JP3292893B2 - Microwave absorption heating element - Google Patents

Microwave absorption heating element

Info

Publication number
JP3292893B2
JP3292893B2 JP34816592A JP34816592A JP3292893B2 JP 3292893 B2 JP3292893 B2 JP 3292893B2 JP 34816592 A JP34816592 A JP 34816592A JP 34816592 A JP34816592 A JP 34816592A JP 3292893 B2 JP3292893 B2 JP 3292893B2
Authority
JP
Japan
Prior art keywords
microwave
heating element
present
mixture
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34816592A
Other languages
Japanese (ja)
Other versions
JPH06203950A (en
Inventor
卓 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP34816592A priority Critical patent/JP3292893B2/en
Publication of JPH06203950A publication Critical patent/JPH06203950A/en
Application granted granted Critical
Publication of JP3292893B2 publication Critical patent/JP3292893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Compounds Of Iron (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波吸収発熱体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave absorbing heating element.

【0002】[0002]

【従来技術とその課題】フェライトがマイクロ波を吸収
してマイクロ波エネルギーを熱エネルギーに変換するこ
とはよく知られており、フェライトがマイクロ波加熱装
置(電子レンジ)のマイクロ波吸収発熱体として広く利
用されている。しかしながら、フェライトはマイクロ波
帯においては充分な吸収量を得ることができず、そのた
めマイクロ波吸収発熱体として充分な発熱量が得られな
いという欠点を有している。
2. Description of the Related Art It is well known that ferrite absorbs microwaves and converts microwave energy into heat energy. Ferrite is widely used as a microwave-absorbing heating element in microwave heating devices (microwave ovens). It's being used. However, ferrite has a drawback in that a sufficient amount of absorption cannot be obtained in a microwave band, and thus a sufficient amount of heat generation cannot be obtained as a microwave absorption heating element.

【0003】このような欠点を解消するためにフェライ
トにカーボン粉末や炭化珪素粉末を配合した複合フェラ
イトも開発されている(特公昭51−16662号公
報、特開平1−163994号公報等参照)が、耐熱衝
撃性に劣るという欠点を有している。
In order to solve such disadvantages, a composite ferrite in which carbon powder or silicon carbide powder is blended with ferrite has also been developed (see Japanese Patent Publication No. 51-16662 and Japanese Patent Application Laid-Open No. 1-163994). And has a drawback of poor thermal shock resistance.

【0004】また、近年酸化亜鉛ウィスカーを発熱剤と
して用いたマイクロ波吸収発熱体が開発されている(特
開平2−216789号公報参照)。しかしながら、こ
のマイクロ波吸収発熱体には、マイクロ波エネルギーの
変換効率が低いという欠点がある。
In recent years, a microwave-absorbing heating element using zinc oxide whiskers as a heating agent has been developed (see JP-A-2-216789). However, this microwave absorption heating element has a drawback that the microwave energy conversion efficiency is low.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記欠点
を有しないマイクロ波吸収発熱体を開発すべく鋭意研究
を重ねるうち、ついに本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to develop a microwave absorbing heating element which does not have the above-mentioned disadvantages, and have finally completed the present invention.

【0006】即ち、本発明は、酸化鉄と酸化亜鉛との混
合物に有機高分子化合物を加え、圧縮成形した後に焼結
してなるマイクロ波吸収発熱体に係る。
That is, the present invention relates to a microwave-absorbing heating element obtained by adding an organic polymer compound to a mixture of iron oxide and zinc oxide, compression-molding and then sintering.

【0007】本発明で用いられる酸化鉄としては、例え
ばFeO、Fe2 3 、Fe3 4等、好ましくはFe
2 3 等が挙げられ、その粒径は特に限定されるもので
はない。
The iron oxide used in the present invention includes, for example, FeO, Fe 2 O 3 , Fe 3 O 4, etc.
2 O 3 and the like, and the particle size is not particularly limited.

【0008】本発明で用いられる酸化亜鉛としても、そ
の粒径は特に限定されるものではなく、また形状も特に
限定されず粒子状、粉状、ウィスカー状等いずれであっ
てもよい。
The particle size of the zinc oxide used in the present invention is not particularly limited, and the shape is not particularly limited, and may be any of a particle shape, a powder shape, a whisker shape, and the like.

【0009】本発明において、酸化鉄と酸化亜鉛との混
合割合としては、特に限定されるものではないが、両者
の混合比が2:98〜95:5とするのが好ましく、1
0:90〜90:10とするのが特に好ましい。酸化鉄
の混合割合が少なくなると、マイクロ波吸収効率が低下
するという欠点が生ずる傾向となり、一方逆に酸化鉄の
配合割合が多くなると、焼結時にクラックが発生し易く
なるという傾向が生ずる傾向となり、いずれも好ましく
ない。
In the present invention, the mixing ratio of iron oxide and zinc oxide is not particularly limited, but the mixing ratio of the two is preferably from 2:98 to 95: 5, and preferably 1:98 to 95: 5.
The ratio is particularly preferably from 0:90 to 90:10. When the mixing ratio of iron oxide decreases, the disadvantage that microwave absorption efficiency decreases tends to occur.On the other hand, when the mixing ratio of iron oxide increases, cracks tend to occur during sintering. Are not preferred.

【0010】本発明で用いられる有機高分子化合物とし
ては、従来公知のものを広く使用でき、例えばポリエチ
レン、ポリプロピレン、ポリ塩化ビニル、ポリビニルア
ルコール、ABS、ポリアミド、アクリル樹脂等の熱可
塑性樹脂、天然ゴム、ポリクロロプレン、ブタジエンゴ
ム、弗素ゴム、アクリルゴム等のゴム類、フェノール樹
脂、不飽和ポリエステル樹脂、エポキシ樹脂、シリコー
ン樹脂等の熱硬化性樹脂等を挙げることができる。これ
ら有機高分子化合物の中でも、水溶性のポリビニルアル
コールやアクリル樹脂が特に好適である。斯かる有機高
分子化合物の添加量としては、特に限定されないが、酸
化鉄と酸化亜鉛との合計量に対して通常1〜40重量%
程度、好ましくは2〜10重量%程度とするのがよい。
有機高分子化合物の添加量が少な過ぎると、焼結時の成
形性が悪くなるという傾向が生ずる傾向となり、逆に有
機高分子化合物の添加量が多過ぎると、焼結体の密度が
上がらないという傾向が生ずる傾向となる。
As the organic polymer compound used in the present invention, conventionally known compounds can be widely used, for example, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polyvinyl alcohol, ABS, polyamide and acrylic resin, and natural rubber. And rubbers such as polychloroprene, butadiene rubber, fluorine rubber, and acrylic rubber; and thermosetting resins such as phenolic resins, unsaturated polyester resins, epoxy resins, and silicone resins. Among these organic polymer compounds, water-soluble polyvinyl alcohol and acrylic resin are particularly preferable. The amount of the organic polymer compound is not particularly limited, but is usually 1 to 40% by weight based on the total amount of iron oxide and zinc oxide.
And preferably about 2 to 10% by weight.
If the amount of the organic polymer compound is too small, the moldability at the time of sintering tends to deteriorate, and if the amount of the organic polymer compound is too large, the density of the sintered body does not increase. This tends to occur.

【0011】本発明のマイクロ波吸収発熱体は、酸化鉄
と酸化亜鉛との混合物に有機高分子化合物を加え、圧縮
成形した後に焼結することにより得られる。有機高分子
化合物を添加するに先立って、酸化鉄と酸化亜鉛との混
合物を予め仮焼しておいてもよい。圧縮成形及び焼結
は、常法に従って行ない得る。例えば圧縮成形時の成形
圧力は、通常200kg/cm2 以上とするのがよく、
また焼結は800〜1350℃程度、好ましくは100
0〜1350℃程度で行なうのがよい。
The microwave absorbing heat generating element of the present invention is obtained by adding an organic polymer compound to a mixture of iron oxide and zinc oxide, compression-molding, and then sintering. Prior to adding the organic polymer compound, a mixture of iron oxide and zinc oxide may be calcined in advance. Compression molding and sintering can be performed according to conventional methods. For example, the molding pressure during compression molding is usually preferably 200 kg / cm 2 or more,
Sintering is performed at about 800 to 1350 ° C., preferably 100 ° C.
It is preferable to carry out at about 0 to 1350 ° C.

【0012】[0012]

【実施例】以下に実施例を掲げて本発明をより一層明ら
かにする。
The present invention will be further clarified with reference to the following examples.

【0013】実施例1 Fe2 3 (試薬特級)30.0g及びZnO(試薬特
級)270.0gを自動混合機を用いて混合した後、ポ
リビニルアルコール水溶液(試薬特級、固形物換算1
5.8g)を加え、更に混合した。この混合物を500
kg/cm2 の圧力で成形し、この成形体を大気中で図
1に示す温度スケジュールで焼結し、本発明のマイクロ
波吸収発熱体を得た。
Example 1 After 30.0 g of Fe 2 O 3 (special grade of reagent) and 270.0 g of ZnO (special grade of reagent) were mixed by using an automatic mixer, an aqueous polyvinyl alcohol solution (special grade of solid reagent, 1
5.8 g) was added and further mixed. This mixture is
The molded body was molded at a pressure of kg / cm 2 , and the molded body was sintered in the air at a temperature schedule shown in FIG. 1 to obtain a microwave absorbing heating element of the present invention.

【0014】実施例2 Fe2 3 (試薬特級)60.0g及びZnO(試薬特
級)240.0gを自動混合機を用いて混合した後、ポ
リビニルアルコール水溶液(試薬特級、固形物換算1
5.8g)を加え、更に混合した。以下実施例1と同様
にして、本発明のマイクロ波吸収発熱体を得た。
Example 2 60.0 g of Fe 2 O 3 (special grade of reagent) and 240.0 g of ZnO (special grade of reagent) were mixed using an automatic mixer, and then an aqueous solution of polyvinyl alcohol (special grade of solid reagent, 1
5.8 g) was added and further mixed. Thereafter, in the same manner as in Example 1, a microwave absorption heating element of the present invention was obtained.

【0015】実施例3 Fe2 3 (試薬特級)90.0g及びZnO(試薬特
級)210.0gを自動混合機を用いて混合した後に、
この混合物を1200℃で1時間大気中で仮焼し、粉砕
した。この仮焼生成物にポリビニルアルコール水溶液
(試薬特級、固形物換算15.8g)を加え、更に混合
した。この混合物を2000kg/cm2の圧力で成形
し、この成形体を大気中で図1に示す温度スケジュール
で焼結し、本発明のマイクロ波吸収発熱体を得た。
Example 3 After 90.0 g of Fe 2 O 3 (special grade reagent) and 210.0 g of ZnO (special grade reagent) were mixed using an automatic mixer,
This mixture was calcined in the air at 1200 ° C. for 1 hour and pulverized. To this calcined product, an aqueous polyvinyl alcohol solution (special reagent grade, 15.8 g in terms of solids) was added and further mixed. This mixture was molded at a pressure of 2000 kg / cm 2 , and the molded body was sintered in the air at a temperature schedule shown in FIG. 1 to obtain a microwave absorbing heat generating body of the present invention.

【0016】実施例4 Fe2 3 とZnOとの混合割合を80:20(重量
比)とする以外は、実施例1と同様にして、本発明のマ
イクロ波吸収発熱体を得た。
Example 4 A microwave absorbing heating element of the present invention was obtained in the same manner as in Example 1 except that the mixing ratio of Fe 2 O 3 and ZnO was changed to 80:20 (weight ratio).

【0017】実施例5 Fe2 3 とZnOとの混合割合を90:10(重量
比)とする以外は、実施例1と同様にして、本発明のマ
イクロ波吸収発熱体を得た。
Example 5 A microwave absorbing heating element of the present invention was obtained in the same manner as in Example 1 except that the mixing ratio of Fe 2 O 3 and ZnO was 90:10 (weight ratio).

【0018】上記実施例1〜5で得られた各マイクロ波
吸収発熱体の焼結密度を測定した。また、各マイクロ波
吸収発熱体を電子レンジ〔定格発振周期数2450MH
z、日立ホームテック(株)製〕内に入れ、放射温度計
〔IR−308、中温域,ガラス越し用、ミノルタ
(株)製〕を用いて発熱温度を測定した。更に各マイク
ロ波吸収発熱体の亀裂状態も調べた。これらの結果を表
1に示す。
The sintered density of each of the microwave-absorbing heating elements obtained in Examples 1 to 5 was measured. In addition, each microwave absorbing and heating element is placed in a microwave oven [rated oscillation cycle number of 2450 MHz.
z, manufactured by Hitachi Hometech Co., Ltd.], and the exothermic temperature was measured using a radiation thermometer [IR-308, medium temperature range, through glass, manufactured by Minolta Co., Ltd.]. Further, the crack state of each microwave absorbing heat generating element was also examined. Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】比較例1 バリウムフェライトとチタン酸バリウムとを重量比で7
5:25となるように秤量、混合し、更にポリビニルア
ルコールバインダーを添加し、混合した。この混合物を
500kg/cm2 の圧力で直径20mmのペレットに
成形した後、更に2000kg/cm2 の圧力でCIP
成形した。その成形体を600℃まで徐々に加熱し、2
時間保持し、バインダーを除去した後、1300℃で2
時間焼結した。この焼結体は変形した。またバインダー
除去の段階をなくし、急激に加熱した場合にはクラック
が発生した。
Comparative Example 1 Barium ferrite and barium titanate in a weight ratio of 7
The mixture was weighed and mixed at 5:25, and a polyvinyl alcohol binder was further added and mixed. This mixture was formed into pellets having a diameter of 20 mm at a pressure of 500 kg / cm 2 and then CIP was further formed at a pressure of 2000 kg / cm 2.
Molded. The molded body is gradually heated to 600 ° C.
After holding for a time and removing the binder,
Sintered for hours. This sintered body was deformed. In addition, when the step of removing the binder was omitted and heating was performed rapidly, cracks occurred.

【0021】比較例2 バリウムフェライトと酸化亜鉛とを重量比で70:30
となるように秤量、混合し、更にポリビニルアルコール
バインダーを添加し、混合した。この混合物を300k
g/cm2 の圧力で成形した。その成形体を300℃/
時で昇温し、1200℃で2時間焼結した。焼結体は、
電子レンジ中で約1分間で900℃以上に発熱し、激し
い亀裂の発生は生じなかった。バリウムフェライト/チ
タン酸バリウム系に比べると、この系は優れた耐熱衝撃
性を示したが、反応により生成するBaOが材料の化学
的安定性に悪影響を及ぼした。即ちBaOは水を吸い易
く、またCO2 とも反応し易く、変質し易かった。
Comparative Example 2 Barium ferrite and zinc oxide were mixed in a weight ratio of 70:30.
Were weighed and mixed so as to obtain, and a polyvinyl alcohol binder was further added and mixed. 300k of this mixture
It was molded at a pressure of g / cm 2 . 300 ° C /
Then, the temperature was raised, and sintering was performed at 1200 ° C. for 2 hours. The sintered body is
Heat was generated to 900 ° C. or more in a microwave oven for about 1 minute, and no severe cracking occurred. Compared to the barium ferrite / barium titanate system, this system exhibited excellent thermal shock resistance, but the BaO formed by the reaction adversely affected the chemical stability of the material. That is, BaO was easy to absorb water, easily reacted with CO 2, and easily deteriorated.

【0022】[0022]

【発明の効果】本発明のマイクロ波吸収発熱体は、安定
した発熱性及び良好な耐熱衝撃性を有し、しかもマイク
ロ波エネルギーの変換効率に高いものである。
The microwave-absorbing heating element of the present invention has stable heat generation and good thermal shock resistance, and has a high microwave energy conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】成形体を焼結する際の温度スケジュールを示す
グラフである。
FIG. 1 is a graph showing a temperature schedule for sintering a compact.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−216789(JP,A) 特開 平4−137482(JP,A) 特開 昭50−8126(JP,A) 特開 平2−217719(JP,A) 特開 平3−25888(JP,A) 特開 平1−166723(JP,A) 特開 昭63−108122(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05B 6/74 C01G 49/00 C04B 35/453 F24C 7/02 561 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-216789 (JP, A) JP-A-4-137482 (JP, A) JP-A-50-8126 (JP, A) JP-A-2-8 217719 (JP, A) JP-A-3-25888 (JP, A) JP-A-1-166723 (JP, A) JP-A-63-108122 (JP, A) (58) Fields investigated (Int. 7 , DB name) H05B 6/74 C01G 49/00 C04B 35/453 F24C 7/02 561

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化鉄と酸化亜鉛との混合物に有機高分
子化合物を加え、圧縮成形した後に焼結してなるマイク
ロ波吸収発熱体。
1. A microwave-absorbing heating element obtained by adding an organic polymer compound to a mixture of iron oxide and zinc oxide, compression molding and sintering.
【請求項2】 酸化鉄と酸化亜鉛との混合比が2:98
から95:5である請求項1記載のマイクロ波吸収発熱
体。
2. The mixing ratio of iron oxide and zinc oxide is 2:98.
2. The microwave-absorbing heating element according to claim 1, wherein the ratio is from 95 to 95: 5.
JP34816592A 1992-12-28 1992-12-28 Microwave absorption heating element Expired - Fee Related JP3292893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34816592A JP3292893B2 (en) 1992-12-28 1992-12-28 Microwave absorption heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34816592A JP3292893B2 (en) 1992-12-28 1992-12-28 Microwave absorption heating element

Publications (2)

Publication Number Publication Date
JPH06203950A JPH06203950A (en) 1994-07-22
JP3292893B2 true JP3292893B2 (en) 2002-06-17

Family

ID=18395191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34816592A Expired - Fee Related JP3292893B2 (en) 1992-12-28 1992-12-28 Microwave absorption heating element

Country Status (1)

Country Link
JP (1) JP3292893B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314384B1 (en) * 2011-04-07 2013-10-04 서덕동 Metal oxide composition heated by microwave irradiation, organic/inorganic composition and product comprising the same
CN108285261B (en) * 2018-03-20 2024-02-06 中国石油大学(北京) Device for treating oily sludge by microwaves and treatment method thereof
CN108439766B (en) * 2018-03-20 2024-01-23 中国石油大学(北京) Method for treating oily sludge
CN108409106B (en) * 2018-03-20 2024-05-07 中国石油大学(北京) Microwave treatment method and equipment for oily sludge

Also Published As

Publication number Publication date
JPH06203950A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
EP0225392B1 (en) Resin-bonded magnetic composition and process for producing magnetic molding therefrom
CN106751910A (en) A kind of heat conduction electromagnetic-wave absorbing rubber material and preparation method thereof
BR9505627A (en) Process for the preparation of non-evaporable material and highly porous "getter" bodies
CN106751881A (en) A kind of room temperature molded curing heat conduction electromagnetic-wave absorbing rubber material and preparation method thereof
JP3292893B2 (en) Microwave absorption heating element
JP2963885B2 (en) Composition for electromagnetic wave absorber and method for producing the same
GB2132182A (en) Process for preparation of silicon nitride powder of good sintering property
JP3533532B2 (en) Large particle size aluminum nitride powder and method for producing the same
CN108659535A (en) A kind of heat conduction absorbing material and preparation method thereof for ETC devices
JP3458196B2 (en) High thermal conductive resin composition
JP2006314489A (en) Heating element, structural member and container for heating equipped with the same, and production method of heating element
JPS5849665A (en) Ceramic body for dielectric heating
JPH0147039B2 (en)
JP3318490B2 (en) Radio wave absorber
KR970004601B1 (en) Coating composition
JP2003192885A (en) Unsaturated polyester resin composition and molded article thereof
JP2003082229A (en) Carbonaceous powder molding material, method for producing the same and carbonaceous molding
JP2000094121A (en) Manufacture of plate for slide gate
JP6657463B1 (en) Titanate compound-containing particles, method for producing titanate compound-containing particles, and friction material
CN111484275B (en) Preparation method of mica magnetic conduction plate
JPH0337880B2 (en)
CN101445716A (en) Novel wave-absorbing material and preparation method thereof
JP2003165784A (en) Carbonaceous porous body and its producing method
JP3151544B2 (en) High frequency electromagnetic wave absorbing resin composition
JP2002324877A (en) Semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees