液晶調光体に電圧
が印加されていない状態と印加された状態での前方散乱
光の状態変化に着目し、電圧が印加されていない状態で
散乱光を遮断し、印加された状態で直進透過光をほとん
ど減衰しないことにより可能となったものである。
Such a characteristic focuses on the state change of the forward scattered light when the voltage is not applied to the liquid crystal light adjuster and when the voltage is not applied to the liquid crystal light adjuster. This is made possible by shutting off and hardly attenuating the straight transmitted light in the applied state.

【0031】また本発明の液晶調光体は、高分子分散型
液晶素子の構成を変えずに調光性能を改良したため、従
来と同様に十分に透視性を調節することができ、劣化が
ほとんどなく耐久性に優れている。
In the liquid crystal light adjuster of the present invention, the light control performance is improved without changing the structure of the polymer dispersed liquid crystal element, so that the transparency can be sufficiently adjusted as in the prior art, and the deterioration hardly occurs. And excellent durability.

【0032】また本発明の調光窓は、液晶調光体の一方
の透明基板の外側面に吸収異方性透明体が積層されてお
り、吸収異方性透明体の形成面を屋内側、非形成面を屋
外側としてこの液晶調光体を開口部に取り付けたもので
あるから、屋外から流入する太陽光エネルギーを十分に
制御することができる。
In the light control window of the present invention, an anisotropic transparent body is laminated on the outer surface of one of the transparent substrates of the liquid crystal light control body. Since the liquid crystal light adjuster is attached to the opening with the non-formed surface facing the outside, the sunlight energy flowing from outside can be sufficiently controlled.

【0033】[0033]

【実施例】以下、実施例に基づいて本発明をさらに詳細
に説明するが、本発明はかかる実施例に限定されるもの
ではない。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0034】図1は、本発明の液晶調光体の模式断面図
であり、同図において(1)は液晶素子、(2)は透明
基板、(3)は透明導電膜、(4)は媒体、そして
(5)は液晶物質を示している。
FIG. 1 is a schematic sectional view of a liquid crystal light adjuster of the present invention. In FIG. 1, (1) is a liquid crystal element, (2) is a transparent substrate, (3) is a transparent conductive film, and (4) is a transparent conductive film. The medium and (5) indicate the liquid crystal material.

【0035】例えば、本発明の液晶調光体のうち液晶素
子の部分は、以下の方法により作製される。まず、液晶
物質と水性相を混合してエマルジョンを作り、そのエマ
ルジョンをラテックスに添加する、もしくは、液晶物質
とラテックスを直接混合してエマルジョンを作製する。
エマルジョンを作る際に、安定な液晶粒子を形成するた
め界面活性剤を添加することが好ましい。混合は、ブレ
ンダー、コロイドミルなど種々のミキサーで行う。次
に、ラテックスを架橋するため架橋剤を添加して媒体
(4)を形成させ、次いでナイフブレードまたは他の適
当な手段により、その媒体(4)を透明導電膜(3)を
形成した透明基板(2)上に塗布し乾燥させる。そし
て、もう一枚の透明導電膜(3)付き透明基板(2)と
貼合わせて液晶素子を得る。
For example, the liquid crystal element of the liquid crystal light modulator of the present invention is manufactured by the following method. First, an emulsion is prepared by mixing a liquid crystal substance and an aqueous phase, and the emulsion is added to latex, or the liquid crystal substance and latex are directly mixed to prepare an emulsion.
When forming an emulsion, it is preferable to add a surfactant in order to form stable liquid crystal particles. Mixing is performed by various mixers such as a blender and a colloid mill. Next, a crosslinking agent is added to crosslink the latex to form a medium (4), and then the medium (4) is converted to a transparent substrate formed with a transparent conductive film (3) by a knife blade or other suitable means. (2) Apply on top and dry. Then, it is bonded to another transparent substrate (2) with a transparent conductive film (3) to obtain a liquid crystal element.

【0036】この後、前記液晶素子の一方の基板(2)
の外側面に吸収異方性透明体(7)を積層させて図1に
示す本発明の液晶調光体(1)を得る。この場合におい
て、前記吸収異方性透明体(7)は通常は図示しない接
着剤を介して基板(2)に積層される。
Thereafter, one substrate (2) of the liquid crystal element
The liquid crystal light modulator (1) of the present invention shown in FIG. In this case, the absorption anisotropic transparent body (7) is usually laminated on the substrate (2) via an adhesive (not shown).

【0037】また、図1に示す液晶調光体(1)の吸収
異方性透明体(7)を屋内側として建物等の開口部に取
り付けることにより(不図示)、本発明の調光窓を得
る。
The dimming window of the present invention is provided by mounting the transparent anisotropic transparent body (7) of the liquid crystal dimmer (1) shown in FIG. Get.

【0038】(実施例1)ネマチック液晶ZLI−32
19(メルクジャパン製)に界面活性剤IGEPAL
CO−610(GAF製)を0.5wt%添加し、それ
らを液晶比率が0.62になるようにラテックス粒子4
0重量%を含むNeorez R−967(ポリビニル
ケミカル製)に添加し、ホモジナイザーを用い1500
0回転で10分間攪拌しエマルジョンを得た。次にゆっ
くり混ぜながら架橋剤CX−100(ポリビニルケミカ
ル製)をR−967に対して3重量%の割合で添加し
た。この混合物をドクターブレードを用いて、インジウ
ム錫酸化物(ITO)膜が予め被覆されたポリエチレン
テレフタレート(PET)フィルム上に塗布、乾燥し
た。乾燥後の厚みは、約18μmであった。混合物の乾
燥後、もう一枚のITO膜付きPETフィルムと貼合わ
せて液晶素子を得た。そして、この液晶素子を用い、一
方のPETフィルム上にエタノール水溶液(25%)を
霧状に散布し、前記PETフィルムとストライプ型LC
F(旭化成工業(株)製)の吸収異方性透明体とを貼り
合わせて本実施例における液晶調光体を得た。
(Example 1) Nematic liquid crystal ZLI-32
19 (Merck Japan) surfactant IGEPAL
CO-610 (manufactured by GAF) was added in an amount of 0.5 wt%, and latex particles 4 were added so that the liquid crystal ratio became 0.62.
It was added to Neorez R-967 (manufactured by Polyvinyl Chemical) containing 0% by weight, and 1500 was added using a homogenizer.
The mixture was stirred at 0 rotation for 10 minutes to obtain an emulsion. Next, a crosslinking agent CX-100 (manufactured by polyvinyl chemical) was added at a ratio of 3% by weight to R-967 while being slowly mixed. This mixture was applied on a polyethylene terephthalate (PET) film previously coated with an indium tin oxide (ITO) film using a doctor blade, and dried. The thickness after drying was about 18 μm. After the mixture was dried, it was bonded to another PET film with an ITO film to obtain a liquid crystal device. Then, using this liquid crystal element, an aqueous ethanol solution (25%) was sprayed on one of the PET films in a mist state, and the PET film and the stripe type LC were dispersed.
F (Asahi Kasei Kogyo Co., Ltd.) was bonded to an absorption anisotropic transparent body to obtain a liquid crystal light modulating body in this example.

【0039】(実施例2)実施例1では液晶調光体の吸
収異方性透明体としてストライプ型LCF(旭化成工業
(株)製)を用いたが、本実施例ではこれに代えてハニ
カム型LCF(旭化成工業(株)製)を用い、実施例1
の場合と同様に一方のPETフィルム上にエタノール水
溶液(25%)を霧状に散布し、前記PETフィルムと
ハニカム型LCF(旭化成工業(株)製)を貼り合わて
本実施例における液晶調光体を得た。
(Embodiment 2) In Embodiment 1, a stripe-type LCF (manufactured by Asahi Kasei Kogyo Co., Ltd.) was used as the absorption anisotropic transparent body of the liquid crystal light modulator, but in this embodiment, a honeycomb type is used instead. Example 1 using LCF (manufactured by Asahi Kasei Corporation)
As in the case of the above, an aqueous ethanol solution (25%) was sprayed on one of the PET films in the form of a mist, and the PET film and a honeycomb type LCF (manufactured by Asahi Kasei Kogyo Co., Ltd.) were adhered to each other. I got a body.

【0040】(実施例3)実施例2で得た液晶調光体を
用い、ストライプ型LCF(旭化成工業(株)製)が屋
内側となるように建物の支柱間に嵌め込み、シーリング
材で固定した。
Example 3 Using the liquid crystal light modulator obtained in Example 2, a striped LCF (manufactured by Asahi Kasei Kogyo Co., Ltd.) was fitted between columns of a building so as to be on the indoor side, and fixed with a sealing material. did.

【0041】(比較例1)実施例1で、一方のPETフ
ィルムにストライプ型LCF(旭化成工業(株)製)を
貼り合わせる前の液晶素子を、比較例1の液晶素子とし
た。
(Comparative Example 1) The liquid crystal element of Example 1 before the stripe-type LCF (manufactured by Asahi Kasei Kogyo Co., Ltd.) was bonded to one PET film was used as the liquid crystal element of Comparative Example 1.

【0042】(実施例1、2及び比較例1)実施例1、
2及び比較例1の液晶素子について、JIS R 31
06に従って電圧を印加していない状態(off状態)
及び液晶素子の対向するITO膜間に電圧を印加した状
態(on状態)の太陽光透過率Tgをそれぞれ測定し、
さらにそれらの測定値から計算により△Tgを得た。そ
の結果を表1に示す。なお、△Tgは上述のとおり太陽
光エネルギーの透過率変化幅であり、さらに詳しくはo
n状態での太陽光透過率とoff状態での太陽光透過率
との差を表す。
(Examples 1 and 2 and Comparative Example 1)
JIS R 31
No voltage applied according to 06 (off state)
And a sunlight transmittance Tg in a state where a voltage is applied between the opposite ITO films of the liquid crystal element (on state), and
Further, ΔTg was obtained from the measured values by calculation. Table 1 shows the results. Note that ΔTg is the change in transmittance of sunlight energy as described above, and more specifically, o
It represents the difference between the sunlight transmittance in the n state and the sunlight transmittance in the off state.

【0043】[0043]

【表1】 [Table 1]

【0044】測定に際して、吸収異方性透明体は光源と
反対側、すなわち検出器側に配置させた。実施例1で得
られた液晶調光体においては、比較のために吸収異方性
透明体が光源側に配置した場合についても測定した。こ
れを比較例2として、結果を同様に表1に示す。
In the measurement, the transparent transparent anisotropic material was placed on the side opposite to the light source, that is, on the detector side. In the liquid crystal light adjuster obtained in Example 1, for the purpose of comparison, the measurement was also performed on a case where the absorption anisotropic transparent material was disposed on the light source side. The results are similarly shown in Table 1 using this as Comparative Example 2.

【0045】表1から明かなように、実施例1及び2で
得られた液晶調光体は、基板の外側面に積層させた吸収
異方性透明体を光源と反対側に配置させたので、より大
きな太陽光エネルギーの透過率変化幅△Tgが得られて
おり、従来の液晶素子単体より△Tgが改善されている
ことが分かる。
As is clear from Table 1, in the liquid crystal light modulators obtained in Examples 1 and 2, the absorption anisotropic transparent material laminated on the outer surface of the substrate was arranged on the side opposite to the light source. Thus, a larger transmittance change ΔTg of sunlight energy was obtained, and it can be seen that ΔTg was improved as compared with the conventional liquid crystal element alone.

【0046】[0046]

【発明の効果】以上詳述したように、本発明の液晶調光
体は、一方の基板上に吸収異方性透明体を積層し、か
つ、他方の基板をこの液晶調光体に照射される光源側に
配置したものであるから、実施例からも明かなとおり、
従来の方法で得られる高分子分散型液晶素子に比較して
光透過率制御性能に優れている。
As described in detail above, the liquid crystal light adjuster of the present invention has a structure in which an absorption anisotropic transparent material is laminated on one substrate, and the other substrate is irradiated with the liquid crystal light adjuster. Since it is arranged on the light source side, as is clear from the example,
It is excellent in light transmittance control performance as compared with a polymer dispersed liquid crystal element obtained by a conventional method.

【0047】また本発明の調光窓は、液晶調光体におけ
る吸収異方性透明体の形成面を屋内側、非形成面を屋外
側としてこの液晶調光体を開口部に取り付けたものであ
るから、屋外から流入する太陽光エネルギーを十分に制
御することが可能である。
The dimming window of the present invention is a liquid crystal dimmer in which the surface on which the absorption anisotropic transparent body is formed is the indoor side and the non-formed surface is the outdoor side, and the liquid crystal dimmer is attached to the opening. Therefore, it is possible to sufficiently control the solar energy flowing from the outside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶調光体を示す概略断面図FIG. 1 is a schematic sectional view showing a liquid crystal light adjuster of the present invention.

【図2】光学特性評価装置の測定原理を示す説明図FIG. 2 is an explanatory diagram showing a measurement principle of the optical characteristic evaluation device.

【図3】透明基板及び吸収異方性透明基板の透過率と視
野角の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the transmittance and the viewing angle of a transparent substrate and an absorption anisotropic transparent substrate.

【図4】本発明の液晶調光体の透過光強度と視野角の関
係を示すグラフ
FIG. 4 is a graph showing the relationship between the transmitted light intensity and the viewing angle of the liquid crystal light adjuster of the present invention.

【図5】本発明に用いるストライプ型の吸収異方性透明
体を模式的に示した斜視構造図
FIG. 5 is a perspective structural view schematically showing a stripe-type absorption anisotropic transparent body used in the present invention.

【図6】本発明に用いるハニカム型の吸収異方性透明体
を模式的に示した斜視構造図
FIG. 6 is a perspective structural view schematically showing a honeycomb-type absorption anisotropic transparent body used in the present invention.

【図7】ストライプ型の吸収異方性透明体を用いた場合
の透過率と視野角の関係を示すグラフ
FIG. 7 is a graph showing the relationship between the transmittance and the viewing angle when a stripe-type absorption anisotropic transparent body is used.

【図8】ハニカム型の吸収異方性透明体を用いた場合の
透過率と視野角の関係を示すグラフ
FIG. 8 is a graph showing the relationship between the transmittance and the viewing angle when a honeycomb-type absorption anisotropic transparent body is used.

【符号の説明】[Explanation of symbols]

1 液晶調光体 2 透明基板 3 透明導電膜 4 媒体 5 液晶物質 7 吸収異方性透明体 8 光源 DESCRIPTION OF SYMBOLS 1 Liquid crystal light modulator 2 Transparent substrate 3 Transparent conductive film 4 Medium 5 Liquid crystal material 7 Absorption anisotropic transparent material 8 Light source

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明な一対の基板の対向面にそれぞれ透
明導電膜を配設し、液晶物質を内部に保持してなる媒体
を前記透明導電膜間に介在させた液晶素子において、該
液晶素子の一方の前記基板の外側面に吸収異方性透明体
を積層させたことを特徴とする液晶調光体。
1. A liquid crystal element comprising a transparent conductive film disposed on opposing surfaces of a pair of transparent substrates, and a medium holding a liquid crystal substance therein interposed between the transparent conductive films. A liquid crystal light adjuster, wherein an absorption anisotropic transparent material is laminated on the outer surface of one of the substrates.
【請求項2】 前記吸収異方性透明体がルーバー状レリ
ーフを形成した透明体である請求項1に記載の液晶調光
体。
2. The liquid crystal light control device according to claim 1, wherein the absorption anisotropic transparent material is a transparent material having a louver-shaped relief.
【請求項3】 透明な一対の基板の対向面にそれぞれ透
明導電膜を配設し、液晶物質を内部に保持してなる媒体
を前記透明導電膜間に介在させて液晶素子とし、該液晶
素子の一方の前記基板の外側面に吸収異方性透明体を積
層させて液晶調光体を構成し、前記吸収異方性透明体の
形成面を屋内側、非形成面を屋外側として前記液晶調光
体を開口部に取り付けたことを特徴とする調光窓。
3. A liquid crystal element comprising a transparent conductive film disposed on opposing surfaces of a pair of transparent substrates, and a medium holding a liquid crystal substance interposed between the transparent conductive films to form a liquid crystal element. A liquid crystal light adjuster is formed by laminating an absorption anisotropic transparent body on the outer surface of one of the substrates. A light control window, characterized in that a light control body is attached to the opening.
【請求項4】 前記吸収異方性透明体がルーバー状レリ
ーフを形成した透明体である請求項3に記載の調光窓。
4. The light control window according to claim 3, wherein the absorption anisotropic transparent body is a transparent body having a louver-shaped relief formed thereon.
JP15404294A 1994-07-06 1994-07-06 Liquid crystal light control body and light control window using the same Expired - Fee Related JP3296096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15404294A JP3296096B2 (en) 1994-07-06 1994-07-06 Liquid crystal light control body and light control window using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15404294A JP3296096B2 (en) 1994-07-06 1994-07-06 Liquid crystal light control body and light control window using the same

Publications (2)

Publication Number Publication Date
JPH0821990A JPH0821990A (en) 1996-01-23
JP3296096B2 true JP3296096B2 (en) 2002-06-24

Family

ID=15575655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15404294A Expired - Fee Related JP3296096B2 (en) 1994-07-06 1994-07-06 Liquid crystal light control body and light control window using the same

Country Status (1)

Country Link
JP (1) JP3296096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153998A1 (en) 2021-01-13 2022-07-21 Agc株式会社 Laminated glass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706112B2 (en) * 2010-08-20 2015-04-22 スタンレー電気株式会社 Liquid crystal shutter element
JP6418488B2 (en) * 2014-08-07 2018-11-07 大日本印刷株式会社 Light control device and method of installing the light control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153998A1 (en) 2021-01-13 2022-07-21 Agc株式会社 Laminated glass

Also Published As

Publication number Publication date
JPH0821990A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
US5156452A (en) Encapsulated liquid crystal apparatus having low off-axis haze and operable by a sine-wave power source
US11762229B2 (en) Liquid crystal dimmable film
KR20010042979A (en) Optical components with self-adhering diffuser
JP3296096B2 (en) Liquid crystal light control body and light control window using the same
US11520196B2 (en) Light adjusting glass
JP6578640B2 (en) Light control device, installation method, and partition member
KR20000076613A (en) Optical film, optical member and optical element
JPH0372317A (en) Element and device for liquid crystal display
TWI769866B (en) Multi-function smart window and control method thereof
JP2020101665A (en) Light control glass
KR100661070B1 (en) Light controller and laminated glass
JP2016009172A (en) Dimmer and partition member
JP2000347224A (en) Liquid crystal light dimming body
JPH05107562A (en) Liquid crystal element
JP2000347223A (en) Liquid crystal dimming body
US5486937A (en) Latex containment means for a liquid crystal window
JPH11174231A (en) Optical element and liquid crystal display device
JP3182363B2 (en) Reflective liquid crystal display
JP2016065898A (en) Dimmer, installation method, and partition member
JPH08286162A (en) Liquid crystal dimming body
CN215642149U (en) Light-adjusting glass and light-adjusting module
CN112105985A (en) Anti-reflective dimming panel and methods of manufacture and use
JPH05188353A (en) Liquid crystal element
WO2023225888A1 (en) Multifunctional intelligent window and control method therefor
JPH0618860A (en) Liquid crystal element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees